При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

Определение: Уравнение

равносильно уравнению

если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3x-6=0; 2х-1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения

f(x)=g(x) и f1(x)=g1(x)

равносильны, обозначают так:

f(x)=g(x) f1(x)=g1(x)

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство: Докажем, что уравнение

f(x) = g(x)+q(x) (1)

равносильно уравнению

f(x) - q(x) = g(x) (2)

Пусть х=а - корень уравнения. Значит имеет место числовое равенство

Но тогда по свойству действительных чисел будет выполняться и числовое равенство

показывающее, что а - корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказать.

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

Доказательство: докажем, что уравнение

равносильно уравнению

решим уравнение

и уравнение

  • 2х-1=0
  • 6х=3 2х=1

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

Рассмотрим уравнение

ОДЗ этого уравнения {х? 1, х? -3}

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е.

а знаменатель не равен 0. Решая уравнение

находим корни х1=1, х2 = -2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

В этом случае говорят, что уравнение

есть следствие уравнения

пусть даны два уравнения:

f1 (x) = g1 (x) (3)

f2 (x) = g2 (x) (4)

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

Этот факт записывают так:

В том случае, когда уравнение (3) - есть также следствие уравнения (4), эти уравнения равносильны.

Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение - следствие

имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.

Итак, если при решении уравнения происходит переход к уравнению - следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения - корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения

и потому отброшен.

Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

ОДЗ которого {х -2},

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Например, уравнение

(х+1)(х+3)= х+1 (5)

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим

откуда находим

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение

имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

При решении практических задач в большинстве случаев приходят к уравнениям. На уроках математики мы изучаем различные методы решения алгебраических, тригонометрических уравнений. В процессе решения возникает немало вопросов, например, о том, когда появляются посторонние корни или когда уравнение теряет корни, всегда ли нужно делать проверку и находить ОДЗ? На эти и другие вопросы, как показало исследование, хотели бы знать ответы большинство (85%) учащихся 10 и 11классов.

Поэтому получить целостное представление о способах решения уравнений и в конечном счете ответить на главный вопрос: как правильно решать уравнения?

Итак, объектом исследования являются алгебраические и тригонометрические уравнения.

Предмет исследования - способы решения уравнений, основанные на идеи равносильности преобразований.

Гипотеза исследования - способы решения уравнений, основанные на идее равносильности преобразований, позволяют исключить потерю корней, предупредить появление посторонних корней, т.е. находить верные решения уравнений.

Цель исследования : изучение способов решения уравнений, основанных на идее равносильности преобразований, разработка рекомендаций для учащихся 10-11 классов по применению этих способов на практике.

В соответствии с целью и выдвинутой гипотезой предполагается решить следующие задачи :

Провести исследование актуальности для учащихся 10 и 11 классов рассматриваемых в работе вопросов, связанных с решением уравнений;

Изучить различные подходы к решению уравнений на основании идеи равносильности;

Ответить на следующие вопросы:

1) как узнать, является ли переход от одного уравнения к другому равносильным преобразованием;

2) какие преобразования могут привести данное уравнение к уравнению-следствию;

3) если мы в конечном итоге решили уравнение - следствие, то как сделать проверку в случае, когда непосредственная подстановка найденных корней в исходное уравнение сопряжена со значительными вычислительными трудностями;

4) в каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить;

Описать основные способы решения некоторых видов уравнений, сделать анализ их достоинств и недостатков;

Рассмотреть вопрос о необходимости нахождения ОДЗ;

Глава 1

К вопросу о равносильности уравнений

1.1.Теоремы о равносильности уравнений

Задача с формулировкой «решите уравнение », где соответственно, в школьном курсе математики относится к наиболее часто встречающимся. Методике решения уравнений посвящено немало работ. Так работы А.Г.Мордковича , позволяют, по мнению автора, сформировать целостное представление о методах решения уравнений на основании идеиравносильности уравнений .

При этом решение уравнения осуществляется в три этапа:

Первый этап - технический . На этом этапе осуществляется цепочка переходов от данного уравнения до последнего (самого простого).

Второй этап - анализ решения. На этом этапе отвечают на вопрос, все ли преобразования равносильные.

Третий этап - проверка. Если анализ показал, что некоторые преобразования приводят к уравнению-следствию, то обязательна проверка всех найденных корней.

Рассмотрим основные положения теории равносильности уравнений.

Определение 1. Два уравнения с одной переменной называются равносильными, если множества их корней совпадают; иными словами, если они имеют одинаковые корни или оба не имеют корней.

Например, уравнения равносильны, т.к. оба имеют своими корнями только числа 2 и -2. Равносильны и уравнения и = -5, т.к. они не имеют корней на множестве действительных чисел, т.е. множества их корней совпадают.

Определение 2 . Если каждый корень уравнения является в то же время корнем уравнения, то второе уравнение называют следствием первого.

Например, уравнение является следствием уравнения, т.к. уравнение имеет только один корень - число 6, в то время как уравнение имеет два корня 6 и 0.

Замечание. Очевидно следующее утверждение: два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

В процессе решения уравнений мы переходим от одного уравнения к другому до тех пор пока не придем к более простому, корни которого мы можем найти. И вот здесь возникает главный вопрос, будут ли его корни корнями исходного уравнения? Если все преобразования будут равносильными, то ответ на этот вопрос однозначный: да, будут. Если в некоторых преобразованиях мы не уверены (но точно знаем, что перешли к уравнению-следствию), то найденные корни последнего уравнения надо проверить, подставив их поочередно в исходное уравнение. Если такая подстановка показывает, что найденный корень последнего уравнения не удовлетворяет заданному, то он называется посторонним корнем для данного уравнения и отбрасывается.

Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием ? На этот вопрос нам помогут ответить следующие теоремы.

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получиться уравнение равносильное данному.

Теорема 3. Показательное уравнение, где равносильно уравнению.

Определение 3. Областью определения уравнения или область допустимых значений переменной (О.Д.З.) называют множество тех значений переменной,при которых одновременно имеют смысл выражения и

Теорема 4. Если обе части уравнения умножить на одно и тоже выражение, которое:

а) имеет смысл всюду в области определения (в О.Д.З) уравнения

б) нигде в этой области не обращается в 0, то получится уравнение

равносильное данному.

Следствие. Если обе части уравнения умножить или разделить на одно и тоже отличное от нуля число, то получиться уравнение равносильное данному.

Теорема 5. Если обе части уравнения неотрицательные в области определения уравнения, то после возведения обеих его частей в одну и ту же чётную степень, получится уравнение, равносильное данному.

Теорема 6. Если и то логарифмическое уравнение

Где равносильно уравнению

1.2. О преобразованиях, переводящих уравнение в уравнение-следствие

Ответим на второй вопрос, какие преобразования переводят уравнение в уравнение-следствие?

Если в процессе решения уравнения мы применили заключение одной из теорем 4, 5, 6, не проверив ограничительных условий, заложенных в формулировке теоремы, то получится уравнение - следствие.

Например, уравнение имеет один корень 4. Умножив его обе части на получим уравнение - следствие имеющее два корня: 4 и 2, причем 2 - посторонний корень для уравнения (при множитель обращается в 0; теорема 4 этого не допускает). Возведя обе части того же уравнения в квадрат, получим уравнение имеющее 2 корня: 4 и -2, причем -2 -посторонний корень для уравнения

Промежуточный итог : если на каком-либо этапе решения мы умножили обе части уравнения на одно и то же выражение (имеющее смысл в области определения уравнения) или возвели обе части уравнения в одну и ту же четную степень, или опустили знаки логарифмов в левой и правой частях уравнения, то обязательна проверка всех найденных корней.

Однако главной причиной перехода от уравнения к уравнению-следствию является расширение области определения . К нему приводит:

а) освобождение от знаменателя . Был знаменатель - было ограничение не стало знаменателя - не стало ограничения. Рассмотрим, пример, уравнение = 8. Его область определения Если в левой части уравнения сократить дробь, т.е. освободиться от знаменателя, то получим уравнение область определения которого - множество всех действительных чисел. Его корнем является число 4. Однако оно не будет корнем данного уравнения. Следовательно, данное уравнение решений не имеет;

б) освобождение от знаков логарифма;

в) использование формулыдля четного n.

В самом деле, если было выражение то его область определения задается неравенством если же заменить на и рассмотреть выражение как самостоятельное, то ограничение снимается, т. е. область определения расширяется.

Например: решить уравнение

Р е ш е н и е. 5

В процессе преобразований дважды расширялась область определения и дважды применялась неравносильная операция возведение в квадрат. Значит, мы получили уравнение - следствие. Проверка обязательна.

Проверка. Подставим в исходное уравнение первый корень 2, получим При подстановке второго корня мы замечаем, что уже больше 5, т.е. второй корень не может удовлетворять заданному уравнению, следовательно, этот корень является посторонним.

О т в е т: 2.

1.3. К вопросу о потере корней уравнения

Ответим на вопрос о том, когда уравнение теряет корни и как этого недопустить ?

Существует несколько причин потери корней :

а) деление обеих частей уравнения на одно и тоже выражение в случае, когда оно может принимать значение равное 0; так при решении уравнения необходимо переходить к уравнению (а не к уравнению).

б) сужение ОДЗ в процессе решения уравнения ; это, например, происходит при использовании некоторых тригонометрических формул. Покажем это на примере.

При решении уравнения

происходит сужение области определения данного уравнения. Действительно, его областью определения является множество всех действительных чисел, а для появляется ограничение.

Положим u= , получим =1, откуда u= +2, n. Но множество тоже является решением уравнения.

О т в е т: +2, n.

Существуют и другие случаи потери корней.

1.4. О решении уравнений на основании идеи их равносильности

А теперь попытаемся ответить на вопрос: можно ли на основе положения о равносильности уравнений создать полное представление о методах их решения?

Рассмотрим несколько примеров.

Пример 1. Решить уравнение

Р е ш е н и е. Задача решения этого уравнения сводится к задаче нахождения области определения функции, т.е. к решению неравенства Решить уравнение без О.Д.З. невозможно. Если перейти к уравнению - следствию, возведя обе части уравнения в квадрат, получим уравнение

корнями которого являются все действительные числа. Т.к. корней бесконечно много, то проверить их путем подстановки нельзя. Возможность одна, учесть, что уравнение (2) равносильно уравнению (1) на области определения уравнения (1).

Задача «решить уравнение (1)» свелась к задаче «найти О.Д.З. уравнения (1), которая сводится к задаче «решить неравенство ». Т. е от уравнения мы перешли к равносильному неравенству не с помощью преобразований, при помощи переформулирования исходной задачи.

Пример 2. Решить уравнение

Р е ш е н и е. Каждое слагаемое левой части неотрицательное, поэтому левая часть равна нулю тогда и только тогда, когда каждое ее слагаемое равно нулю. Решение уравнения сводится к решению равносильной системы уравнений

О т в е т: 3.

Таким образом, задача «решить уравнение (3)» свелась к задаче «решить систему уравнений ».

Пример 3. Решить уравнение

Р е ш е н и е. Пусть Получим уравнение

корни которого 1 и 2. Значит, исходное уравнение равносильно совокупностиуравнений

Первое уравнение не имеет решения (исходя из множества значений функции косинус), а решением второго уравнения будет

Таким образом, равенство в процессе решения использовалось как уравнение, следовательно, от задачи «решить уравнение (5)» мы перешли к задаче «решите систему уравнений

Решение уравнения (5) и системы уравнений (7) взаимно определяют друг друга.

Число решение уравнения (5) тогда и только тогда, когда найдется число такое что пара чисел является решением системы (7). Это можно взять за определение равносильности уравнения и системы уравнениний. Система уравнений (7) равносильна совокупности систем уравнений

которая равносильна совокупности уравнений (6).

Рассмотренные выше примеры 1-3 содержат лишь некоторые переходы, которые используются при решении задач «решите уравнение». Совершая эти переходы (преобразования), мы соблюдали важный принцип, - не терять корней и, по возможности, не приобретать новые. Это значит, что идея равносильности является основной при решении таких задач. Однако, как мы видели, она не сводится только к равносильности уравнений. Эта идея равносильныхпереходов (преобразований ) должна включать в себя понятие равносильности уравнений, неравенств, их систем и совокупностей, уравнений и неравенств с несколькими переменными. Очевидно, чтобы правильно решать уравнения, нужно владеть этими понятиями. Вопросы равносильности уравнений и неравенств, равносильности уравнений и систем уравнений и неравенств рассматриваются в работах С.М. Никольского, М.К. Потапова, Н.Н. Решетникова . Мы будем рассматривать эти вопросы в следующей главе.

Глава 2

К вопросу о равносильности уравнений, неравенств,

их систем и совокупностей

2.1. О способах решения уравнений

Рассмотрим уравнения средней сложности . При этом мы ограничимся уравнениями нескольких видов. Для каждого из этих уравнений существует свой способ преобразования:

а) для уравнения - возведение уравнения в квадрат, т.е. замена его уравнением (х) = g 2 (

б) для уравнения - приведение подобных, т.е. замена разности нулем;

в) для уравнения - освобождение уравнения от знаменателя, т. е. замена его уравнением

г) для уравнения - применение формулы

т.е. замена его уравнением

Каждый, кто будет решать конкретное уравнение вида а) - г), при-менит к нему указанное выше преобразование. Заметим, что существует только три способа применения указанных преобразований:

Переход к уравнению-следствию,

Переход к уравнению, равносильному на неко-тором множестве исходному уравнению,

Переход к системе (уравнений и неравенств), равносильной исходному уравнению.

Практически каждое уравнение вида а) - г) можно решать любым из этих трех способов. Далее рассмотрим примеры решения уравнений этими способами, а затем обсудим ситуации, в которых примене-ние того или иного способа предпочтительнее.

2.2. Переход к уравнению-следствию

Отметим, что каждое из перечисленных выше преобразований уравнений вида а) - г) приводит к уравнению-следствию.

Пример 4. Решить уравнение

Р е ш е н и е: возведя уравнение (8) в квадрат, получим урав-нение,

являющееся следствием уравнения (8). Уравнение (9) имеет два корня = 3 и = -2.

Проверим, являются ли эти числа корнями урав-нения (8). Подставляя каждое из них в левую и правую части уравнения (8), получим:

Это означает, что число является корнем уравнения (8), а число - нет. Следовательно, уравнение (8) имеет единственный корень

О т в е т: 3.

Пример 5. Решить уравнение

Р е ш е н и е: перенося все члены уравнения (10) в одну сторо-ну, приводя подобные, получим уравнение

являющееся следствием уравнения (10). Уравнение (11) имеет два корня

Проверка показывает, что число является корнем уравнения (10), а число— нет, так как - 3 = -1 < 0, а под знаком корня должно быть неотрицательное число. Следовательно, уравнение (10) имеет единственный корень 4.

О т в е т: 4.

Пример 6. Решить уравнение

= 1. (12)

Р е ш е н и е: освобождаясь от знаменателя, получим уравне-ние

являющееся следствием уравнения (12). Уравнение (13) имеет два корня

Проверка показывает, что число является кор-нем уравнения (12), а число - нет, так как 49 - 42 - 7 = 0, а делить на нуль нельзя.

Следовательно, уравнение (12) имеет единственный корень.

О т в е т: 1.

Пример 7. Решить уравнение

Р е ш е н и е: применяя формулу, получим урав-нение

являющееся следствием уравнения (14). Уравнение (15) имеет два корня

Проверка показывает, что число является корнем уравнения (14), а число - нет, так как а под знаком корня должно быть неотрицательное число. Следовательно, уравнение (14) имеет единственный корень.

О т в е т: 6.

при переходе к уравнению-следствию (не важно, какое преобразо-вание при этом проводилось) не надо искать ОДЗ, но надо знать, что проверка найденных корней явля-ется обязательным элементом решения уравнения.

2.3. Переход к уравнению, равносильному

на некотором множестве исходному уравнению

Каждое из преобразований а) - г) приводит к уравнению, равносильному на некотором множестве М исходному уравнению. При этом для каждого преобразования это множество отыскивается своим способом, определяемым именно этим преобразованием.

Сформулируем необходимые утверждения о рав-носильности уравненийна множестве .

Уравнениеравносильно уравнению f(x)=g 2 (x )на множестве М тех x , для каждого из которых обе части исходного уравне-ния определены и неотрицательны.

Уравнение равносильно уравнению = g(x )на множестве М тех, для каждого из которых определена функция

Уравнение равносильно уравнению на множестве М тех x , для каждого из которых не обращается в нуль ни функция ни функция.

Уравнениеравносильно урав-нению

на множестве М тех, для каждого из которых обе функции и неотрицательны.

Пример 8. Решить уравнение

Р е ш е н и е: обе части уравнения (16) определены и неотри-цательны на множестве М тех , для каждого из которых одновременно выполняются неравенства т.е. М =. На множестве М уравнение (16) равносильно уравнению

имеющему два корня

Так как , то уравнение (17) имеет на множестве М единственный корень.Он и является единственным корнем уравнения (16).

О т в е т: .

Пример 9. Решить уравнение

Р е ш е н и е: на множестве М всех уравнение (18) равносильно уравнению

имеющему серию решении.

Ясно, что только для. Поэтому уравнение (19) имеет на множестве М серию решений x. Эти решения (и только они) являются решениями уравнения (18).

О т в е т: .

Пример 10. Решить уравнение

Р е ш е н и е: так как на множестве М = ; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с.: ил.-ISBN 978-5-09-022771-1.

Пусть даны два уравнения

Если каждый корень уравнения (2.1) является одновременно и корнем уравнения (2.2), то уравнение (2.2) называется следствием уравнения (2.1). Заметим, что равносильность уравнений означает, что каждое из уравнений является следствием другого.

В процессе решения уравнения часто приходится применять такие преобразования, которые приводят к уравнению, являющемуся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но, кроме них, уравнение-следствие может иметь и такие решения, которые не являются корнями исходного уравнения, это так называемые посторонние корни. Чтобы выявить и отсеять посторонние корни, обычно поступают так: все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение.

Если при решении уравнения мы заменили его уравнением-следствием, то указанная выше проверка является неотъемлемой частью решения уравнения. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в следствие.

Рассмотрим уравнение

и умножим обе его части на одно и то же выражение ,имеющее смысл при всех значениях . Получим уравнение

корнями которого служат как корни уравнения (2.3), так и корни уравнения . Значит, уравнение (2.4) есть следствие уравнения (2.3). Ясно, что уравнения (2.3) и (2.4) равносильны, если «постороннее» уравнение не имеет корней.

Итак, если обе части уравнения умножить на выражение , имеющее смысл при любых значениях , то получится уравнение, являющееся следствием исходного. Полученное уравнение будет равносильно исходному, если уравнение не имеет корней. Заметим, что обратное преобразование, т.е. переход от уравнения (2.4) к уравнению (2.3) путем деления обеих частей уравнения (2.4) на выражение , как правило, недопустимо, поскольку может привести к потере решений (в этом случае могут «потеряться» корни уравнения ). Например, уравнение имеет два корня: 3 и 4. Деление же обеих частей уравнения на приводит к уравнению , имеющему только один корень 4, т.е. произошла потеря корня.

Снова возьмем уравнение (2.3) и возведем обе его части в квадрат. Получим уравнение

корнями которого служат как корни уравнения (2.3), так и корни «постороннего» уравнения , т.е. уравнение (2.5) – следствие уравнения (2.3).

Например, уравнение имеет корень 4. Если обе части этого уравнения возвести в квадрат, то получится уравнение , имеющее два корня: 4 и -2. Значит, уравнение - следствие уравнения . При переходе от уравнения к уравнению появился посторонний корень -2.

Итак, при возведении обеих частей уравнения в квадрат (и вообще в любую четную степень) получается уравнение, являющееся следствием исходного. Значит, при указанном преобразовании возможно появление посторонних корней. Заметим, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к уравнению, равносильному данному.