Деление клетки является центральным моментом размножения.

В процессе деления из одной клетки возникают две. Клетка на основе ассимиляции органических и неорганических веществ создает себе подобную с характерным строением и функциями.

В делении клетки можно наблюдать два основных момента: деление ядра - митоз и деление цитоплазмы - цитокинез, или цитотомия. Основное внимание генетиков до сих пор приковывает митоз, поскольку, с точки зрения хромосомной теории, ядро считается «органом» наследственности.

В процессе митоза происходит:

  1. удвоение вещества хромосом;
  2. изменение физического состояния и химической организации хромосом;
  3. расхождение дочерних, точнее сестринских, хромосом к полюсам клетки;
  4. последующее деление цитоплазмы и полное восстановление двух новых ядер в сестринских клетках.

Таким образом, в митозе заложен весь жизненный цикл ядерных генов: удвоение, распределение и функционирование; в результате завершения митотического цикла сестринские клетки оказываются с равным «наследством».

При делении ядро клетки проходит пять последовательных стадий: интерфазу, профазу, метафазу, анафазу и телофазу; некоторые цитологи выделяют еще шестую стадию - прометафазу.

Между двумя последовательными делениями клетки ядро находится в стадии интерфазы. В этот период ядро при фиксации и Окраске имеет сетчатую структуру, образуемую красящимися тонкими нитями, которые в следующей фазе формируются в хромосомы. Хотя интерфазу называют иначе фазой покоящегося ядра , на самом теле метаболические процессы в ядре в этот период совершаются с наибольшей активностью.

Профаза - первая стадия подготовки ядра к делению. В профазе сетчатая структура ядра постепенно превращается в хромосомные нити. С самой ранней профазы даже в световом микроскопе можно наблюдать двойную природу хромосом. Это говорит о том, что в ядре именно в ранней или поздней интерфазе осуществляется наиболее важный процесс митоза - удвоение, или редупликация, хромосом, при котором каждая из материнских хромосом строит себе подобную - дочернюю. Вследствие этого каждая хромосома выглядит продольно удвоенной. Однако эти половинки хромосом, которые называются сестринскими хроматидами , в профазе не расходятся, так как удерживаются вместе одним общим участком - центромерой; центромерный участок делится позже. В профазе хромосомы претерпевают процесс скручивания по своей оси, что приводит к их укорочению и утолщению. Нужно подчеркнуть, что в профазе каждая хромосома в кариолимфе располагается случайно.

В клетках животных еще в поздней телофазе или очень ранней интерфазе происходит удвоение центриоли, после чего в профазе начинается схождение дочерних центриолей к полюсам и образований астросферы и веретена, называемого новым аппаратом. В это же время растворяются ядрышки. Существенным признаком окончания профазы является растворение оболочки ядра, в результате чего хромосомы оказываются в общей, массе цитоплазмы и кариоплазмы, которые теперь образуют миксоплазму. Этим заканчивается профаза; клетка вступает в метафазу.

В последнее время между профазой и метафазой исследователи стали выделять промежуточную стадию, называемую прометафазой . Прометафаза характеризуется растворением и исчезновением ядерной оболочки и движением хромосом к экваториальной плоскости клетки. Но к этому моменту еще не завершается образование ахроматинового веретена.

Метафазой называют стадию окончания расположения хромосом на экваторе веретена. Характерное расположение хромосом в экваториальной плоскости называют экваториальной, или метафазной, пластинкой. Расположение хромосом по отношению друг к другу является случайным. В метафазе хорошо выявляются число и форма хромосом, в особенности при рассмотрении экваториальной пластинки с полюсов деления клетки. Ахроматиновое веретено полностью сформировано: нити веретена приобретают плотную консистенцию чем остальная масса цитоплазмы, и прикрепляются к центромерному участку хромосомы. Цитоплазма клетки в этот период имеет наименьшую вязкость.

Анафазой называют следующую фазу митоза, в которой делятся хроматиды, которые теперь можно назвать уже сестринскими или дочерними хромосомами, расходятся к полюсам. При этом отталкиваются друг от друга в первую очередь центромерные участки, а затем расходятся к полюсам сами хромосомы. Нужно сказать, что расхождение хромосом в анафазе начинается одновременно - «как по команде» - и завершается очень быстро.

В телофазе дочерние хромосомы деспирализуются и утрачивают видимую индивидуальность. Образуются оболочка ядра и само ядро. Ядро реконструируется в обратном порядке по сравнению с теми изменениями, которые оно претерпевало в профазе. В конце концов восстанавливаются и ядрышки (или ядрышко), причем в том количестве, в каком они присутствовали в родительских ядрах. Число ядрышек является характерным для каждого типа клеток.

В это же время начинается симметричное разделение тела клетки. Ядра же дочерних клеток переходят в состояние интерфазы.

Нa рисунке выше приведена схема цитокинеза животной и растительной клеток. В животной клетке деление происходит путем перешнуровывания цитоплазмы материнской клетки. В растительной клетке формирование клеточной перегородки идет при участки бляшек веретена, образующих в плоскости экватора перегородку, называемую фрагмопластом. Этим заканчивается митотический цикл. Продолжительность его зависит, по-видимому, от типа ткани, физиологического состояния организма, внешних факторов (температуры, светового режима) и длится от 30 мин до 3 ч. По данным разных авторов, скорость прохождения отдельных фаз изменчива.

Как внутренние, так и внешние факторы среды, действующие на рост организма и его функциональное состояние, влияют на продолжительность клеточного деления и его отдельных фаз. Поскольку ядро играет огромную роль в метаболических процессах клетки, естественно полагать, что длительность фаз митоза может изменяться в соответствии с функциональным состоянием ткани органа. Например, установлено, что во время покоя и сна животных митотическая активность различных тканей значительно выше, чем в период бодрствования. У ряда животных частота клеточных делений на свету снижается, а в темноте увеличивается. Предполагают также, что на митотическую активность клетки влияют гормоны.

Причины, определяющие готовность клетки к делению, до сих пор остаются невыясненными. Есть основания предполагать несколько таких причин:

  1. удвоение массы клеточной протоплазмы, хромосом и других органелл, в силу чего нарушаются ядерно-плазменные отношения; для деления клетка должна достигнуть определенных веса и объема, характерных для клеток данной ткани;
  2. удвоение хромосом;
  3. выделение хромосомами и другими органеллами клетки специальных веществ, стимулирующих клеточное деление.

Механизм расхождения хромосом к полюсам в анафазе митоза также остается невыясненным. Активную роль в этом процессе, видимо, играют нити веретена, представляющие организованные и ориентированные центриолями и центромерами белковые нити.

Характер митоза, как мы уже говорили, меняется в зависимости от типа и функционального состояния ткани. Для клеток разных тканей характерны различные типы митозов, В описанном типе митоза деление клетки происходит равным и симметричным образом. В результате симметричного митоза сестринские клетки являются наследственно равноценными в отношении как ядерных генов, так и цитоплазмы. Однако, кроме симметричного, встречаются и другие типы митоза, а именно: асимметричный митоз, митоз с задержкой цитокинеза, деление многоядерных клеток (деление синцитиев), амитоз, эндомитоз, эндорепродукция и политения.

В случае асимметричного митоза сестринские клетки оказываются неравноценными по размеру, количеству цитоплазмы, а также в отношении их дальнейшей судьбы. Примером этого могут служить неодинакового размера сестринские (дочерние) клетки нейробласта кузнечика, яйцеклетки животных при созревании и при спиральном дроблении; при делении ядер в пыльцевых зернах одна из дочерних клеток может в дальнейшем делиться, другая - нет, и т. д.

Митоз с задержкой цитокинеза характеризуется тем, что ядро клетки делится многократно, и лишь затем происходит деление тела клетки. В результате такого деления образуются многоядерные клетки вроде синцития. Примером этого служит образование клеток эндосперма и образование спор.

Амитозом называют прямое деление ядра без образования фигур деления. При этом деление ядра происходит путем «перешнуровывания» его на две части; иногда из одного ядра образуется сразу несколько ядер (фрагментация). Амитоз постоянно встречается в клетках ряда специализированных и патологических тканей, например в раковых опухолях. Его можно наблюдать при воздействиях различных повреждающих агентов (ионизирующие излучения и высокая температура).

Эндомитозом называют такой процесс, когда происходит удвоение деления ядер. При этом хромосомы, как и обычно, репродуцируются в интерфазе, но последующее расхождение их происходит внутри ядра с сохранением ядерной оболочки и без образования ахроматинового веретена. В некоторых случаях хотя и растворяется оболочка ядра, однако расхождение хромосом к полюсам не осуществляется, вследствие чего в клетке происходит умножение числа хромосом даже в несколько десятков раз. Эндомитоз встречается в клетках различных тканей как растений, так и животных. Так, например, А. А. Прокофьева-Бельговская показала, что путем эндомитоза в клетках специализированных тканей: в гиподерме циклопа, жировом теле, перитонеальном эпителии и других тканях кобылки (Stenobothrus) - набор хромосом может увеличиваться в 10 раз. Такое умножение числа хромосом связано с функциональными особенностями дифференцированной ткани.

При политении происходит умножение числа хромосомных нитей: после редупликации по всей длине они не расходятся и остаются прилегающими друг к другу. В этом случае умножается число хромосомных нитей в пределах одной хромосомы, в результате диаметр хромосом заметно увеличивается. Число таких тонких нитей в политенной хромосоме может достигать 1000-2000. В этом случае образуются так называемые гигантские хромосомы. При политении выпадают все фазы митотического цикла, кроме основной - репродукции первичных нитей хромосомы. Явление политении наблюдается в клетках ряда дифференцированных тканей, например в ткани слюнных желез двукрылых, в клетках некоторых растений и простейших.

Иногда имеет место удвоение одной или нескольких хромосом без каких-либо преобразований ядра - такое явление называется эндорепродукцией .

Итак, все фазы митоза клетки, составляющие , являются обязательными лишь для типичного процесса.

некоторых случаях, главным образом в дифференцированных тканях, митотический цикл претерпевает изменения. Клетки таких тканей утратили способность к воспроизведению целого организма, и метаболическая деятельность их ядра приспособлена к функции поциализированной ткани.

Эмбриональные и меристемные клетки, не утратившие функцию воспроизведения целого организма и относящиеся к недифференцированным тканям, сохраняют полный цикл митоза, на чем и основывается бесполое и вегетативное размножение.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно клеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Амитоз

Амитоз, или прямое деление, — это деление интерфазного ядра путем перетяжки без образования веретена деления (хромосомы в световом микроскопе вообще неразличимы). Такое деление встречается у одноклеточных организмов (например, амитозом делятся полиплоидные большие ядра инфузорий), а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п. Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме, стенках завязи пестика и паренхиме черешков листьев. Такой тип деления характерен для клеток печени, хрящевых клеток, роговицы глаза. Очень часто при амитозе наблюдается только деление ядра, в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуществляется произвольно. Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны. К амитозу близко клеточное деление у прокариот. Бактериальная клетка содержит только одну, чаще всего кольцевую молекулу ДНК, прикрепленную к клеточной мембране. Перед делением клетки ДНК реплицируется, и образуются две идентичные молекулы ДНК, каждая из которых также прикреплена к клеточной мембране. При делении клетки клеточная мембрана врастает между этими двумя молекулами ДНК, так что в конечном итоге в каждой дочерней клетке, оказывается, по одной идентичной молекуле ДНК. Такой процесс лучил название прямого бинарного деления.

Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10-20 ч. Затем наступает процесс деления клетки — митоз.

Митоз

Митоз (от греч. Mitos- нить) непрямое деление, — основной способ деления эукариотических клеток. Митоз — это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином — «митоз» обозначают деление клетки целиком. Митоз впервые наблюдали в спорах папоротников, хвощей плаунов Г. Э. Руссов, преподаватель Дерптского университета в 1872 г. и русский ученый И. Д. Чистяков в 1874 г. Детальные исследования поведения хромосом в митозе были выполнены немецким ботаником Э. Страсбургером в 1876-1879 гг. на растениях и немецким гистологом В. Флеммингом в 1882 г. на животных.

Рис. 1. Схематическое изображение митоза в животных клетках

Во время интерфазы при подготовке клетки к делению происходит репликация ДНК. Во время профазы ядерная оболочка разрушается и между двумя центриолями формируется веретено. На стадии метафазы хромосомы располагаются в экваториальной плоскости клетки. Когда наступает анафаза, удвоившиеся хромосомы (называемые хроматидами) расходятся. На стадии телофазы хромосомы достигают полюсов веретена, клетка начинает разделяться на две дочерние клетки. По числу и типу хромосом дочерние клетки идентичны материнской

Митоз представляет собой непрерывный процесс, но для удобства изучения биологи делят его на четыре стадии в зависимости оттого, как выглядят в это время хромосомы в световом микроскопе. В митозе выделяют профазу, метафазу, анафазу и телофазу. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные состоят из двух сестринских хроматид, связанных между собой. Одновременно со спирализацией хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. В профазе центриоли (в тех клетках, где они есть) расходятся к полюсам клетки. В конце профазы начинает образовываться веретено деления, которое формируется из микротрубочек путем полимеризации белковых субъединиц.

В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и центросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т. е. располагаются равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную , или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. В этот период легко подсчитывать число хромосом, изучать их морфологические особенности. В анафазе дочерние хромосомы с помощью микротрубочек веретена деления растягиваются к полюсам клетки. Во время движения дочерние хромосомы несколько изгибаются на подобие шпильки, концы которой повернуты в сторону экватора клетки. Таким образом, в анафазе хроматиды удвоенные в интерфазе хромосом расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом.

В телофазе происходят процессы, обратные тем, которые наблюдаются в профазе: начинается деспирализация (раскручивание) хромосом, они набухают и становятся плохо видимыми под микроскопом. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах возникают ядрышки. Разрушается веретено деления. На стадии телофазы происходит разделение цитоплазмы (цитотомия) с образованием двух клеток. В клетках животных плазматическая мембрана начинает впячиваться внутрь области, где располагался экватор веретена. В результате впячивания образуется непрерывная борозда, опоясывающая клетку по экватору и постепенно разделяющая одну клетку на две.

В клетках растений в области экватора из остатков нитей веретена деления возникает бочковидное образование — фрагмопласт . В эту область со стороны полюсов клетки устремляются многочисленные пузырьки комплекса Гольджи, которые сливаются друг с другом. Содержимое пузырьков образует клеточную пластинку, которая делит клетку на две дочерние, а мембрана пузырьков Гольджи образует недостающие цитоплазматические мембраны этих клеток. Впоследствии на клеточную пластинку со стороны каждой из дочерних клеток откладываются элементы клеточных оболочек. В результате митоза из одной клетки возникают две дочерние с тем же набором хромосом, что и в материнской клетке.

Биологическое значение митоза состоит, таким образом, в строго одинаковом распределении между дочерними клетками материальных носителей наследственности — молекул ДНК, входящих в состав хромосом. Благодаря равномерному распределению реплицированных хромосом происходит восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологического размножения организмов.

Мейоз или редукционное деление

Мейоз — это особый способ деления клеток, в результат которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т. е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.


Рис.2. Итоговая схема мейоза

ДНК и связанные с ней белки реплицируются во время интерфазы. Во время профазы ядерная оболочка разрушается и гомологичные хромосомы (каждая из которых состоит из двух хроматид, соединенных центромерой) располагаются попарно. В это время между четырьмя гомологичными хроматидами может происходить обмен участками. После метафазы I две исходно гомологичные хромосомы расходятся в разные клетки. При втором делении центромера расщепляется, и в результате в каждой новой клетке оказывается одна копия каждой хромосо мы.

Редукционное деление является, по сути, механизмом препятствующим непрерывному увеличению числа хромосом при слиянии гамет, без него при половом размножении число хромосом удваивалось бы в каждом новом поколении. Иными словами, благодаря мейозу поддерживает определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет, как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосомпри их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Образование

Веретено деления — это… Описание, структура и функции

Веретено деления — это временная структура, образующаяся во время процессов митоза и мейоза, и обеспечивающая сегрегацию хромосом и деление клетки.

Деление клетки

Оно биполярно: система микротрубочек, образованная в пространстве между полюсами, по форме напоминает веретено. В области центромеры к кинетохорам хромосомы присоединяются микротрубочки веретена. По ним хромосомы двигаются к полюсам.

Строение

Веретено деления состоит из трех основных структурных элементов: микротрубочек, полюсов деления и хромосом. Полюса деления у животных организуются с помощью центросом, в которых содержатся центриоли. В случае отсуствия центросом (у растений, и в ооцитах у некоторых видов животных) веретено имеет широкие полюса и называется ацентросомальным. В образовании веретена участвует еще одна структура — моторные белки. Они принадлежат к динеинам и кинезинам.

Веретено деления — это биполярная структура. На обоих полюсах расположены центросомы — органеллы, которые являются центрами организации микротрубочек. В строении центросомы различают две центриоли, находящиеся в окружении множества различных белков. Конденсированные хромосомы, имеющие вид двух хроматид, скрепленных на участке центромеры, располагаются между полюсами. В области центромер имеются кинетохоры, к которым происходит прикрепление микротрубочек.

Формирование

Так как веретено деления — это структура, отвечающая за деление клетки, начало ее сборки происходит в профазе. У растений и в ооцитах, при отсутствии центросом, центром организации микротрубочек служит оболочка ядра. Микротрубочки приближаются к ядерной оболочке и в конце профазы заканчивается их ориентация, и образуется "профазное веретено" — ось будущего веретена деления.

Ввиду того, что в клетках животных именно центросома выполняет роль центра организации, началом формирования веретена деления является расхождение двух центросом в период профазы. Это возможно благодаря моторным белкам динеинам: они прикрепляются на внешнюю поверхность ядра, а также на внутреннюю сторону мембраны клетки. Группа динеинов, закрепленных на мембране, соединяется с астральными микротрубочками и они начинают движение по направлению к минус-концу, за счет чего и происходит разведение центросом по противоположным участкам мембраны клетки.

Видео по теме

Окончание сборки

Окончательное формирование веретена деления происходит на стадии прометафазы, после исчезновения мембраны ядра оно становится полноценным, ведь именно после этого центросомы и микротрубочки могут получить доступ к составляющим веретена.
Однако существует одно исключение: у почкующихся дрожжей формирование веретена деления происходит внутри ядра.

Образование нитей веретена деления и их ориентация невозможна без двух процессов: организации микротрубочек вокруг хромосом и присоединения их друг к другу на противоположных полюсах деления. Многие элементы, необходимые для окончательного формирования веретена деления, в том числе хромосомы и моторные белки, находятся внутри ядра клетки, а микротрубочки и, если это животная клетка, центросомы содержатся в цитоплазме, то есть, компоненты изолированы друг от друга. Именно поэтому образование веретена заканчивается только после исчезновения ядерной оболочки.

Присоединение хромосом

В образовании веретена деления участвует белок, а также многие другие структуры, и в клетках животных этот процесс хорошо изучен. В период профазы микротрубочки образуют вокруг центросом звездчатую структуру, которая расходится в радиальном направлении. После того как мембрана ядра разрушается, динамически нестабильные микротрубочки начинают активно зондировать эту область и кинетохоры хромосом могут закрепиться на них. Некоторая часть хромосом сразу оказывается на противоположных полюсах, остальные же сначала связываются с микротрубочками одного из полюсов, и уже потом начинают движение в сторону нужного полюса. Когда процесс закончен, хромосомы, уже связанные с каким-либо полюсом, начинают прикрепляться кинетохорами к микротрубочкам от противоположного полюса, таким образом, во время процесса метафазы к кинетохорам оказывается присоединено от десяти до сорока трубочек. Это образование называют кинетохорным пучком. Постепенно каждая из хромосом оказывается связанной с противоположным полюсом, и они формируют в центральной части веретена деления метафазную пластинку.

Второй вариант

Есть и другой сценарий, по которому может образоваться веретено деления. Это возможно и для клеток, имеющих центросомы, и для клеток, в которых они отсутствуют. В процессе участвует гамма-тубулиновый кольцевой комплекс, благодаря которому идет нуклеация коротких микротрубочек вокруг хромосом. Трубочки присоединяются к кинетохорам плюс-концом, после чего начинается полимеризация микротрубочек, то есть, регулируемый рост. Минус-концы "сливаются" и остаются у полюсов деления благодаря моторным белкам. Если в образовании веретена деления участвует пара центросом, это облегчает соединение микротрубочек, но процесс возможен и без них.

Поровну

Четкое разделение хромосом между двумя клетками, образуемыми во время деления, может произойти только в случае, если парные хроматиды своими кинетохорами присоединились к разным полюсам. Биполярное расхождение хроматид носит название амфитепического, однако существуют и другие варианты, возникающие во время того, как собирается веретено деления. Это монотепическое (один кинетохор присоединяется к одному полюсу) и синтепическое (оба кинетохора хромосомы соединяются с одним полюсом). При меротепическом один кинетохор захватывается сразу двумя полюсами. Стабильным является только обычное, биполярное скрепление, которое происходит вследствии сил натяжения от полюсов, остальные способы скрепления нестабильны и обратимы, но возможны из-за расположения кинетохор.

Комментарии

Похожие материалы

Финансы
Страховая компания — это что такое? Структура и функции

Страховая компания - это финансовый орган, предоставляющий страховые услуги физическим лицам, организациям различных форм собственности. Для того чтобы понять механизмы работы страховых компаний, необходимо расс…

Бизнес
Военно-космические силы России: описание, структура и состав

ВВС России начинают свою историю с 12 августа 1912 года — тогда приказом Генерального штаба создали штат воздухоплавательной части. И уже когда шла Первая мировая (1914-1918 гг.), авиация стала необходимым средством в…

Закон
Соотношение гражданского права с другими отраслями права: описание, примеры и функции

Взаимодействие между людьми - это сложный процесс, требующий постоянного регулирования. Этот тезис был выведен еще в древние времена, когда государства только начинали формироваться в виде целостных структур. Су…

Закон
Принуждение — это… Описание, виды и меры принуждения

Принуждение - это некое склонение, причем тогда, когда человек не хочет делать те или иные вещи. Подобные действия, которые понуждают людей к нежелательным или даже неприемлемым для них моментам, могут носить ка…

Закон
Орган судебной власти: понятие, структура и функции

Любое государство является сложным механизмом, который функционирует за счет своей внутренней структуры. Но далеко не всегда страны были в том виде, в котором все мы привыкли их видеть. Очень давно вместо государствен…

Закон
Структура и функции правовой культуры

Практически на протяжении всей истории своего развития человечество пыталось найти наиболее удачный и эффективный регулятор общественных отношений. Ведь взаимодействие социума происходит посредством объединения людей …

Закон
Армия Великобритании: основные рода войск, структура и функции

Армия любого государства - это щит, который призван защищать мирный быт граждан и территориальную целостность страны. Это социальное формирование существовало задолго до того, как люди придумали письменность, пр…

Здоровье
Кто такой онколог: описание, обязанности и функции

В мире существует огромное количество болезней, каждая из которых лечится соответствующим врачом. Сейчас трудно разобраться в узкой медицинской специализации, ведь кроме таких понятий, как «стоматолог», &l…

Здоровье
Отделы тонкого кишечника: описание, строение и функции

Как взаимодействуют между собой тонкий и толстый отдел кишечника? Каковы особенности работы представленных частей пищеварительного тракта? Какую роль отделы тонкого кишечника играют в процессе поглощения питательных в…

Здоровье
Органы равновесия и слуха: описание, строение и функции

Органы равновесия и слуха представляют собой комплекс структур, которые воспринимают вибрации, идентифицируют звуковые волны, передают гравитационные сигналы в мозг. Основные рецепторы располагаются в так называемой п…

Поиск Лекций

Изучить виды деления клеток. Занести в протокол таблицу «Типы деления клеток»

2. Рассмотреть на микропрепаратах кариокинез в клетках корешка лука и зарисовать.

3. Пользуясь учебной таблицей изучить схему мейотического деления клетки. Зарисовать в альбом.

4. Решить ситуационные задачи.

РАБОТА В ЛАБОРАТОРИИ

8.Литература :

Основная:

Типы и виды деления клеток.

Биология: В 2кн. Кн.1: Учеб. для мед.спец. вузов /под ред. В.Н.Ярыгина. 6-е изд. -М.:Высшая школа,2004.- С.55-61

2. Биология/А.А.Слюсарев, С.В.Жукова.- К.: Вища школа. Головное изд-во, 1992.- С.41-45

3. Биология. Руководство к практическим занятиям для студентов стоматологических факультетов под ред. акад. РАЕН проф. В.В. Маркиной. Изд. М. « ГЭОТАР- Медиа» 2010 г.

Дополнительная:

10. Медична біологія: Підручник /за ред.В.П.Пішака, Ю.І.Бажори.-Вінниця:Нова книга,2004.- С.26-28, 104-107, 118-125

11. Албертс Г., Грей Д., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир,1986. – В 3 т, 2-е изд. Т.1.- С. 176-177

12. Граф логической структуры.

13. Конспект лекций.

ЦЕЛЬ (общая) : необходимо обратить внимание на общие вопросы цитологии и молекулярной биологии.

Занятие проводится с целью закрепления ранее изученного материала.

К коллоквиуму допускаются студенты, не имеющие пропусков лекций, практических занятий и имеющие оформленные и подписанные преподавателем протоколы.

Оценка итогового складывается из:

1. 40 тестовых заданий (0 — 1 баллa) – max 40 баллов.

2. 2 задач (0-5-15 баллов за каждую задачу) — max 30 баллов.

3. Теоретический вопрос (0-5-10 баллов) — max 10 баллов.

__________________________________max 80 баллов.

КРИТЕРИИ ОЦЕНОК:

БАЛЛ — ОТЛИЧНО

БАЛЛА — ХОРОШО

БАЛЛОВ — УДОВЛЕТВОРИТЕЛЬНО

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Ядро. Деление ядра и клетки

Ядро, как правило, имеет шаровидную или овальную форму. В состав ядра входят: ядерная оболочка, кариоплазма, ядрышки и хроматин (хромосомы).

Ядерная оболочка образована двумя мембранами (наружной и внутренней). Отверстия в ядерной оболочке называют порами. Через них осуществляется обмен веществом между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма, ядерный сок) – желеобразное внутреннее содержимое ядра.

Ядрышко – сферическая структура, функция которой – синтез рРНК.

Хроматин – неспирализованная молекула ДНК, связанная с белками.

Типы деления клетки

В таком виде ДНК присутствует в неделящихся клетках.

При этом возможно удвоение ДНК (репликация) и реализация заключенной в ДНК информации.

Хромосома – спирализованная молекула ДНК, связанная с белками. ДНК спирализуется перед делением клетки для более точного распределения генетического материала. На стадии метафазы каждая хромосома состоит из двух хроматид, образующихся в результате удвоения ДНК. Хроматиды соединены между собой в области первичной перетяжки, или центромеры. Центромера делит хромосому на два плеча.

Совокупность хромосом, содержащихся в ядре, называется хромосомным набором . Число хромосом в клетке и их форма постоянны для каждого вида живых организмов.

Функции ядра : хранение генетической информации, передача ее дочерним клеткам в процессе деления; контроль жизнедеятельности клетки.

Каждая клетка начинает свою жизнь, когда отделяется от материнской, и заканчивает существование, давая возможность появиться своим дочерним клеткам. Природой предусмотрено больше одного способа деления их ядра, в зависимости от их строения.

Способы деления клеток

Деление ядра зависит от типа клетки:

— Бинарное деление (встречается у прокариотов).

— Амитоз (прямой способ деления).

— Митоз (встречается у эукариотов).

— Мейоз (предназначен для деления половых клеток).

Типы деления ядра детерминированы природой и соответствуют строению клетки и той функции, которую она выполняет в макроорганизме либо сама по себе.

Бинарное деление

Наиболее часто этот тип встречается у прокариотических клеток. Заключается он в удвоении кольцевой молекулы ДНК. Бинарное деление ядра называется так потому, что из материнской клетки появляются две одинаковые по размеру дочерние.

После того как генетический материл (молекула ДНК или РНК) подготовлен соответствующим образом, то есть увеличен вдвое, из клеточной стенки начинает формироваться поперечная перегородка, которая постепенно сужается и разделяет цитоплазму клетки на две приблизительно одинаковые части.

Второй процесс деления называется почкованием, или неравномерным бинарным делением. В этом случае на участке клеточной стенки появляется выпячивание, которое постепенно растет. После того как размеры «почки» и материнской клетки сравняются, они разделятся. А участок клеточной стенки синтезируется снова.

Амитоз

Это деление ядра похоже на описанное выше, с той разницей, что отсутствует удвоение генетического материала. Этот способ был впервые описан биологом Ремаком. Данное явление встречается в патологически измененных клетках (опухолевое перерождение), а также является физиологической нормой для ткани печени, хрящей и роговицы.

Процесс деления ядра называется амитозом, потому что клетка сохраняет свои функции, а не утрачивает их, как во время митоза. Это объясняет патологические свойства, присущие клеткам с данным способом деления. Кроме того, прямое деление ядра проходит без веретена деления, поэтому хроматин в дочерних клетках распределен неравномерно. В последующем такие клетки не могут использовать митотический цикл. Иногда в результате амитоза образуются многоядерные клетки.

Митоз

Это непрямое деление ядра. Чаще всего встречается в эукариотических клетках. Главное отличие этот процесса заключается в том, что дочерние клетки и материнская содержат одинаковое число хромосом. Благодаря этому в организме поддерживается необходимое количество клеток, а также возможны процессы регенерации и роста. Первым митоз в животной клетке описал Флемминг.

Процесс деления ядра в данном случае разделяется на интерфазу и непосредственно митоз. Интерфаза – это состояние покоя клетки в промежутке между делениями. В ней можно выделить несколько фаз:

1. Пресинтетический период — клетка растет, в ней накапливаются белки и углеводы, активно синтезируется АТФ (аденозинтрифосфат).

2. Синтетический период – генетический материал увеличивается вдвое.

3. Постсинтетический период – клеточные элементы удваиваются, появляются белки, из которых состоит веретено деления.

Фазы митоза

Деление ядра эукариотической клетки – это процесс, для которого необходимо образование дополнительной органеллы – центросомы. Она расположена рядом с ядром, и основной ее функцией является формирование новой органеллы — веретена деления. Данная структура помогает равномерно распределить хромосомы между дочерними клетками.

Выделяют четыре фазы митоза:

1. Профаза: хроматин в ядре конденсируется в хроматиды, которые возле центромеры собираются, попарно образуя хромосомы. Ядрышки распадаются, к полюсам клетки расходятся центриоли. Образуется веретено деления.

2. Метафаза: хромосомы располагаются в линию, проходящую через центр клетки, формируя метафазную пластинку.

3. Анафаза: хроматиды из центра клетки расходятся к полюсам, а затем и центромера разделяется надвое. Такое движение возможно благодаря веретену деления, нити которого сокращаются и растягивают хромосомы в разные стороны.

4. Телофаза: формируются дочерние ядра. Хроматиды снова превращаются в хроматин, формируется ядро, а в нем – ядрышки. Заканчивается все разделением цитоплазмы и образованием клеточной стенки.

Значение митоза

Митотическое деление ядра – это способ поддержания постоянного набора хромосом. Дочерние клетки имеют такой же набор генов, как и материнская, и все характеристики, ей присущие. Митоз необходим для:

— роста и развития многоклеточного организма (из слияния половых клеток);

— перемещения клеток из нижних слоев в более верхние, а также замены клеток крови (эритроцитов, лейкоцитов, тромбоцитов);

— восстановления поврежденных тканей (у некоторых животных способности к регенерации являются необходимым условием для выживания, например, у морских звезд или ящериц);

— бесполого размножения растений и некоторых животных (беспозвоночных).

Мейоз

Механизм деления ядер половых клеток несколько отличается от соматических. В результате него получаются клетки, которые имеют в два раза меньше генетической информации, чем их предшественники. Это необходимо для того, чтобы поддерживать постоянное количество хромосом в каждой клетке организма.

Мейоз проходит в два этапа:

— редукционный этап;

— эквационный этап.

Правильное течение данного процесса возможно только в клетках с четным набором хромосом (диплоидным, тетраплоидным, гексапроидным и т. д.). Конечно, остается возможность прохождения мейоза и в клетках с нечетным набором хромосом, но тогда потомство может оказаться нежизнеспособным.

Именно этот механизм обеспечивает стерильность в межвидовых браках. Так как в половых клетках находятся различные наборы хромосом, это затрудняет их слияние и появление жизнеспособного или фертильного потомства.


Способность к делению - важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно клеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом .

Амитоз

Амитоз, или прямое деление, - это деление интерфазного ядра путем перетяжки без образования веретена деления (хромосомы в световом микроскопе вообще неразличимы). Такое деление встречается у одноклеточных организмов (например, амитозом делятся полиплоидные большие ядра инфузорий), а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п. Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме, стенках завязи пестика и паренхиме черешков листьев. Такой тип деления характерен для клеток печени, хрящевых клеток, роговицы глаза. Очень часто при амитозе наблюдается только деление ядра, в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуществляется произвольно. Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны. К амитозу близко клеточное деление у прокариот. Бактериальная клетка содержит только одну, чаще всего кольцевую молекулу ДНК, прикрепленную к клеточной мембране. Перед делением клетки ДНК реплицируется, и образуются две идентичные молекулы ДНК, каждая из которых также прикреплена к клеточной мембране. При делении клетки клеточная мембрана врастает между этими двумя молекулами ДНК, так что в конечном итоге в каждой дочерней клетке, оказывается, по одной идентичной молекуле ДНК. Такой процесс лучил название прямого бинарного деления.

Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10-20 ч. Затем наступает процесс деления клетки - митоз.

Митоз

Митоз (от греч. Mitos- нить) непрямое деление, - основной способ деления эукариотических клеток. Митоз - это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином - «митоз» обозначают деление клетки целиком. Митоз впервые наблюдали в спорах папоротников, хвощей плаунов Г. Э. Руссов, преподаватель Дерптского университета в 1872 г. и русский ученый И. Д. Чистяков в 1874 г. Детальные исследования поведения хромосом в митозе были выполнены немецким ботаником Э. Страсбургером в 1876-1879 гг. на растениях и немецким гистологом В. Флеммингом в 1882 г. на животных.

Рис. 1. Схематическое изображение митоза в животных клетках

Во время интерфазы при подготовке клетки к делению происходит репликация ДНК. Во время профазы ядерная оболочка разрушается и между двумя центриолями формируется веретено. На стадии метафазы хромосомы располагаются в экваториальной плоскости клетки. Когда наступает анафаза, удвоившиеся хромосомы (называемые хроматидами) расходятся. На стадии телофазы хромосомы достигают полюсов веретена, клетка начинает разделяться на две дочерние клетки. По числу и типу хромосом дочерние клетки идентичны материнской

Митоз представляет собой непрерывный процесс, но для удобства изучения биологи делят его на четыре стадии в зависимости оттого, как выглядят в это время хромосомы в световом микроскопе. В митозе выделяют профазу, метафазу, анафазу и телофазу. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные состоят из двух сестринских хроматид, связанных между собой. Одновременно со спирализацией хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. В профазе центриоли (в тех клетках, где они есть) расходятся к полюсам клетки. В конце профазы начинает образовываться веретено деления, которое формируется из микротрубочек путем полимеризации белковых субъединиц.

В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и центросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т. е. располагаются равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную , или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. В этот период легко подсчитывать число хромосом, изучать их морфологические особенности. В анафазе дочерние хромосомы с помощью микротрубочек веретена деления растягиваются к полюсам клетки. Во время движения дочерние хромосомы несколько изгибаются на подобие шпильки, концы которой повернуты в сторону экватора клетки. Таким образом, в анафазе хроматиды удвоенные в интерфазе хромосом расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом.

В телофазе происходят процессы, обратные тем, которые наблюдаются в профазе: начинается деспирализация (раскручивание) хромосом, они набухают и становятся плохо видимыми под микроскопом. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах возникают ядрышки. Разрушается веретено деления. На стадии телофазы происходит разделение цитоплазмы (цитотомия) с образованием двух клеток. В клетках животных плазматическая мембрана начинает впячиваться внутрь области, где располагался экватор веретена. В результате впячивания образуется непрерывная борозда, опоясывающая клетку по экватору и постепенно разделяющая одну клетку на две.

В клетках растений в области экватора из остатков нитей веретена деления возникает бочковидное образование - фрагмопласт . В эту область со стороны полюсов клетки устремляются многочисленные пузырьки комплекса Гольджи, которые сливаются друг с другом. Содержимое пузырьков образует клеточную пластинку, которая делит клетку на две дочерние, а мембрана пузырьков Гольджи образует недостающие цитоплазматические мембраны этих клеток. Впоследствии на клеточную пластинку со стороны каждой из дочерних клеток откладываются элементы клеточных оболочек. В результате митоза из одной клетки возникают две дочерние с тем же набором хромосом, что и в материнской клетке.

Биологическое значение митоза состоит, таким образом, в строго одинаковом распределении между дочерними клетками материальных носителей наследственности - молекул ДНК, входящих в состав хромосом. Благодаря равномерному распределению реплицированных хромосом происходит восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологического размножения организмов.

Мейоз или редукционное деление

Мейоз - это особый способ деления клеток, в результат которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т. е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.


Рис.2. Итоговая схема мейоза

ДНК и связанные с ней белки реплицируются во время интерфазы. Во время профазы ядерная оболочка разрушается и гомологичные хромосомы (каждая из которых состоит из двух хроматид, соединенных центромерой) располагаются попарно. В это время между четырьмя гомологичными хроматидами может происходить обмен участками. После метафазы I две исходно гомологичные хромосомы расходятся в разные клетки. При втором делении центромера расщепляется, и в результате в каждой новой клетке оказывается одна копия каждой хромосо мы.

Редукционное деление является, по сути, механизмом препятствующим непрерывному увеличению числа хромосом при слиянии гамет, без него при половом размножении число хромосом удваивалось бы в каждом новом поколении. Иными словами, благодаря мейозу поддерживает определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет, как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.



ЯДРО (nucleus) имеет различную форму, чаще округлую, овальную, реже палочковидную или неправильную. Форма ядра иногда зависит от формы клетки. Так, например, у гладких миоцитов, которые имеют веретеновидную форму, форма ядра палочковидная. Обычно в круглых клетках или кубических эпителиоцитах ядра имеют круглую форму. Например, лимфоциты крови имеют круглую форму и ядра у них обычно круглые. Но часто форма ядра не зависит от формы клеток. Например, в гранулоцитах крови, которые имеют круглую форму, ядро может иметь сегментированную или палочковидную форму. В нейтрофильных гранулоцитах крови женщины ядра могут иметь спутник или сателлит, который представляет собой половой хроматин, имеющий форму барабанной палочки. Что же такое ЯДРО? Это система генетической детерминации и регуляции синтеза белка. Что такое детерминация? ДЕТЕРМИНАЦИЯ- это предопределение или, проще говоря, это программа, по которой развивается клетка. Таким образом, ядро выполняет 2 ФУНКЦИИ: 1)хранение и передача наследственной информации дочерним клеткам; 2)регуляция синтеза белка.

Как осуществляется 1-я функция, т.е. хранение наследственной информации? Хранение наследственной информации обеспечивается тем, что в ДНК хромосом есть репарационные ферменты, которые восстанавливают хромосомы ядра после их повреждения. Как передается информация дочерним клеткам? Во время интерфазы к каждой молекуле ДНК пристраивается ее точная копия. Затем эти совершенно одинаковые копии ДНК равномерно распределяются между дочерними клетками при делении материнской клетки. Как же ядро участвует в регуляции синтеза белка? Синтез белка регулируется благодаря тому, что на поверхности ДНК хромосом транскрибируются все виды РНК: информационные, рибосомные и транспортные, которые участвуют в синтезе белка на поверхности гранулярной ЭПС цитоплазмы клеток. В том случае, если увеличивается количество всех этих РНК и рибосом, повышается синтез белка. Если же в ядре вырабатывается малое количество РНК, то синтез белка снижается. Так ядро участвует в регуляции белкового синтеза.

СТРОЕНИЕ ЯДРА. Ядро включает хроматин (chromatinum), ядрышко (nucleolus), ядерную оболочку (nucleolemma) и ядерный сок (nucleoplasma). ХРОМАТИН интерфазного ядра называется так потому, что способен воспринимать (окрашиваться) основные красители. Что же такое хроматин? Хроматин- это деспирализованные хромосомы, т.е. хромосомы, утратившие свою обычную форму. В том случае, если участок ДНК хромосомы наиболее деспергирован, то в этом месте образуется рыхлый хроматин, называемый ЭУХРОМАТИНОМ (euchromatinum), который обладает высокой активностью. В том случае, если участок ДНК хромосом не деспергирован, то он имеет уплотненную структуру. Такой хроматин называется ГЕТЕРОХРОМАТИНОМ (heterochromatinum). Гетерохроматин не активен.

Почему же эухроматин активен, а гетерохроматин не активен? АКТИВНОСТЬ эухроматина объясняется тем, что фибриллы ДНК хромосом при этом деспирализованы, т.е. гены, на поверхности которых происходит транскрипция РНК, открыты. Бланодаря чему создаются условия для транскрипции РНК. В том случае, если ДНК хромосом не деспирализованы, то гены здесь закрыты, что затрудняет транскрипцию РНК с их поверхности. Следовательно, уменьшается количество РНК и снижается синтез белка. Вот почему гетерохроматин не активен.

ФИБРИЛЛЫ ДНК. И в состав митотических хромосом и в хроматин интерфазного ядра входят нити- примитивные или элементарные фибриллы, которые состоят из ДНК в количестве 1 единицы, гистоновых и негистоновых белков, составляющих 1,3 единицы, и РНК, количество которых равно 0,2 единицы. Длина фибрилл может составлять от нескольких сот мкм до 7 см. Суммарная длина фибрилл всех хромосом ядра человека составляет 170 см. В фибриллах имеются участки независимой репликации хромосом, называемые РЕПЛИКОНАМИ, их длина составляет 30 мкм, общее количество в геноме человека до 50000 репликонов.

ГИСТОНОВЫЕ белки образуют блоки, каждый из которых состоит из 8 молекул. Эти блоки называются НУКЛЕОСОМАМИ. На нуклеосомы навертывается фибрилла ДНК толщиной 5 нм, толщина нуклеосомы вместе с фибриллой составляет 10 нм. При дальнейшей спирализации этой уже спирализованной фибриллы ее толщина достигает 20 нм. Среди белков хроматина гистоновые белки составляют до 80 процентов. Их ФУНКЦИЯ заключается в 1)особой укладке ДНК хромосом и 2)регуляции синтеза белка. Регуляция синтеза белка осуществляется через укладку фибрилл ДНК хромосом. Если при укладке фибрилл ДНК имеет место резкая конденсация, то образуется плотный хроматин (гетерохроматин), который, как уже известно, не активен, если при укладке фибрилл они слабо спирализуются, то образуется активный эухроматин. ФУНКЦИЯ НЕГИСТО-НОВЫХ белков заключается в том, что они формируют ядерный матрикс.

Количество РНК в составе хроматина составляет???, если в нескольких местах- несколько ядрышек. В том месте, где находятся ядрышковые организаторы хромосом, имеется несколько сот генов, на поверхности которых транскрибируются рибосомные РНК, из которых затем формируются субъединицы рибосом. Ядрышки состоят из двух компонентов: 1)фибриллярного, расположенного в центре, и 2)гранулярного, локализованного на поверхности. Фибриллярный компонент- это фибриллы РНК, транскрибированные с поверхности генов ядрышковых организаторов. Гранулярный компонент- это субъединицы рибосом. Субъединицы рибосом образуются в результате комплексирования (соединения) рибосомных белков с фибриллами рибосомных РНК. Рибосомные белки синтезируются на поверхности гранулярной ЭПС цитоплазмы и через ядерные поры поступают в ядро, где соединяются с р-РНК. Образовавшиеся субъединицы рибосом через ядерные поры транспортируются в цитоплазму клетки, где объединяются в рибосомы, которые оседают на поверхности гранулярной ЭПС или же образуют скопления в цитоплазме. Такие объединения рибосом в цитоплазме называются полисомами. Таким образом, регуляцию синтеза белка в клетке осуществляет ядрышко, так как на рибосомах, образующихся в ядрышках, происходит синтез белков.

Ядрышки могут исчезать и в норме и при патологии. Когда ядрышки исчезают в норме? В норме ядрышки исчезают в том случае, когда приходит период деления клетки и начинается спирализация фибрилл ДНК в том числе и в области ядрышковых организаторов, тогда закрываются гены ядрышковых организаторов, на которых транскрибируются р-РНК, прекращается транскрипция р-РНК и ядрышко исчезает. Это может быть и в том случае, если на клетку воздействуют какие-то токсические вещества. Перед исчезновением ядрышко расчленяется, т.е. обособляется внутренняя фибриллярная часть от внешней гранулярной части. Затем исчезает гранулярный компонент ядрышка, т.е. субъединицы рибосом и исчезают фибриллярный компонент, т.е. молекулы р-РНК. Таким образом, чем больше размеры ядрышек или больше их количество, тем интенсивнее образуются субъединицы рибосом и повышается синтез белка в клетке

ЯДЕРНАЯ ОБОЛОЧКА (nucleolemma) состоит из двух мембран: наружной мембраны (membrana nuclearis externa) и внутренней мембраны (membrana nuclearis interna). Между мембранами имеется пространство (cysterna nucleolemmae). Наружная ядерная мембрана покрыта рибосомами и тесно связана с ЭПС. Нередко можно видеть, как наружная мембрана продолжается в канальцы гранулярной ЭПС. Внутренняя ядерная мембрана связана с хроматином и фибриллярным ядерным компонентом. В нуклеолемме имеются ядерные поры (pori nuclearis). В состав ядерных пор входят поровые комплексы (complexus pori). В состав которых входят: отверстие поры (annulus pori) диаметром около 90 мкм, гранулы поры (granula pori) и мембрана поры (membrana pori).

Отверстие поры образуется в результате слияния наружной и внутренней мембран. Вторым компонентом комплекса поры являются гранулы. Гранулы располагаются в 3 ряда, по 8 гранул в каждом ряду. Размеры гранул около 25 нм. Гранулы каждого ряда располагаются по периферии порового отверстия. Наружный слой гранул обращен в сторону цитоплазмы, внутренний слой- в сторону кариоплазмы, а третий слой размещен между наружным и внутренним. От гранул отходят фибриллы. Эти фибриллы соединяются с центральной гранулой, образуя мембрану поры (membrana pori).

ФУНКЦИЯ ядерных пор заключается в том, что через них происходит обмен веществ между кариоплазмой и цитоплазмой клетки. Чем больше пор в нуклеолемме, тем активнее ядро. Если активность ядра снижена, то количество пор уменьшается, если синтетическая активность ядра близка к нулю, то поры в ядре отсутствуют. Например, поры отсутствуют в кариолемме ядра сперматозоида.

При различных неблагоприятных воздействиях в ядре могут наблю-

даться патологические изменения: пикноз- коагуляция хроматина ядра, кариорексис- распад ядра на части, может быть отечность перинуклеарного пространства.

КЛЕТОЧНЫЙ ЦИКЛ (cyclus cellularis)- это период от одного до другого деления клетки или же период от деления клетки до ее гибели. Клеточный цикл разделяется на 4 периода. Первый период- это период митоза, 2-й период- постмитотический или пресинтетический, он обозначается буквой G-1, 3-й период- синтетический, он обозначается буквой S и 4-й период- постсинтетический или премитотический, он обозначается буквой G-2, митотический период обозначается буквой М. После митоза наступает очередной период G-1. В этот период дочерняя клетка по своей массе в 2 раза меньше материнской клетки. В этой клетке в 2 раза меньше белка, ДНК и хромосом, т.е. в норме здесь должно быть хромосом 2n и ДНК- 2с. Что же происходит в периоде G-1? В это время на поверхности ДНК происходит транскрипция РНК, которые принмают участие в синтезе белков. За счет белков увеличивается масса дочерней клетки. В это время синтезируются предшественники ДНК и ферменты, участвующие в синтезе ДНК и предшественников ДНК. Основные процессы в G-1 периоде- синтез белков и рецепторов клетки. Затем наступает S-период. В течение этого периода происходит репликация ДНК хромосом. В результате этого к концу S-периода содержание ДНК составляет 4с. Но хромосом будет 2n, хотя фактически хромосом будет тоже 4n, но ДНК хромосом в этот период так взаимно переплетены друг с другом, что каждая сестринская хромосома в материнской хромосоме пока не видна. По мере того, как в результате синтеза ДНК увеличивается его количество и повышается транскрипция рибосомных, информационных и транспортных РНК и естественно возрастает синтез белков. В это время может происходить удвоение центриолей в клетках. Таким образом, клетка из S-периода вступает в период G-2. В начале периода G-2 продолжается активный процесс транскрипции различных РНК и процесс синтеза белков, главным образом белков-тубулинов, которые необходимы для веретена деления. Может происходить удвоение центриолей. В митохондриях интенсивно синтезируется АТФ, которая является источником энергии, а энергия необходима для митотического деления клетки. После периода G-2 клетка вступает в митотический период.

Некоторые клетки могут выходить из клеточного цикла. Выход клетки из клеточного цикла обозначается буквой G-о. Клетка, вошедшая в этот период, утрачивает способность к митозу. Причем, одни клетки утрачивают способность к митозу временно, другие клетки- постоянно.

В том случае, если клетка временно утрачивает способность к митотическому делению, она подвергается начальной дифференцировке. При этом дифференцированная клетка специализируется к выполнению определенной функции. После начальной дифференцировки эта клетка способна возвратиться в клеточный цикл и вступить в период G-1 и после прохождения S-периода и периода G-2 -----подвергнуться митотическому делению. Где в организме находятся клетки в периоде G-о? Такие клетки находятся в печени. Но в том случае, если печень повреждена или часть печени удалена оперативным путем хирургом, то все клетки, подвергшиеся начальной дифференцировке, возвращаются в клеточный цикл и за счет их деления происходит быстрое восстановление паренхимных клеток печени.

Стволовые клетки также находятся в периоде G-o, но когда стволовая клетка начинает делиться, она проходит все периоды интерфазы: G-1, S, G-2.

Те клетки, которые окончательно утрачивают способность к митотическому делению, подвергаются сначала начальной дифференцировке и выполняют определенные функции, а затем окончательной дифференцировке. При окончательной дифференцировке клетка не может возвратиться в клеточный цикл и в конечном итоге погибает. Где в организме находятся такие клетки? Во-первых, это клетки крови. Гранулоциты крови, подвергшиеся дифференцировке функционируют в течение 8 суток, затем погибают. Эритроциты крови функционируют в течение 120 суток, потом также погибают в селезенке. Во-вторых, клетки эпидермиса кожи. Клетки эпидермиса подвергаются сначала начальной, потом окончательной дифференцировке. Во время митоза происходит равномерное распределение хромосомного материала между дочерними клетками. Митоз делится на 4 фазы. 1-я фаза называется профазой, 2-я- метафазой, 3-я- анафазой, 4-я- телофазой.

Если в клетке имеется половинный (гпаплоидный) набор хромосом, составляющий 23 хромосомы (половые клетки), то такой набор бозначается символом 1n хромосом и 1с ДНК, если диплоидный- 2n хромосом и 2с ДНК (соматические клетки сразу после митотического деления), анеуплоидный набор хромосом- в аномальных клетках.

ПРОФАЗА МИТОЗА делится на раннюю и позднюю. Во время ранней профазы происходит спирализация хромосом и они становятся видны в виде тонких нитей и образуют плотный клубок, т.е.образуется фигура плотного клубка. При наступлении поздней профазы хромосомы еще больше спирализуются, в результате чего закрываются гены ядрышковых организаторов хромосом. Поэтому прекращается транскрипция р-РНК, прекращается образование субъединиц хромосом и ядрышко исчезает. Одновременно с этим происходит фрагментация ядерной оболочки. Фрагменты ядерной оболочки свертываются в небольшие вакуоли. В цитоплазме уменьшается количество гранулярной ЭПС. Цистерны гранулярной ЭПС фрагментируются на более мелкие структуры. Количество рибосом на поверхности мембран ЭПС резко уменьшается. Это приводит к уменьшению синтеза белков на 75%. К этому моменту происходит удвоение клеточного центра. Образовавшиеся 2 клеточных центра начинают расходиться к полюсам. Каждый из вновь образовавшихся клеточных центров состоит из двух центриолей: из материнской и дочерней. С участием клеточных центров начинает формироваться веретено деления, которое состоит из микротубул. Хромосомы продолжают спириализоваться и в результате образуется рыхлый клубок хромосом, расположенный в цитоплазме. Таким образом, поздняя профаза характеризуется рыхлым клубком хромосом.

МЕТАФАЗА. Во время метафазы становятся видимыми хроматиды материнских хромосом. Материнские хромосомы выстраиваются в плоскости экватора. Если смотреть на эти хромосомы со стороны экватора клетки, то они воспринимаются как экваториальная пластинка (lamina equatorialis). В том случае, если смотреть на эту же пластинку, но со стороны полюса, то она воспринимается как материнская звезда (monastr). Во время метафазы завершается формирование веретена деления. В веретене деления видны 2 разновидности микротубул. Одни микротубулы формируются от клеточного центра, т.е. от центриоли и называются центриолярные микротубулы (microtubuli cenriolaris). Другие микротубулы начинают формироваться от кинетохор хромосом. Что такое кинетохоры? В области первичных перетяжек хромосом имеются, так называемые, кинетохоры. Эти кинетохоры обладают способностью индуцировать самосборку микротубул. Вот отсюда и начинаются микротубулы, которые растут в сторону клеточных центров. Таким образом, концы кинетохорных микротубул заходят между концами центриолярных микротубул.

АНАФАЗА. Во время анафазы происходит одновременное отделение дочерних хромосом (хроматид), которые начинают двигаться одни к одному, другие к другому полюсу. При этом появляется двойная звезда, т.е. 2 дочерних звезды (diastr). Движение звезд осуществляется благодаря веретену деления и благодаря тому, что сами полюса клетки несколько удаляются друг от друга.

МЕХАНИЗМ ДВИЖЕНИЯ ДОЧЕРНИХ ЗВЕЗД. Это движение обеспечивается тем, что концы кинетохорных микротубул скользят вдоль концов центриолярных микротубул и тянут хроматиды дочерних звезд в сторону полюсов.

ТЕЛОФАЗА. Во время телофазы происходит остановка движения дочерних звезд и начинают формироваться ядра. Хромосомы подвергаются деспирилизации, вокруг хромосом начинает формироваться ядерная оболочка (нуклеолемма). Поскольку подвергаются деспирализации фибриллы ДНК хромосом, постольку начинается транскрипция РНК на открывшихся генах. Так как происходит деспирализация фибрилл ДНК хромосом в области ядрышковых организаторов начинают транскрибироваться рРНК в виде тонких нитей, т.е.формируется фибриллярный аппарат ядрышка. Затем к фибриллам р-РНК транспортируются рибосомные белки, которые комплексируются с р-РНК, в результате чего формируются субъединицы рибосом, т.е. образуется гранулярный компонент ядрышка. Это происходит уже в поздней телофазе. ЦИТОТОМИЯ,т.е. образование перетяжки. При образовании перетяжки по экватору происходит впячивание цитолеммы. Механизм впячивания следующий. По экватору располагаются тонофиламенты, состоящие из сократительных белков. Вот эти тонофиламенты и втягивают цитолемму. Затем происходит отделение цитолеммы одной дочерней клетки от другой такой же дочерней клетки. Так в результате митоза формируются новые дочерние клетки. Дочерние клетки в 2 раза меньше по своей массе в сравнении с материнской. Здесь также уменьшено количество ДНК. Оно соответствует 2с и уменьшено в 2 раза количество хромосом. Оно соответствует 2n. Так митотическим делением заканчивается клеточный цикл.

ПАТОЛОГИЯ МИТОЗА. АНЕУПЛОИДНЫЕ КЛЕТКИ РАЗРУШЕНИЕ ВЕРЕТЕНА ДЕЛЕНИЯ наблюдается при понижении температуры клетки и при воздействии на клетку колхицином, в результате чего начинается распад микротубул веретена.

НАРУШЕНИЕ ДЕЛЕНИЯ КЛЕТКИ ПРИ УВЕЛИЧЕНИИ КОЛИЧЕСТВА ЦЕНТРОСОМ имеет место, когда вместо 2 цитоцентров образуются 3 или 4. В таком случае формируются 2 или больше веретен деления, в результате чего материнская клетка делится на 3 и более клеток. В ядре каждой такой клетки будет содержаться неправильный- анеуплоидный набор хромосом.

ХРОМОСОМНАЯ АББЕРАЦИЯ возникает при воздействии на ткань ультрафиолетовыми или радиоактивными лучами. Во время анафазы митоза часть такой поврежденной хромосомы может отделиться от ее плеча и после телофазы окажется в одной из дочерних клеток. Этот обломок хромосомы окружен нуклеолеммой и представляет собой "микроядро". Хромосомная аберрация может проявляться в том, что хромосомы могут склеиться друг с другом, при этом 2 первичных перетяжки такой сдвоенной хромосомы располагаются в разных местах и растягиваются к противоположным полюсам. При расхождении дочерних звезд эта пара хромосом займет положение вдоль оси веретена деления. В таком случае дочерние звезды будут соединены "мостиком". Во всех случаях хромосомной аберрации содержание хромосом в ядре будет анеуплоидным, т.е. неправильным.

АМИТОЗ (прямое деление) характеризуется тем, что сначала появляется перетяжка ядра, которая делит ядро не обязательно на абсолютно равные части, затем перетяжкой разделяется цитоплазма. При амитозе хромосомный материал ядра материнской клетки может распределяться неравномерно между дочерними клетками. Этим амитоз принципиально отличается от митоза.

Прямым делением разделяются клетки, которые нельзя считать нормальными. Такое деление тоже считается ненормальным.

ПОЛИПЛОИДИЯ. ЭНДОРЕПРОДУКЦИЯ ПОЛИПЛОИДИЯ- это процесс увеличения количества хромосом в ядре клетки. В результате этого образуются полиплоидные клетки.

В процессе полиплоидии принимают участие 2 механизма: 1)блокирование одной из фаз митоза; 2)нарушение цитотомии во время телофазы. Рассмотрим 1-й механизм, т.е.блокирование периода G-2, профазы или метафазы. При этом неразделившаяся клетка вступает в период G-1 с тетраплоидным набором хромосом (4n), потом в S-период, после которого в ней будет 8с ДНК и 8n хромосом. Затем эта клетка вступает в профазу, потом в метафазу. В метафазной звезде будет 8n. Затем во время анафазы в расходящихся дочерних звездах будет по 4n хромосом. После телофазы в дочерних клетках будут тетраплоидные ядра. 2-й механизм образования полиплоидных клеток, наблюдается при нарушении цитотомии. После того, как произошла анафаза, клетка

вступила в телофазу, сформировались ядра, но цитотомии материнской клетки не произошло. В каждом из 2 ядер неразделившейся клетки по 2n и 2с. Когда эта клетка вступит в период G-1, затем в период S, то в его конце в каждом ядре неразделившейся клетки окажется по 4n и 4с. Потом эта клетка вступает в гландулоцитах ацинусов слюнных желез, поджелудочной железы, в пигментном слое сетчатки глаза. При этом ядро может содержать 4n, 8n, 16n, 32n. Резко выраженная полиплоидия особенно характерна для мегакариоцитов красного костного мозга.

ЭНДОРЕПРОДУКЦИЯ- это последовательное многократное удвоение ДНК в результате чего увеличивается набор хромосом, при этом хромосомы связаны тонкими нитями. Эти структуры называются политенами, характеными для клеток плаценты.

МЕЙОЗ- это такое деление, при котором в дочерних клетках оказывается половинный (гаплоидный) набор хромосом- 1n и 1с. Такое деление имеет место в процессе образования половых клеток.

Рассмотрим образование половых клеток в мужском организме, называемом сперматогенезом. Сперматогенез включает 4 периода: 1)размножение; 2)период роста, или профаза; 3)созревание, которое состоит из двух делений: 1-го деления созревания и 2-го деления созревания и 4)периода формирования. Но период формирования мы рассматривать не будем.

ПЕРИОД РАЗМНОЖЕНИЯ. Размножающиеся (делящиеся) клетки в периоде размножения называются сперматогониями. Сперматогонии при делении претерпевают все фазы, характерные для митотического деления, т.е. после деления материнской (стволовой) сперматогонии образуются 2 дочерних сперматогонии с набором хромосом 2n и набором ДНК 2с, затем эти сперматогонии проходят весь клеточный цикл и к предстоящему новому делению у них будет 4n и 4с. Вот эти сперматогонии с 4n и 4с вступают во 2-й период: период РОСТА или период ПРОФАЗЫ 1-го деления мейоза. С этого момента клетки называются СПЕРМАТОЦИТАМИ 1-го порядка. В процессе развития сперматоцитов 1-го порядка имеют место 5 фаз: лептотена, синаптена, пахитена, диплотена и диакинез.

ЛЕПТОТЕНА. Во время лептотены происходит спирализация хромосом, которые становятся видимыми, напоминающими тонкие нити. Затем наступает ЗИГОТЕНА (синаптена). Во время зиготены, гомологичные хромосомы приближаются друг к другу и соединяются вместе, перекрещиваются (кроссинговер). Объединившиеся хромосомы обмениваются генами. Пара объединившихся хромосом называется бивалентом. Сколько бивалентов в ядре сперматоцита 1-го порядка в фазе зиготены? 23 бивалента. Затем наступает ПАХИТЕНА. Во время пахитены каждая из хромосом бивалента подвергается дальнейшей спирализации, но при этом она укорачивается и утолщается. Между хроматидами хромосом бивалента появляются заметные щели. После этого наступает ДИПЛОТЕНА, во время которой хроматиды хромосом бивалента начинают расходиться, но оказываются связанными в области перекреста. Потом наступает ДИАКИНЕЗ, во время которого происходит дальнейшая спирализация хромосом, в результате этого в конце профазы образуются тетрады. Их количество равно 23. Каждая тетрада состоит из 4 монад, или хроматид. Таким образом, в ядре сперматоцита 1-го порядка в конце профазы будет 23 тетрады и 92 монады. Затем клетка вступает в 1-е деление СОЗРЕВАНИЯ. При этом в метафазе в материнской звезде будет 23 тетрады. Тетрады выстраиваются в плоскости экватора таким образом, что одна половинка тетрады обращена к одному полюсу клетки, вторая- к другому. Во время анафазы, половинки тетрад, называемые диадами, расходятся к полюсам. Затем в результате телофазы из сперматоцита 1-го порядка образуются 2 новых клетки, называемых сперматоцитами 2-го порядка. В каждом сперматоците 2-го порядка будет по 23 диады (2n) или 46 монад. Сперматоциты 2-го порядка без предварительного S-периода, периода G-2 и профазы сразу вступают в метафазу 2-го деления СОЗРЕВАНИЯ. В материнской звезде сперматоцита 2-го порядка будет 23 диады, котрые выстраиваются в плоскости экватора таким образом, что одна половинка диады (монада) обращена к одному, вторая- к другому полюсу. Эти половинки называются монады. Во время анафазы, дочерние звезды, состоящие из монад, расходятся к полюсам. Во время телофазы 2-го деления созревания образуются 2 новых клетки, называемые сперматидами. В сперматидах будет гаплоидный набор хромосом (1n).

СТРОЕНИЕ МИТОТИЧЕСКИХ ХРОМОСОМ. Митотические хромосомы появляются в период митоза. Они особенно хорошо видны во время метафазы и анафазы. Во время метафазы видно, что каждая материнская хромосома состоит из двух сестринских хромосом, или хроматид. Каждая хромосома состоит из одной молекулы ДНП, которая уложена особым образом и приобретает характерную форму. В каждой хромосоме есть первичная перетяжка, или центромер. Участки хромосом, отходящие от первичной перетяжки, называются плечами хромосом. Если плечи хромосомы имеют одинаковую или примерно одинаковую длину, то такие хромосомы называются метацентрическими, если плечи хромосом явно неодинаковой длины, то такая хромосома называется субметоцентрической, если одно плечо явно многократно длиннее второго, то такая хромосома называется акроцентрической. Концы плеч хромосом называются теломерами. Кроме первичной перетяжки в некоторых хромосомах есть вторичные перетяжки. Вторичная перетяжка- это ядрышковый организатор. Участок плеча хромосомы между вторичной перетяжкой и теломером, называется спутником, или сателлитом. Набор хромосом в ядре человека составляет кариотип. Чем характеризуется КАРИОТИП? Кариотип характеризуется, количеством хромосом, их размерами и особенностями строения.

Все хромосомы ядра человека разделяются на 7 групп. Группы обозначаются буквами латинского алфавита от A до G. В каждой группе хромосомы морфологически похожи друг на друга, но хромосомы разных групп отличаются. Но чтобы различить хромосомы друг от друга в одной группе применяется метод дифференцированного окрашивания. При дифференцированном окрашивании на плечах хромосом появляются светлые и темные полосы. Причем рисунок, образованный этими полосами, для каждой хромосомы индивидуален как отпечатки пальцев. Поэтому благодаря дифференцированному окрашиванию можно отличить хромосомы друг от друга.

РЕАКЦИЯ КЛЕТКИ НА ВНЕШНИЕ ВОЗДЕЙСТВИЯ

При воздействии неблагоприятных внешних химических, физических и биологических факторов на клетку, в ней возникают структурные и функциональные нарушения. В зависимости от интенсивности, продолжительности и характера воздействия такая клетка может адаптироваться к новым условиям и возвратиться в исходное состояние или может погибнуть.

ИЗМЕНЕНИЯ В ЦИТОПЛАЗМЕ ПОВРЕЖДЕННОЙ КЛЕТКИ. Цитоплазма утрачивает способность к гранулообразованию. В нормальной клетке частицы краски, поступившие в ее цитоплазму, заключаются в гранулы. Цитоплазма и кариоплазма при этом остаются светлыми. При утрате способности к гранулообразованию гранулы не образуются, а цитоплазма и кариоплазма диффузно окрашиваются.

ИЗМЕНЕНИЯ В ЯДРЕ. В ядре начинается отек перинуклеарного пространства, его расширение. Хроматин конденсируется в грубые глыбки, коагулируется. Это называется пикнозом. Нарушается регуляция белкового синтеза. В дальнейшем ядро разрывается на фрагменты. Это называется кариорексисом. В конечном итоге ядро подвергается лизису- кариолизис.

ИЗМЕНЕНИЯ МИТОХОНДРИЙ. На начальном этапе митохондрии сжимаются, затем они набухают, округляются, их кристы укорачиваются и редуцируются, снижается синтез АТФ. В конечном итоге мембраны митохондрий разрываются, матрикс смешивается с гиалоплазмой.

ИЗМЕНЕНИЯ ЭНДОПЛАЗМАТИЧЕСКОЙ СЕТИ. Цистерны гранулярной ЭПС фрагментируются и распадаются на вакуоли. Количество рибосом на поверхности мембран уменьшается, синтез белка снижается.

ИЗМЕНЕНИЯ КОМПЛЕКСА ГОЛЬДЖИ. Комплекс Гольджи может подвергнуться распаду в результате фрагментации его цистерн.

ИЗМЕНЕНИЯ ЛИЗОСОМ. Количество первичных лизосом и автофагосом возрастает. Мембраны первичных лизосом разрываются. Выделившиеся из них ферменты осуществляют самоопериваривание (лизис) клетки.

В результате нарушения проницаемости клеточных мембран, структуры и функции органелл нарушается метаболизм клетки, что может сопровождаться накоплением в цитоплазме липидов (жировая дистрофия), гликогена (углеводная дистрофия) и белков (белковая дистрофия).

пРИ ПЕРЕРОЖДЕНИЕ КЛЕТКИ. В некоторых случаях в клетке нарушаются регуляторные процессы. Это может привести к нарушению ее дифференцировки, в основе которой лежат изменения в гена ДНК хромосом. В результате этого клетка приобретает относительную автономию, способность к безудержному делению, метастазированию. Вновь образовавшиеся дочерние клетки унаследуют вышеуказанные свойства. Опухоль начинает быстро расти.

НЕКРОЗ И АПОПТОЗ КЛЕТКИ

НЕКРОЗ КЛЕТКИ осуществляется при ее незапрограммированной гибели и наблюдается после ее повреждения. При этом нарушается проницаемость клеточных мембран, расширяются компартменты, повреждается структура и нарушается функция ЭПС, комплекса Гольджи, митохондрий, увеличивается количество аутофагосом и в конечном итоге все завершается лизисом клетки.

АПОПТОЗ- это запрограммированная гибель клетки. Такая гибель клетки связана с тем, что в ДНК хромосом имеются гены, в которых закодирована программа гибели клетки. Эта программа запускается в двух случаях: 1)при воздействии на клетку некоторых белков или гормонов; 2)в том случае, если на клетку не поступают регулирующие сигналы.

При воздействии на клетку белков или гормонов в ее цитоплазме синтезируется сигнальная молекула (цАМФ или кальмодулин), котрая запускает программу гибели клетки. Пример: глюкокортикоиды коры надпочечников при их повышенном содержании в крови захватываются рецепторами наружной мембраны кариолеммы лимфоцита и через сигнальную молекулу запускают программу саморазрушения клетки.

При отсутствии регулирующих функцию клетки сигналов тоже синтезируется сигнальная молекула, которая активирует ген, содержащий программу гибели клетки. Примеры: 1)в семеннике вырабатываются сигналы, регулирующие функции клеток предстательной железы; если кастрировать самца, то прекращается поступление регулирующих сигналов, что сопровождается саморазрушением клеток предстательной железы; 2)в гипофизе вырабатываются гормоны, регулирующие развитие и функцию желтого тела яичников; когда же прекращается выделение этих гормонов из гипофиза, начинается саморазрушение клеток желтого тела, в результате чего оно полностью исчезает.

ХАРАКТЕР ИЗМЕНЕНИЙ В КЛЕТКЕ ПРИ АПОПТОЗЕ. После активации генов саморазрушения клетки начинается разделение ДНК хромосом на нуклеосомные фрагменты. Хроматин ядра конденсируется, образуются грубые глыбки хроматина, прилежащие к нуклеолемме. Ядро распадается на фрагменты-микроядра. Каждое такое ядро окружено нуклеолеммой. Вместе с этим фрагментируется и цитоплазма с последующим образованием микроклеток- апоптических телец, в состав которых входят микроядра Апоптические тельца затем фагоцитируются макрофагами или подвергаются лизису.

Существуют 3 способа деления клетки - митоз, амитоз, мейоз.

Митоз

Митоз - непрямое деление клетки. Митоз состоит из 4 фаз: профазы, метафазы, анафазы, телофазы.

Первая фаза - профаза. В профазе хромосомы спирализуются, укорачиваются, утолщаются и становятся видны. Каждая хромосома состоит из двух хроматид. Они соединены центромерой. К концу профазы ядерная оболочка и ядрышки растворяются. Центриоли расходятся к полюсам клетки. Образуется веретено деления (рис. 42, 2).

В метафазе хромосомы располагаются на экваторе. Хорошо видны число и форма хромосом. Нити веретена деления тянутся от полюсов к центромерам (42, 3).

В анафазе центромеры делятся и хроматиды (дочерние хромосомы) расходятся к разным полюсам. Движение хромосом проис-

ходит благодаря нитям веретена, которые, сокращаясь, растягивают дочерние хромосомы от экватора к полюсам (рис. 42, 4).

Митоз заканчивается телофазой. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуют- ся и становятся не видны (рис. 42, 5).

Образуется ядерная оболочка. В ядре формируется ядрышко. Происходит деление цитоплазмы. В клетках животных цитоп- лазма делится путем перетяжки, впячиванием мембраны от краев к центру.

Рис.42. Митоз. Ядро неделящейся клетки. Видно круглое ядрышко (1). 2 - профаза, 3 - метафаза, 4 - анафаза, 5 - телофаза.

В клетках растений в центре образуется перегородка, которая растет по направлению к стенкам клетки. После образования поперечной цитоплазматической мембраны у растительных клеток образуется целлюлярная стенка (рис. 43).

В результате митоза каждая дочерняя клетка получает точно такие же хромосомы, какие имела материнская клетка. Число хро- мосом в обеих дочерних клетках равно числу хромосом материнской клетки.

Биологическое значение митоза

Митоз обеспечивает точную передачу наследственной информации каждому из дочерних ядер.

Митотический цикл

Митотический цикл - период между окончанием одного деления и началом последующего. Этот период в митотическом цикле клетки называют интерфазой.

Интерфаза имеет 3 периода:

. Пресинтетический G 1 . В этом периоде происходит синтез РНК, белка и рост клетки. Клетки имеют диплоидный (2n) набор хромосом и 2с генетического материала ДНК.

Рис. 43. Образование цитоплазматической мембраны в клетках животных (1, 2) и растений (3, 4).

Рис. 44. Митотический цикл диплоидной клетки.

G 1 - пресинтетический (постмитотический) период: S - синтетический период, G 2 - постсинтетический (премитотический) период. Митоз: П - профаза; М - метафаза, А - анафаза, Т - телофаза; n - гаплоидный набор хромосом; 2n - диплоидный набор хромосом; 4n - тетраплоидный набор хромосом; c - количество ДНК, соответствующее гаплоидному набору хромосом. Вне круга схематично показаны изменения хромосом в различные периоды жизненного цикла клетки.

. Синтетический (S). Происходит редупликация молекул ДНК и формируется вторая хроматида в хромосоме. Каждая хромосома состоит из двух хроматид и содержит 4с ДНК. Число хромосом не меняется (2n).

. В постсинтетическом периоде G 2 происходит синтез белков, необходимых для формирования веретена деления. Завершается удвоение центриолей. В молекулах АТФ накапливается энергия, необходимая для деления клетки. Клетка готова к делению. Ни содержание ДНК (4с), ни число хромосом (2n) не меняется.

Клетки имеют диплоидный набор хромосом. Каждая хромосома состоит из двух хроматид (рис. 44).

Вопросы для самоконтроля

1. Какое деление клеток называют митозом?

2. Какие клетки делятся митозом?

3. Из каких фаз состоит митоз?

4. Что происходит в профазе митоза?

5. Где располагаются хромосомы в метафазе митоза?

6. Что происходит в анафазе митоза?

7. Что происходит в телофазе митоза?

8. Какой набор хромосом имеют дочерние клетки, образующиеся в результате митоза?

9. Какое биологическое значение имеет митоз? 10.На какие периоды делится интерфаза?

11.Что происходит в пресинтетическом периоде интерфазы? 12.Что происходит в синтетическом периоде интерфазы? 13.Что происходит в постсинтетическом периоде интерфазы?

Ключевые слова темы «Митоз»

анафаза

веретено деления

деление

значение

интерфаза

информация

клетка

край

мембрана

метафаза

митоз

направление нить

окончание

перегородка

перетяжка

период

полюс

профаза

растение

редупликация

результат

рост

синтез

стадия

стенка

тело

телофаза

форма

хроматида

хромосома

центр

центриоли

центромера

экватор

ядерная оболочка ядро

ядрышки

Амитоз

Амитоз - прямое деление клетки, при котором ядро находится в интерфазном состоянии. Хромосомы не выявляются. Веретено деления не образуется. Амитоз приводит к появлению двух клеток, но очень часто в результате амитоза возникают двуядерные и многоядерные клетки.

Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делиться перетяжкой, образуя два ядра, или имеет место множественное разделение ядра, его фрагментация. Ядра могут быть неравной величины.

Амитоз встречается в отживающих, дегенерирующих клетках, неспособных дать новые жизнеспособные клетки.

В норме амитотическое деление ядер встречается в зародышевых оболочках животных, в фолликулярных клетках яичника.

Амитотически делящиеся клетки встречаются при различных патологических процессах (воспаление, злокачественный рост и др.).

Вопросы для самоконтроля

1. Что такое амитоз?

2. Как происходит амитотическое деление?

3. В каких клетках происходит амитоз?

Ключевые слова темы «Амитоз»

Амитоз

Двуядерные клетки

Многоядерные клетки Фрагментация

Мейоз

Мейоз происходит при образовании гамет у животных и образовании спор у растений. Мейоз - редукционное деление. В результате мейоза происходит редукция числа хромосом с диплоидного (2n) до гаплоидного (n). Мейоз включает 2 последовательных деления. В каждом мейотическом делении выделяют 4 стадии: профазу, метафазу, анафазу и телофазу.

Профаза первого мейотического деления

Профаза первого мейотического деления наиболее сложная. В ней различают 5 стадий: лептотену, зиготену, пахитену, диплотену, диакинез.

В лептотену (I стадия) начинается спирализация хромосом. Хромосомы становятся видимыми в микроскоп как длинные и тонкие нити. Каждая хромосома состоит из двух хроматид. В ядре виден диплоидный набор хромосом (рис. 45).

Во II стадии профазы первого мейотического деления - зиготене - продолжается спирализация хромосом и происходит конъюгация гомологичных хромосом. Гомологичными называются хро- мосомы, имеющие одинаковую форму и размер: одна из них получена от матери, а другая от отца. Гомологичные хромосомы притягиваются и прикладываются друг к другу по всей длине. Центромера одной из парных хромосом точно прилегает к центромере другой и каждая хромомера прилегает к гомологичной хромомере другой (рис. 46).

Рис 45. Лептотена.

Рис. 46. Зиготена.

III стадия - пахитена - стадия толстых нитей. Конъюгирую- щие хромосомы тесно прилегают друг к другу. Такие сдвоенные хромосомы называют бивалентами. Каждый бивалент состоит из четверки (тетрады) хроматид. Число бивалентов равно гаплоидному набору хромосом. Происходит дальнейшая спирализация хромосом. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называется кроссинговером (рис. 47).

В диплотене (IV стадия) возникают силы отталкивания между гомологичными хромосомами. Хромосомы, составляющие бива- лент, начинают отходить друг от друга в первую очередь в области центромер. При расхождении хроматид в некоторых местах обнаруживается явление перекреста и сцепления (рис. 48).

V стадия - диакинез - характеризуется максимальной спирализацией, укорочением и утолщением хромосом (рис. 49). Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам.

В профазе первого мейотического деления происходит 3 основных процесса: конъюгация гомологичных хромосом; образо- вание бивалентов хромосом или тетрад хроматид; кроссинговер.

Рис. 47. Пахитена.

Рис. 48. Диплотена.

Рис. 49. Диакинез.

Метафаза первого мейотического деления

В метафазе первого мейотического деления биваленты хромосом располагаются по экватору клетки. К ним прикрепляются нити веретена деления (рис. 50).

Анафаза первого мейотического деления

В анафазе первого мейотического деления к полюсам клетки рас- ходятся хромосомы, а не хроматиды. В дочерние клетки попадают только по одной из пары гомологичных хромосом (рис. 51).

Телофаза первого мейотического деления

В телофазе первого мейотического деления число хромосом в каждой клетке становится гаплоидным. На короткое время образуется ядерная оболочка (рис. 52).

Рис. 50. Метафаза I.

Рис. 51. Анафаза I.

Рис. 52. Телофаза I.

Между первым и вторым делениями мейоза в клетке животных может быть короткая интерфаза. Во время интерфазы нет редупликации молекул ДНК.

Второе мейотическое деление происходит так же, как митоз.

Профаза второго мейотического деления

В профазе второго мейотического деления хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка разрушаются. Образуется веретено деления (рис. 53).

Метафаза второго мейотического деления

В метафазе второго мейотического деления хромосомы выстраиваются вдоль экватора. К ним подходят нити веретена деления (рис. 54).

Анафаза второго мейотического деления

В анафазе второго мейотического деления центромеры делятся и тянут за собой к противоположным полюсам хроматиды, отделившиеся друг от друга. Хроматиды называются хромосомами (рис. 55).

Рис. 53. Профаза II.

Рис. 54. Метафаза II.

Рис. 55. Анафаза II.

Рис. 56. Телофаза II.

Телофаза второго мейотического деления

В телофазе второго мейотического деления хромосомы деспирализуются, становятся невидимыми. Формируется ядерная оболочка. Каждое ядро содержит гаплоидное число хромосом. Происходит деление цитоплазмы. Из исходной диплоидной клетки образуются 4 гаплоидных (рис. 56).

Таким образом, при мейозе происходит конъюгация и кроссинговер между участками гомологичных хромосом и редукция числа хромосом (рис. 57).

Вопросы для самоконтроля

1. Какое деление называется мейозом?

2. Что происходит при мейозе?

3. Сколько делений имеет мейоз?

4. Что происходит в профазе первого деления мейоза?

5. Что происходит в метафазе первого деления мейоза?

6. Что происходит в анафазе первого деления мейоза?

7. Какой набор хромосом имеют клетки в телофазе первого деления мейоза?

8. Что происходит в профазе второго деления мейоза?

9. Что происходит в метафазе второго деления мейоза? 10.Что происходит в анафазе второго деления мейоза? 11.Что происходит в телофазе второго деления мейоза? 12.Сколько клеток образовалось в результате мейоза? 13. Какой набор хромосом они имеют?

Рис. 57. Сравнение митоза и мейоза.

Ключевые слова темы «Мейоз»

анафаза

биваленты

веретено

гаметы

гаплоидный

деление

диплоидный

животные

интерфаза

конъюгация

кроссинговер

мейоз

метафаза

молекула

нить

область

обмен

оболочка

плечо хромосомы

полюс

профаза

растения

редукция

редупликация

результат

спирализация

споры

телофаза

участок

хроматида

хромосома

центриоли

центромера

экватор