По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н + .

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H + .

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N 2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах, втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH 2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH 2) x R(COOH) y , где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Кислотные свойства аминокислот

Образование солей с щелочами и карбонатами щелочных металлов

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

Основные свойства аминокислот

1. Oбразование солей при взаимодействии с кислотами

NH 2 CH 2 COOH + HCl → + Cl —

2. Взаимодействие с азотистой кислотой

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH 2 CH 2 COOH + CH 3 I → + I —

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:

И аланина:

Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.

Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:

Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.

Образование внутренних солей аминокислот в водном растворе

В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов).

Амины

Аминами называются органические производные аммиака, в котором один, два или все три атома водорода замещены на углеводородные радикалы (предельные, непредельные, ароматические).

Название аминов производят от названия углеводородного радикала с добавлением окончания -амин или от названия соответствующего углеводорода с приставкой амино-.

CH 3 - NH 2 CH 3 - NH - C 2 H 5

метиламин метилэтиламинмтилдифениламин

фениламин (анилин)

В зависимости от числа атомов водорода, замещенных в аммиаке на углеводородные радикалы, различают первичные, вторичные и третичные амины:

R- NH 2 R - NH - R"R - N - R”

первичный аминвторичный аминтретичный амин

Где R, R", R"" - углеводородные радикалы.

Первичные, вторичные и третичные амины можно получить, проводя алкилирование (введение алкильного радикала) аммиака. При этом происходит постепенное замещение атомов водорода аммиака на радикалы, и образуется смесь аминов:

NH 3 + CH 3 I - CH 3 NH 2 + HI

CH 3 NH 2 + CH 3 I - (CH 3) 2 NH + HI

(CH 3) 2 NH + CH 3 I - (CH 3) 2 N + HI

Обычно в смеси аминов преобладает один из них в зависимости от соотношения исходных веществ.

Для получения вторичных и третичных аминов можно использовать реакцию аминов с галогеналкилами:

(CH 3) 2 NH + C 2 H 5 Br - (CH 3) 2 NC 2 H 5 + HBr

Амины можно получить восстановлением нитросоединений. Обычно нитросоединения подвергают каталитическому гидрированию водородом:

C 2 H 5 NO 2 + 3H 2 - C 2 H 5 NH 2 + 2H 2 O

Этот метод используется в промышленности для получения ароматических аминов.

Предельные амины. При обычных условиях метил амин CH 3 NH 2 , диметиламин (CH 3) 2 NH, триметиламин (CH 3) 3 N и этиламин C 2 H 5 NH 2 - газы с запахом, напоминающим запах аммиака. Эти амины хорошо растворимы в воде. Более сложные амины - жидкости, высшие амины - твердые вещества.

Для аминов характерны реакции присоединения, в результате которых образуются алкиламиновые соли. Например, амины присоединяют галогеноводороды:

(CH 3) 2 NH 2 +HCl - [(CH 3) 2 NH 3 ]Cl

хлорид этиламмония

(CH 3) 2 NH + HBr - [(CH 3) 2 NH 2 ]Br

бромид диметиламмония

(CH 3) 3 N + HI - [(CH 3) 3 NH]I

иодид триметиламмония

Третичные амины присоединяют галогенопроизводные углеводорода с образованием тетраалкиламмониевых солей, например:

(C 2 H 5) 3 N + C 2 H 5 I - [(C 2 H 5) 4 N]I

Алкиламониевые соли растворимы в воде и в некоторых органических растворителях. При этом они диссоциируют на ионы:

[(C 2 H 5) 4 N]I = [(C 2 H 5) 4 N] + + I -

В результате водные и неводные растворы этих солей проводят электрический ток. Химическая связь в алкиламмониевых соединениях ковалентная, образованная по донорно-акцепторному механизму:

Ион метиламмония

Как и аммиак, в водных растворах амины проявляют свойства оснований. В их растворах появляются гидроксид-ионы за счет образования алкиламониевых оснований:

C 2 H 5 NH 2 + H 2 O = + + OH -

Щелочную реакцию растворов аминов можно обнаружить при помощи индикаторов.

Амины горят на воздухе с выделением CO 2 , азота и воды, например:

4(C 2 H 5) 2 NH + 27O 2 - 16CO 2 + 2N 2 + 22H 2 O

Первичные, вторичные и третичные амины можно различить, используя азотную кислоту HNO 2 . при взаимодействии этой кислоты с первичными аминами образуется спирт и выделяется азот:

CH 3 - NH 2 + HNO 2 - CH 3 - OH + N 2 +H 2 O

Вторичные амины дают азотистой кислотой нитрозосоединения, которые имеют характерный запах:

CH 3 - NH 2 - CH3 + HNO 2 - (CH 3) 2 - N=NO+H 2 O

Третичные амины не реагируют азотистой кислотой.

Анилин C 6 H 5 NH 2 является важнейшим ароматическим амином. Он представляет собой бесцветную маслянистую жидкость, которая кипит при температуре 184,4 0 С.

Анилин был впервые получен в XIX в. русским химиком-органиком Н. Н. Зининым, который использовал реакцию восстановления нитробензола сульфидом аммония (NH 4) 2 S. В промышленности анилин получают каталитическим гидрированием нитробензола с использованием медного катализатора:

C 6 H 5 - NO 2 + 3H 2 - cu -- C 6 H 5 - NH 2 + 2H 2 O

Старый способ восстановления нитробензола, который потерял промышленное значение, заключается в использовании в качестве восстановителя железа в присутствии кислоты.

По химическим свойствам анилин во многом аналогичен предельным аминам, однако по сравнению с ними является более слабым основанием, что обусловлено влиянием бензольного кольца. Свободная электронная пора атома азота, с наличием которой связаны основные свойства, частично втягивается в П - электронную систему бензольного кольца:

Уменьшение электронной плотности на атоме азота снижает основные свойства анилина. Анилин образует соли лишь с сильными кислотами. Например, с хлороводородной кислотой он образует хлорид фениламмония:

C 6 H 5 NH 2 + HCl - Cl

Азотная кислота образует с анилином диазосоединения:

C 6 H 5 - NH 2 + NaNO 2 +2HCl - Cl - + NaCl + 2H 2 O

Диазосоединения, особенно ароматические, имеют большое значение в синтезе органических красителей.

Некоторые особые свойства анилина обусловлены наличием в его молекуле ароматического ядра. Так, анилин легко взаимодействует в растворах с хлором и бромом, при этом происходит замещение атомов водорода в бензольном ядре, находящихся в орто- и пара-положенияхк аминогруппе:


Анилин сульфируется при нагревании с серной кислотой, при этом образуется сульфаниловая кислота:

Сульфаниловая кислота - важнейший промежуточный продукт при синтезе красителей и лекарственных препаратов.

Гидрированием анилина в присутствии катализаторов можно получить циклогексиламин:

C 6 H 5 - NH 2 + 3H 2 -C 6 H 11 - NH 2

Анилин используется в химической промышленности для синтеза многих органических соединений, в том числе красителей и лекарств.

Метиламин

Общие традиционные названия

Монометиламинаминометан MMA

Химическая формула CH 5 N

Молярная масса 31,1 г/моль

Физические свойства

Состояние (ст. усл.) бесцветный газ

0,23 Па·с (при 20°C)

Термические свойства

Температура плавления - 94°C

Температура кипения - 6°C

Температура вспышки 8°C

Химические свойства

Растворимость в воде 108 г/100 мл

Некоторые наиболее известные амины

Метиламин

Метиламин (CH 3 --NH 2)-- бесцветный газ с запахом аммиака, t кип? 6,32°C. Применяется для синтеза пестицидов, лекарств, красителей. Наиболее важными из продуктов являются N-Метил-2-пирролидон (NMP), метилформамид, кофеин, эфедрин и N,N"-диметилмочевина. Также является второстепенным азотистым экскретом у костных рыб.

Метиламин является типичным первичным амином. С кислотами метиламин образует соли. Реакции с альдегидами и ацеталями ведут к основаниям Шиффа. При взаимодействии со сложными эфирами или ацил хлоридами дает амиды.

Как правило, используется в виде растворов: 40% масс в воде, в метаноле, этаноле или ТГФ.

Получение

Промышленное производство метиламина основывается на взаимодействии метанола с аммиаком при высокой температуре (от 370 до 430 °C) и давлении от 20 до 30 бар. Реакция проходит в газовой фазе на гетерогенном катализаторе на основе цеолита. В качестве побочных продуктов реакции образуются также вода, диметиламин (CH 3) 2 NH и триметиламин (CH 3) 3 N:

CH 3 OH + NH 3 > CH 3 NH 2 + H 2 O

CH 3 NH 2 + CH 3 OH > (CH 3) 2 NH + H 2 O

(CH 3) 2 NH + CH 3 OH > (CH 3) 3 N + H 2 O

Чистый метиламин получают путем многократной перегонки.

Альтернативное получение метиламина основано на взаимодействии формалина с хлористым аммонием при нагревании.

Горение метиламина проходит по уравнению:

4 СH 3 NH 2 + 9 O 2 = 4 CO 2 + 10 H 2 O + 2 N 2

Диметиламин

Диметиламимн -- вторичный амин, производное аммиака, в молекуле которого два атома водорода замещены метильными радикалами. Бесцветный газ с резким неприятным запахом, легко сжижающийся при охлаждении в бесцветную жидкость. Горюч.

CH 3 --NH --CH 3

Применение

Применяется для получения веществ, используемых в производстве резины. Служит сырьём для производства гептила -- ракетного топлива. Использовался в производстве химического оружия (табуна).

Триэтиламин

Систематическое наименование

триэтиламин

Химическая формула

Эмпирическая формула

Молярная масса

101,19 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Термические свойства

Температура плавления

Температура кипения

Температура вспышки

Энтальпия образования (ст. усл.)

99.58 кДж/моль

Удельная теплота испарения

Давление пара

70 гПа (20 °C)

Химические свойства

Растворимость в воде

13.3 г/100 мл

Оптические свойства

Показатель преломления

Структура

Дипольный момент

0,66 (20 °C) Д

Токсикология

Токсичность

Триэтиламин

Триэтиламин -- третичный амин. Химическая формула (С 2 H 5) 3 N, часто используется обозначение Et 3 N. Нашёл широкое применение, как простейший симметричный третичный амин, находящийся в жидком состоянии.

Получение

В промышленности получают совместно с этиламином, диэтиламином при парофазном аминировании этанола аммиаком над Al 2 O 3 или SiO 2 или их смесью при 350-450°C и давлении 20-200 атм либо над Ni, Co, Cu, Re и H 2 при 150-230°C и давлении 17-35 атм. Состав получаемой смеси зависит от исходных соотношений.

CH 3 CH 2 OH + NH 3 = CH 3 CH 2 NH 2 + H 2 O

CH 3 CH 2 OH + CH 3 CH 2 NH 2 = (CH 3 CH 2) 2 NH + H 2 O

CH 3 CH 2 OH + (CH 3 CH 2) 2 NH = (CH 3 CH 2) 3 N + H 2 O

Полученная смесь разделяется ректификацией

Физические свойства

При комнатной температуре представляет собой подвижную бесцветную жидкость, имеющая сильный рыбный запах, напоминающий аммиачный. Температура плавления?114,8°C, температура кипения 89,5°C. Ограниченно растворим в воде (нижняя критическая точка при T=19,1°C и 31,6% вес. триэтиламина), хорошо растворим в ацетоне, бензоле, хлороформе, смешивается с этанолом, диэтиловым эфиром. С водой образует азеотроп с т. кип. 75°C и содержащий 90% весовых триэтиламина.

Химические свойства

Как сильное органическое основание (pKa=10.87) образует кристаллические триэтиламмонийные соли с органическими и минеральными кислотами.

HCl + Et 3 N > Et 3 NH + Cl ?

В качестве основания триэтиламин широко используется в органическом синтезе, в частности при синтезе сложных эфиров и амидов из ацилхлоридов для связывания образующегося хлороводорода.

R 2 NH + R"C(O)Cl + Et 3 N > R"C(O)NR 2 + Et 3 NH + Cl ?

Также используется в реакции дегидрогалогенирования

Триэтиламин легко алкилируется, образуя четвертичные аммониевые соли

RI + Et 3 N > Et 3 NR + I ?

поэтому для создания основной среды в присутствии алкилаторов используют диизопропилэтиламин.

Применение

Катализирует образование пенополиуретанов и эпоксидных смол. Находит некоторое применение в качестве ракетного топлива. Используется в производстве гербицидов, лекарств, красок.

Для удаления первичных и вторичных аминов перегоняют над уксусным ангидридом. Сушат над КОН и перегоняют.

Безопасность

Концентрационный предел воспламенения = 1,2--8% по объёму.

Раздражает дыхательные пути, глаза и кожу, при прямом контакте может вызвать сильный ожог. ПДК=10 мг/м 3

амин производный аммиак углеводородный

Этилендиамин

Свойства

Жидкость без цвета с запахом аммиака. t kип 116,5°C, t пл 8,5°C, плотность 0,899 г/смі (20°C); Этилендиамин растворим в воде, спирте, хуже -- в эфире, нерастворим в бензоле. Является сильным основанием.

Применение

Этилендиамин применяется для получения этилендиаминтетрауксусной кислоты взаимодействием с хлоруксусной кислотой. Его соли с жирными кислотами используются как смягчающие агенты при производстве текстиля. Также этилендиамин применяется в производстве красителей, эмульгаторов, стабилизаторов латексов, пластификаторов и фунгицидов.

Получение

Токсичность

Традиционные названия

ФениламинАминобензол

Химическая формула

Эмпирическая формула

Молярная масса

93,13 г/моль

Физические свойства

Плотность

1,0217 г/смі

Динамическая вязкость (ст. усл.)

3,71 Па·с(при 20 °C)

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

Анилимн (фениламин) -- органическое соединение с формулой C 6 H 5 NH 2 , простейший ароматический амин. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит! Название «анилин» происходит от названия одного из растений, содержащих индиго -- Indigofera anil (современное международное название растения -- Indigofera suffruticosa).

Впервые анилин был получен в 1826 году при перегонке индиго с известью немецким химиком Отто Унфердорбеном (нем. Otto Unverdorben), который дал ему название «кристаллин».

В 1834 Ф. Pyнгe обнаружил анилин в каменно-угольной смоле и назвал «кианолом».

В 1841 Ю.Ф. Фришце получил анилин нагреванием индиго с раствором KOH и назвал его «анилином».

В 1842 анилин был получен Н.Н. Зининым восстановлением нитробензола действием (NH 4) 2 S 3 и назван им «бензидамом».

В 1843 А.В. Гофман установил идентичность всех перечисленных соединений.

Промышленное производство фиолетового красителя мовеина на основе анилина началось в 1856 году.

Химические свойства

Для анилина характерны реакции как по аминогруппе, так и по ароматическому кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению с алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол. Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок).

Получение

Восстановление железом:

4C 6 H 5 NO 2 + 9Fe + 4H 2 O >4C 6 H 5 NH 2 + 3Fe 3 O 4

Восстановление водородом в присутствии катализатора и при высокой температуре:

C 6 H 5 NO 2 + 3H 2 > C 6 H 5 NH 2 + 2H 2 O

Восстановление нитросоединений -- Реакция Зинина:

C 6 H 5 NO 2 + 3(NH 4) 2 S > C 6 H 5 NH 2 + 6NH 3 + 3S + 2H 2 O

Производство и применение

Изначально анилин получали восстановлением нитробензола молекулярным водородом; практический выход анилина не превышал 15%. При взаимодействии концентрированной соляной кислоты с железом выделялся атомарный водород, более химически активный по сравнению с молекулярным. Реакция Зинина является более эффективным методом получения анилина. В реакционную массу вливали нитробензол, который восстанавливается до анилина.

По состоянию на 2002 год, в мире основная часть производимого анилина используется для производства метилдиизоцианатов, используемых затем для производства полиуретанов. Анилин также используется при производстве искусственных каучуков, гербицидов и красителей (фиолетового красителя мовеина).

В России он в основном применяется в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но в связи с ожидаемым ростом производства полиуретанов возможно значительное изменение картины в среднесрочной перспективе.

Токсичные свойства

Анилин оказывает негативное воздействие на центральную нервную систему. Вызывает кислородное голодание организма за счёт образования в крови метгемоглобина, гемолиза и дегенеративных изменений эритроцитов.

В организм анилин проникает при дыхании, в виде паров, а также через кожу и слизистые оболочки. Всасывание через кожу усиливается при нагреве воздуха или приёме алкоголя.

При лёгком отравлении анилином наблюдаются слабость, головокружение, головная боль, синюшность губ, ушных раковин и ногтей. При отравлениях средней тяжести также наблюдаются тошнота, рвота, иногда, шатающаяся походка, учащение пульса. Тяжёлые случаи отравления крайне редки. При хроническом отравлении анилином (анилизм) возникают токсический гепатит, а также нервно-психические нарушения, расстройство сна, снижение памяти и т. д.

При отравлении анилином необходимо, прежде всего, удаление пострадавшего из очага отравления, обмывание тёплой (но не горячей!) водой. Так же вдыхание кислорода с карбогеном. Также применяют кровопускание, введение антидотов (метиленовая синь), сердечнососудистые средства. Пострадавшему надо обеспечить покой.

Предельно допустимая концентрация анилина в воздухе рабочей зоны 3 мг/м3. В водоёмах (при их промышленном загрязнении) 0,1 мг/л (100 мг/м3).

Этилендиамин

Этилендиамин (1,2-диаминоэтан) H 2 NCH 2 CH 2 NH 2 -- органическое соединение класса аминов.

Свойства

Жидкость без цвета с запахом аммиака. t kип 116,5°C, t пл 8,5°C, плотность 0,899 г/смі (20 °C); Этилендиамин растворим в воде, спирте, хуже -- в эфире, нерастворим в бензоле. Является сильным основанием.

Применение: Этилендиамин применяется для получения этилендиаминтетрауксусной кислоты взаимодействием с хлоруксусной кислотой. Его соли с жирными кислотами используются как смягчающие агенты при производстве текстиля. Также этилендиамин применяется в производстве красителей, эмульгаторов, стабилизаторов латексов, пластификаторов и фунгицидов.

Получение

Основным способом синтеза этилендиамина в промышленности является взаимодействие аммиака с дихлорэтаном.

Токсичность

Этилендиамин токсичен; предельно допустимая концентрация его паров в воздухе составляет 0,001 мг/л.

Пиридин -- шестичленный ароматический гетероцикл с одним атомом азота, бесцветная жидкость с резким неприятным запахом; смешивается с водой и органическими растворителями. Пиридин -- слабое основание, дает соли с сильными минеральными кислотами, легко образует двойные соли и комплексные соединения.

История открытия

Пиридин был открыт в 1846 г. Андерсоном при исследовании костяного масла, получающегося сухой перегонкой необезжиренных костей. В 1869 г. Кернер в частном письме к Каниццаро высказал мысль, что П. может быть рассматриваем, как бензол, в котором одна группа СН замещена азотом. По мнению Кернера, подобная формула не только объясняет синтезы пиридина, но, главным образом, указывает, почему простейший член ряда пиридиновых оснований имеет пять атомов углерода. Через год Дьюар (Dewar), независимо от Кернера, пришел к той же формуле, которая затем нашла себе подтверждение и в позднейших работах других химиков. Позже изучением структуры пиридина занимались Томсен, Бамбергер и Пехманн, Чамичан и Деннштедт. В 1879 г. А. Вышнеградский высказал мнение, что, может быть, все растительные основания суть производные пиридина или хинолина, а в 1880 г. Кенигс предлагал даже именем алкалоидов называть только те растительные основания, которые могут быть рассматриваемы, как дериваты пиридина. Однако на настоящее время границы понятия «алкалоиды» значительно расширились.

Получение

Основным источником для получения пиридина является каменноугольная смола.

Химические свойства

Пиридин проявляет свойства, характерные для третичных аминов: образует N-оксиды, соли N-алкилпиридиния, способен выступать в качестве сигма-донорного лиганда.

В то же время пиридин обладает явными ароматическими свойствами. Однако наличие в кольце сопряжения атома азота приводит к серьёзному перераспределению электронной плотности, что приводит к сильному снижению активности пиридина в реакциях электрофильного ароматического замещения. В таких реакциях реагируют преимущественно мета-положения кольца.

Для пиридина характерны реакции ароматического нуклеофильного замещения, протекающие преимущественно по орто-пара положениям кольца. Такая реакционная способность свидетельствует о электроннодефицитной природе пиридинового кольца, что может быть обобщено в следующем эмпирическом правиле: реакционная способность пиридина как ароматического соединения примерно соответствует реакционной способности нитробензола.

Применение

Применяют в синтезе красителей, лекарственных веществ, инсектицидов, в аналитической химии, как растворитель многих органических и некоторых неорганических веществ, для денатурирования спирта.

Безопасность

Пиридин токсичен, действует на нервную систему, кожу.

Пиперидин

Пиперидин

Традиционные названия

пентаметиленимин

Химическая формула

Молярная масса

85.15 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Динамическая вязкость (ст. усл.)

1.573 Па·с(при 20 °C)

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

смешивается г/100 мл

Оптические свойства

Показатель преломления

Пиперидин (пентаметиленимин) -- гексагидропиридин, шестичленный насыщенный цикл с одним атомом азота. Бесцветная жидкость с аммиачным запахом, смешивается с водой, а также с большинством органических растворителей, образует азеотропную смесь с водой (35% воды по массе, T кип 92.8°C) Входит в виде структурного фрагмента в фармацевтические препараты и алкалоиды. Получил своё название от латинского названия черного перца Piper nigrum, из которого впервые был выделен.

Впервые пиперидин быль выделен Эрстедом из черного перца в 1819 году. В 1894 году осуществлён его полный синтез Альбертом Ладенбургом и Шолцом

Методы получения

В промышленности в основном гидрированием пиридина над дисульфидом молибдена или никелем при 200 °C в качестве катализатора

Электрохимическим восстановлением

Из пиридина восстановлением натрием в абсолютном этаноле.

Нагреванием пентаметилендиамина дигидрохлорида.

NH 2 CH 2 CH 2 CH 2 CH 2 CH 2 NH 2 *2HCl > C 5 H 10 NH*HCl

Реакционная способность

По своим химическим свойствам пиперидин является типичным вторичным алифатическим амином. Образует соли с минеральными кислотами, легко алкилируется и ацилируется по атому азота, образует комплексные соединения с переходными металлами (Cu, Ni и т.п.). Нитрозируется азотистой кислотой с образованием N-нитрозопиперидина, при действии гипохлоритов в щелочной среде образует соответствующий N-хлорамин C 5 H 10 NCl,

При кипячении пиперидина с концентрированной йодоводородной кислотой происходит восстановительное раскрытие цикла с образованием пентана:

(CH 2) 5 NH + HJ > CH 3 CH 2 CH 2 CH 2 CH 3

При расщеплении исчерпывающем метилировании и расщеплении по Гофману образует пента-1,3-диен.

При нагревании в серной кислоте в присутствии солей меди или серебра пиперидин дегидрируется в пиридин.

Нахождение в природе и биологическая роль

Сам пиперидин выделялся из перца. Пиперидиновый цикл является структурным фрагментом ряда алкалоидов. Так пиперидиновый цикл входит в состав алкалоида кониина, содержащегося в болиголове пятнистом, в состав пиперина, который придаёт жгучий вкус черному перцу. Также в Solenopsin токсине Огненных муравьёв.

Применение

Пиперидин широко используется в органическом синтезе используется в качестве основного катализатора при альдольной конденсации, реакции Кнёвенагеля, как аминный компонент в реакции Манниха и реакции Михаэля.

Пиперидин как высококипящий вторичный амин используется для превращения кетонов в енамины, которые могут быть проалкилированы или проацилированы в б-положение (реакция Сторка).

Безопасность

Токсичен как при попадании на кожу, так и при вдыхании паров. Лекговоспламеним, температура вспышки 16 °C. Работы с ним проводятся в вытяжном шкафу.

Хинолин -- органическое соединение гетероциклического ряда. Применяют как растворитель для серы, фосфора и др., для синтеза органических красителей. Производные хинолина, используют в медицине (плазмоцид, хинин).

Промышленное получение

Хинолин встречается в составе каменноугольной смолы, из которой и добывается.

Методы синтеза

Производные хинолина с заместителями в положениях 2 и 4 можно получить путем конденсации анилина (1) и в-дикетонов (2) в кислой среде. Этот метод получил название «синтез хинолинов по Комба»

Из анилина и б,в-ненасыщеных альдегидов (метод Дёбнера-Миллера). Механизм данной реакции очень близок к механизму реакции Скраупа

Из 2-аминобензальдегида и карбонильных соединений, содержащих б-метиленовую группу (синтез Фридлендера). Метод практически не употребляется из-за низкой доступности о-карбонильных производных анилина

Конденсацией анилина и глицерина в присутствии серной кислоты (метод Скраупа)

Механизм этой реакции точно не установлен, но предполагают, что процесс идет как 1,4-присоединение анилина к акролеину. Акролеин образуется в результате дегидратации глицерина в присутствии серной кислоты (образование акролена подтверждено: из готового акролеина и анилина также образуется хинолин.


Реакция сильно экзотермична, поэтому процесс обычно проводят в присутствии сульфата железа (II). В качестве окислителя используют также оксид мышьяка (V), в этом случае процесс протекает не так бурно,как с нитробензолом и выход хинолина выше.

По реакции Поварова из бензальдегида, анилина и алкена.

Из орто-ацилацетофенона и гидроксида (en:Camps quinoline synthesis).

Из в-кетоанилида (en:Knorr quinoline synthesis).

Из анилина и в-кетоэфиров (en:Conrad-Limpach synthesis).

en:Gould-Jacobs reaction

Токсикология и безопасность

LD 50 для млекопитающих составляет несколько сотен мг/кг.

Морфолин

Морфолин

Систематическое наименование

тетрагидрооксазин-1,4

Традиционные названия

морфолин

Химическая формула

Молярная масса

87,1 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

смешивается г/100 мл

Токсикология

Морфолин -- гетероциклическое соединение (тетрагидрооксазин-1,4). Химическая формула HN(CH 2 CH 2) 2 O. Используется в органическом синтезе как катализатор в качестве основания (акцептор протона), в частности, для получения геминальных дитиолов. Молекула имеет конформацию «кресла».

Получение

Морфолин получают дегидратацией диэтаноламина или бис (2-хлорэтилового) эфира.

Для очистки его сушат над дриеритом, после чего с осторожностью дробно перегоняют. Рекомендуют также перегонку или высушивание над натрием.

Применение

Промышленность

Морфолин -- ингибитор коррозии. Морфолин -- обычная добавка, в миллионных долях, для регулирования pH как в системах на ископаемом топливе, так и в системах ядерных реакторов. Морфолин применяется из-за его летучести близкой к такой для воды, то есть будучи добавленным в воду, его концентрация в воде и парах одинакова. Его pH регулирующее свойство затем распространяется через парогенератор, обеспечивая защиту от коррозии. Морфолин разлагается медленно в отсутствие кислорода при высоких температурах и давлениях в парообразующих системах.

Органический синтез

Морфолин подвергается большинству реакций характерных для химии вторичных аминов, благодаря наличию атома кислорода, оттягивающего электронную плотность на себя от атома азота, он менее нуклеофильный и менее основный, чем структурно анологичный вторичный амин такой как пиперидин. По этой причине он образует стойкий хлорамин. Он также широко используется для получения енаминов Морфолин широко используется в органическом синтезе. Например, он билдинг блок в получении антибиотика линезолида и противоракового агента Gefitinib.

В исследованиях и в промышленности, дешевизна и полярность морфолина привела к его широкому применению в качестве растворителя для химических реакций.

Безопасность

Морфолин -- легко воспламеняющаяся жидкость. т. всп. 35°С, температура самовоспламенения 230°С. Пары раздражают слизистые оболочки дыхательных путей, при попадании на кожу вызывают жжение. ЛД50 1,65 г/кг (мыши и морские свинки, перорально); ПДК 0,5 мг/м3.

ТЕМА ЛЕКЦИИ: АМИНЫ И АМИНОСПИРТЫ

Вопросы:

Общая характеристика: строение, классификация, номенклатура.

Методы получения

Физические свойства

Химические свойства

Отдельные представители. Способы идентификации.

Общая характеристика: строение, классификация, номенклатура

Аминами называются производные аммиака, молекуле которого атомы водорода замещены на углеводородные радикалы.

Классификация

1– В зависимости от числа замещенных атомов водорода аммиака различают амины :

первичные содержат аминогруппу аминогруппу (–NH 2), общая формула: R–NH 2 ,

вторичные содержат иминогруппу (–NH),

общая формула: R 1 –NH–R 2

третичные содержат атом азота, общая формула: R 3 –N

Известны также соединения с четвертичным атомом азота: четвертичный гидроксид аммония и его соли.

2– В зависимости от строения радикала амины различают:

– алифатические (предельные и непредельные)

– алициклические

– ароматические (содержащие в ядре аминогруппу или боковой цепи)

– гетероциклические.

Номенклатура, изомерия аминов

1. Названия аминов по рациональной номенклатуре обычно производят от названий вхо­дящих в них углеводородных радикалов с присоединением окончания –амин : метиламин СН 3 –NН 2 , диметиламин СН 3 –NН–СН 3 , триметиламин (СН 3) 3 N, пропиламин СН 3 СН 2 СН 2 –NН 2 , фениламин С 6 Н 5 – NН 2 и т. д.

2. По номенклатуре ИЮПАК аминогруппу рассматривают как функциональную группу и ее название амино- ставят перед на­званием основной цепи:


Изомерия аминов зависит от изомерии радикалов.

Способы получения аминов

Амины могут быть получены различными способами.

А) Действием на аммиак галогеналкилами

2NH 3 + CH 3 I ––® CH 3 – NH 2 + NH 4 I

Б) Каталитическое гидрирование нитробензола молекулярным водородом:

С 6 Н 5 NО 2 ––® С 6 Н 5 NН 2 + Н 2 О

нитробензол кат анилин

В) Получение низших аминов (С 1 –С 4) путем алкилирования спиртами:

350 0 C, Al 2 O 3

R–OH + NH 3 –––––––––––® R–NH 2 +H 2 O



350 0 C, Al 2 O 3

2R–OH + NH 3 –––––––––––® R 2 –NH +2H 2 O

350 0 C, Al 2 O 3

3R–OH + NH 3 –––––––––––® R 3 –N + 3H 2 O

Физические свойства аминов

Метиламин, диметиламин и триметиламин - газы, сред­ние члены ряда аминов - жидкости, высшие - твердые тела. С увеличением молекулярной массы аминов увеличивается их плотность, повышается температура кипения и уменьшается растворимость в воде. Высшие амины в воде нерастворимы. Низшие амины имеют неприятный запах, несколько напоми­нающий запах испорченной рыбы. Высшие амины или не имеют запаха, или обладают очень слабым запахом. Ароматические амины представляют собой бесцветные жидкости или твердые вещества, обладающие неприятным запахом и ядовиты.

Химические свойства аминов

Химическое поведение аминов определяется наличием в молекуле аминогруппы. На внешней электронной оболочке атома азота имеется 5 электронов. В молекуле амина также, как и в молекуле аммиака, атом азота затрачивает на образование трех ковалентных связей три электрона, а два остаются свободными.

Наличие свободной электронной пары у атома азота дает ему возможность присоединять протон, поэтому амины подобны аммиаку, проявляют основные свойства, образуют гидроксиды, соли.

Солеобразование. Амины с кислотами дают соли, кото­рые под действием сильного основания вновь дают свободные амины:


Амины дают соли даже со слабой угольной кислотой:


Как и аммиак, амины обладают основными свойствами что объясняется связыванием протонов в слабо диссоциирующий катион замещенного аммония:


При растворении амина в воде часть протонов воды расходуется на образование катиона; таким образом, в раство­ре появляется избыток гидроксид-ионов, и он имеет щелочные свойства, достаточные для окрашивания растворов лакмуса в синий цвет и фенолфталеина в малиновый. Основность аминов предельного ряда колеблется в очень небольших пределах и близка к основности аммиака.

Эффект метильных групп несколько повышает основ­ность метил- и диметиламина. В случае триметиламина метильные группы уже затрудняют сольватацию образующегося катиона и уменьшают его стабилизацию, а следовательно, и основность.

Соли аминов следует рассматривать как комплексные со­единения. Центральным атомом в них является атом азота, координационное число которого равно четырем. Атомы водорода или алкилы связаны с атомом азота и расположены во внутренней сфере; кислотный остаток расположен во внешней сфере.

Ацилирование аминов. При действии на первичные и вторичные амины некоторых производных органических кис­лот (галогенангидридов, ангидридов и др.) образуются амиды:


Вторичные амины с азотистой кислотой дают нитрозоамины - желтоватые жидкости, мало растворимые в воде:


Третичные амины устойчивы к действию разбавленной азотистой кислоты на холоду (образуют соли азотистой кисло­ты), в более жестких условиях один из радикалов отщепляется и образуется нитрозоамин.

Диамины

Диамины играют важную роль в биологических процес­сах. Как правило, они легко растворимы в воде, обладают ха­рактерным запахом, имеют сильно щелочную реакцию, взаи­модействуют с С0 2 воздуха. Диамины образуют устойчивые со­ли с двумя эквивалентами кислоты.

Этилендиамин (1,2-этандиамин) H 2 NCH 2 СН 2 NН 2 . Он является простейшим диамином; может быть получен дейст­вием аммиака на этиленбромид:


Тетраметилендиамин (1,4-бутандиамин), или путресцин, NН 2 СН 2 СН 2 СН 2 СН 2 NH 2 и пентаметилендиамин (1,5-пентандиамин) NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 , или када­верин. Они были открыты в продуктах разложения белковых веществ; образуются при декарбоксилировании диаминокислот и названы птомаинами (от греч.- труп), их счита­ли ранее «трупными ядами». В настоящее время выяснено, что ядовитость гниющих белков вызвана не птомаинами, а при­сутствием других веществ.

Путресцин и кадаверин образуются в результате жизнеде­ятельности многих микроорганизмов (например, возбудителей столбняка и холеры) и грибков; они встречаются в сыре, спо­рынье, мухоморе, пивных дрожжах.

Некоторые диамины применяются в качестве сырья для получения полиамидных волокон и пластмасс. Так, из гекса-метилендиамина NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 получено весьма ценное синтетическое волокно - найлон (США) или анид (Россия).

Аминоспирты

Аминоспирты - соединения со смешанными функциями, в молекуле которых содержатся амино- и оксигруппы.

Аминоэтанол (этаноламин) НО-СН 2 СН 2 -NH 2 , или коламин.

Этаноламин - густая маслянистая жидкость, смешивает­ся с водой во всех отношениях, обладает сильными щелочны­ми свойствами. Hаряду с моноэтаноламином получаются также диэтаноламин и триэтаноламин:


Холин входит в состав лецитинов - жироподобных ве­ществ, весьма распространенных в животных и растительных организмах, и может быть выделен из них. Холин представляет собой кристаллическую, весьма гиг­роскопичную, легко расплывающуюся на воздухе массу. Он обладает сильными щелочными свойствами и с кислотами лег­ко образует соли.

При ацилировании холина уксусным ангидридом образу­ется холинацетат, называемый также ацетилхолином:



Ацетилхолин играет крайне важную биохимическую роль, так как является медиатором (посредником), передающим воз­буждение от нервных рецепторов к мышцам.

Ароматическими аминами называют производные ароматических углеводородов, в которых один или несколько атомов водорода бензольного кольца замещены на аминогруппы ( NH 2 ).

Ароматические амины можно также рассматривать как производные аммиака, в молекуле которого один или несколько атомов водорода замещены ароматическими радикалами.

Как и в алифатическом (жирном) ряду, ароматические амины могут быть первичными, вторичными и третичными.

В зависимости от того, какие радикалы (только ароматические или ароматические и алифатические) связаны с атомом азота, различают чисто ароматические и жирноароматические.

Аминогруппа может быть непосредственно связана с ядром или находиться в боковой цепи.

Анилин является родоначальником класса ароматических аминов, в которых аминогруппа непосредственно связана с бензольным кольцом:

анилин (фениламин, аминобензол)

Номенклатура ароматических аминов

Для названия ароматических аминов обычно используют тривиальную номенклатуру.

Например, анилин, толуидин.

По систематической (заместительной) номенклатуре названия аминов образуют из названий радикалов с добавлением окончания –амин или приставки амино-

Тривиальная: орто-толуидин мета-толуидин пара-толуидин

Заместительная: орто-толиламин мета-толиламин пара-толиламин

орто-аминотолуол мета-аминотолуол пара-аминотоуол

(2-аминотоуол) (3-аминотолуол) (4-аминотолуол)

В ароматическом кольце может быть две и более аминогрупп.

Названия соединений с двумя аминогруппами (диамины) образуют из названия двухвалентного углеродного остатка и окончания –диамин или приставки диамино- и названия соответствующего углеводорода:

о-фенилендиамин м-фенилендиамин п-фенилендиамин

о-диаминобензол м-диаминобензод п-диаминобензол

(1,2-диаминобензол) (1,3-диаминобензол) (1,4-диаминобензол)

В зависимости от числа радикалов, связанных с атомом азота, различают также вторичные и третичные ароматические амины.

Названия вторичных и третичных аминов чаще всего образуют по принципам рациональной номенклатуры, перечисляя имеющиеся в соединении радикалы и добавляя окончание –амин:

дифениламин (вторичный амин)

трифениламин (третичный амин)

Если в молекуле амина с атомом азота связаны одновременно и ароматические и алифатические радикалы, то такие амины называют жирноароматическими.

В случае жирноароматических аминов за основу названия берется слово «анилин» и, чтобы показать, что радикал расположен у атома азота, а не в бензольном кольце, перед названием радикала ставится буква N :

N-метиланилин N,N-диметиланилин

Рациональная: метилфениламин диметилфениламин

Заместительная: N-метиламинобензол N,N-диметиламинобензол

Амины с аминогруппой в боковой цепи:

бензиламин

α-аминотолуол

Ароматические амины с аминогруппой в боковой цепи обладают свойствами алифатических аминов.

Амины - органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Обычно выделяют три типа аминов :

Амины, в которых аминогруппа связана непо­средственно с ароматическим кольцом, называют­ся ароматическими аминами .

Простейшим представителем этих соединений является аминобензол, или анилин:

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподелен­ной электронной пары . Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продук­том формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура

1. Для аминов характерна структурная изомерия :

а) изомерия углеродного скелета :

б) изомерия положения функциональной группы :

2. Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия ):

Как видно из приведенных примеров, для то­го чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшин­ства), и добавляют суффикс -амин .

Физические свойства аминов

Простейшие амины (метиламин, диметиламин, триметиламин) - газообразные вещества. Осталь­ные низшие амины - жид­кости, которые хорошо рас­творяются в воде. Имеют характерный запах, напоми­нающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи . Это приво­дит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин - маслянистая жидкость, ограничен­но растворимая в воде, кипящая при температуре 184 °С.

Анилин

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары .

Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет не­поделенной пары электронов может образовывать ковалентную связь по донорно-акцепторному меха­низму, выступая в роли донора . В связи с этим ами­ны, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания:

1. Реакция амионов с водой приводит к образо­ванию гидроксид-ионов:

Раствор амина в воде имеет щелочную реакцию.

2. Реакция с кислотами. Аммиак, реагируя с кислотами, образует соли аммония. Амины так­же способны вступать в реакцию с кислотами:

Основные свойства алифатических аминов вы­ражены сильнее, чем у аммиака. Это связано с на­личием одного и более донорных алкильных за­местителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превра­щает азот в более сильного донора пары электронов, что повышает его основные свойства:

Горение амионов. Амины горят на воздухе с об­разованием углекислого газа, воды и азота:

Химические свойства аминов - конспект

Применение аминов

Амины широко применяются для получения лекарств , полимерных материалов . Анилин - важнейшее соединение данного класса, которое используют для производства анилиновых краси­телей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилинформальдегидных смол).

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости