Otkad ste došli ovdje, vjerovatno ste već vidjeli ovu formulu u udžbeniku

i napravi facu ovako:

Prijatelju, ne brini! U stvari, sve je jednostavno nečuveno. Sigurno ćete sve razumjeti. Samo jedan zahtjev - pročitajte članak polako, pokušajte razumjeti svaki korak. Napisao sam najjednostavnije i jasnije moguće, ali ipak morate razumjeti ideju. I svakako riješite zadatke iz članka.

Šta je složena funkcija?

Zamislite da se selite u drugi stan i da pakujete stvari u velike kutije. Pretpostavimo da trebate prikupiti neke male predmete, na primjer, školski materijal za pisanje. Ako ih samo bacite u ogromnu kutiju, između ostalog će se izgubiti. Da biste to izbjegli, prvo ih stavite, na primjer, u vrećicu, koju zatim stavite u veliku kutiju, nakon čega je zatvorite. Ovaj „složeni“ proces predstavljen je na dijagramu ispod:

Čini se, kakve veze ima matematika s tim? Da, uprkos činjenici da je složena funkcija formirana na POTPUNO ISTI način! Samo mi ne “pakujemo” sveske i olovke, već \(x\), dok su “paketi” i “kutije” različiti.

Na primjer, uzmimo x i "upakujemo" ga u funkciju:


Kao rezultat, dobijamo, naravno, \(\cos⁡x\). Ovo je naša "vreća stvari". Sada ga stavimo u "kutiju" - upakirajte ga, na primjer, u kubičnu funkciju.


Šta će se na kraju dogoditi? Da, tako je, postojaće "vreća stvari u kutiji", odnosno "kosinus od X u kocki".

Rezultirajući dizajn je složena funkcija. Po tome se razlikuje od jednostavnog NEKOLIKO “utjecaja” (paketa) se primjenjuje na jedan X u nizu i ispada kao da je “funkcija od funkcije” - “pakovanje unutar pakovanja”.

IN školski kurs Postoji vrlo malo vrsta ovih "paketa", samo četiri:

Hajdemo sada da "upakujemo" X prvo u eksponencijalnu funkciju sa bazom 7, a zatim u trigonometrijsku funkciju. Dobijamo:

\(x → 7^x → tg⁡(7^x)\)

Sada hajde da "upakujemo" X dvaput trigonometrijske funkcije, prvo u , a zatim u:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

Jednostavno, zar ne?

Sada sami napišite funkcije, gdje je x:
- prvo se „pakuje“ u kosinus, a zatim u eksponencijalnu funkciju sa bazom \(3\);
- prvo na peti stepen, a zatim na tangentu;
- prvo na logaritam na osnovu \(4\) , zatim na stepen \(-2\).

Odgovore na ovaj zadatak potražite na kraju članka.

Možemo li "spakovati" X ne dva, već tri puta? Nema problema! I četiri, i pet, i dvadeset i pet puta. Evo, na primjer, funkcije u kojoj je x "upakovano" \(4\) puta:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

Ali takve formule se neće naći u školskoj praksi (učenici imaju više sreće - njihova je možda komplikovanija☺).

"Raspakivanje" složene funkcije

Pogledajte ponovo prethodnu funkciju. Možete li shvatiti redoslijed "pakiranja"? U šta je X ubačen prvo, u šta onda i tako do samog kraja. To jest, koja funkcija je ugniježđena unutar koje? Uzmite komad papira i zapišite šta mislite. To možete učiniti lancem sa strelicama kako smo gore napisali ili na bilo koji drugi način.

Sada je tačan odgovor: prvo, x je "upakovano" u \(4\)-tu potenciju, zatim je rezultat upakovan u sinus, on je zauzvrat stavljen u logaritam na osnovu \(2\) , i na kraju je cijela ova konstrukcija nabijena u petice.

Odnosno, potrebno je da odmotate sekvencu OBRATNIM REDOM. A evo i nagoveštaja kako da to učinite lakše: odmah pogledajte X – trebalo bi da plešete od njega. Pogledajmo nekoliko primjera.

Na primjer, evo sljedeće funkcije: \(y=tg⁡(\log_2⁡x)\). Gledamo X - šta se prvo događa s njim? Oduzeto od njega. I onda? Uzima se tangenta rezultata. Redosled će biti isti:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Drugi primjer: \(y=\cos⁡((x^3))\). Hajde da analiziramo - prvo smo kockali X, a zatim uzeli kosinus rezultata. To znači da će niz biti: \(x → x^3 → \cos⁡((x^3))\). Obratite pažnju, funkcija je slična onoj prvoj (gdje ima slike). Ali ovo je potpuno drugačija funkcija: ovdje u kocki je x (to jest, \(\cos⁡((x·x·x)))\), a tamo u kocki je kosinus \(x\) ( odnosno \(\cos⁡ x·\cos⁡x·\cos⁡x\)). Ova razlika proizlazi iz različitih sekvenci "pakiranja".

Posljednji primjer (sa važna informacija u njemu): \(y=\sin⁡((2x+5))\). Jasno je da su ovdje prvo radili aritmetičke operacije sa x, a zatim uzeli sinus rezultata: \(x → 2x+5 → \sin⁡((2x+5))\). I ovo je važna stvar: uprkos činjenici da aritmetičke operacije nisu funkcije same po sebi, ovdje također djeluju kao način „pakiranja“. Udubimo se malo dublje u ovu suptilnost.

Kao što sam rekao gore, u jednostavnim funkcijama x se „pakuje“ jednom, a u složenim funkcijama - dva ili više. Štaviše, bilo koja kombinacija jednostavnih funkcija (tj. njihov zbir, razlika, množenje ili dijeljenje) je također jednostavna funkcija. Na primjer, \(x^7\) je jednostavna funkcija, kao i \(ctg x\). To znači da su sve njihove kombinacije jednostavne funkcije:

\(x^7+ ctg x\) - jednostavno,
\(x^7· krevetac x\) – jednostavno,
\(\frac(x^7)(ctg x)\) – jednostavno, itd.

Međutim, ako se na takvu kombinaciju primijeni još jedna funkcija, ona će postati složena funkcija, jer će postojati dva “paketa”. Pogledajte dijagram:



Ok, samo naprijed. Napišite redoslijed funkcija "omotavanja":
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Odgovori su opet na kraju članka.

Unutrašnje i eksterne funkcije

Zašto trebamo razumjeti ugniježđenje funkcija? Šta nam ovo daje? Činjenica je da bez takve analize nećemo moći pouzdano pronaći derivate funkcija o kojima je bilo riječi.

A da bismo nastavili dalje, trebat će nam još dva koncepta: unutrašnje i vanjske funkcije. Ovo je vrlo jednostavna stvar, štoviše, u stvari, već smo ih analizirali iznad: ako se sjetimo naše analogije na samom početku, onda je unutrašnja funkcija „paket“, a vanjska funkcija je „kutija“. One. ono u šta je X prvo "umotano" je interna funkcija, a ono u šta je unutrašnja funkcija "umotana" je već eksterna. Pa, jasno je zašto - ona je napolju, znači eksterna.

U ovom primjeru: \(y=tg⁡(log_2⁡x)\), funkcija \(\log_2⁡x\) je interna, i
- eksterni.

A u ovome: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) je interno, i
- eksterni.

Završite posljednju praksu analize složenih funkcija i konačno prijeđimo na ono zbog čega smo svi započeli - naći ćemo derivate složenih funkcija:

Popunite prazna polja u tabeli:


Derivat kompleksne funkcije

Bravo za nas, konačno smo došli do "šefa" ove teme - zapravo, izvedenice složena funkcija, a konkretno na onu jako strašnu formulu s početka članka.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Ova formula glasi ovako:

Izvod kompleksne funkcije jednak je umnošku izvoda eksterne funkcije u odnosu na konstantnu unutrašnju funkciju i izvod unutrašnje funkcije.

I odmah pogledajte dijagram raščlanjivanja "riječ po riječ" da shvatite šta je šta:

Nadam se da termini „derivacija“ i „proizvod“ ne izazivaju nikakve poteškoće. "Složena funkcija" - već smo to riješili. Kvaka je u „derivatu eksterne funkcije u odnosu na konstantnu unutrašnju funkciju“. Šta je to?

Odgovor: Ovo je uobičajena derivacija eksterne funkcije, u kojoj se mijenja samo vanjska funkcija, a unutrašnja ostaje ista. Još uvijek nije jasno? U redu, upotrijebimo primjer.

Neka nam je funkcija \(y=\sin⁡(x^3)\). Jasno je da je unutrašnja funkcija ovdje \(x^3\), a eksterna
. Nađimo sada derivaciju eksterijera u odnosu na konstantnu unutrašnjost.

Ova lekcija je posvećena temi „Diferencijacija složenih funkcija. Problem iz prakse pripreme za Jedinstveni državni ispit iz matematike.” Ova lekcija istražuje razlikovanje složenih funkcija. Sastavlja se tabela derivata kompleksne funkcije. Uz to, razmatra se primjer rješavanja zadatka iz prakse pripreme za Jedinstveni državni ispit iz matematike.

Tema: Derivat

Lekcija: Razlikovanje složene funkcije. Zadatak za vježbu za pripremu za Jedinstveni državni ispit iz matematike

Kompleksfunkcija već smo razlikovali, ali argument je bio linearna funkcija, naime, znamo kako razlikovati funkciju . Na primjer, . Sada ćemo na isti način pronaći derivate kompleksne funkcije, gdje umjesto linearne funkcije može postojati druga funkcija.

Počnimo s funkcijom

Dakle, našli smo derivaciju sinusa iz kompleksne funkcije, gdje je argument sinusa kvadratna funkcija.

Ako trebate pronaći vrijednost izvoda u određenoj tački, tada se ova tačka mora zamijeniti pronađenom derivacijom.

Dakle, u dva primjera vidjeli smo kako pravilo funkcionira diferencijaciju kompleks funkcije.

2.

3. . Da vas podsetimo.

7.

8. .

Tako ćemo u ovoj fazi završiti tabelu diferencijacije složenih funkcija. Dalje će se, naravno, još više generalizirati, ali sada prijeđimo na konkretne probleme o derivatu.

U praksi pripreme za Jedinstveni državni ispit predlažu se sljedeći zadaci.

Pronađite minimum funkcije .

ODZ: .

Nađimo derivat. Podsjetimo, .

Izjednačimo derivaciju sa nulom. Tačka je uključena u ODZ.

Nađimo intervale konstantnog predznaka derivacije (intervali monotonosti funkcije) (vidi sliku 1).

Rice. 1. Intervali monotonosti za funkciju .

Pogledajmo tačku i saznamo da li je to tačka ekstrema. Dovoljan znak ekstremuma je da derivacija menja predznak kada prolazi kroz tačku. U ovom slučaju derivacija mijenja predznak, što znači da je tačka ekstrema. Pošto derivacija mijenja predznak iz “-” u “+”, onda je ovo minimalna tačka. Nađimo vrijednost funkcije u minimalnoj tački: . Nacrtajmo dijagram (vidi sliku 2).

Fig.2. Ekstremum funkcije .

Na intervalu - funkcija opada, na - funkcija raste, tačka ekstrema je jedinstvena. Najniža vrijednost funkcija prihvaća samo u točki .

Tokom časa smo se osvrnuli na diferencijaciju složenih funkcija, sastavili tabelu i pogledali pravila za diferenciranje složene funkcije, te dali primjer korištenja izvedenice iz prakse pripreme za Jedinstveni državni ispit.

1. Algebra i početak analize, 10. ocjena (iz dva dijela). Tutorial za obrazovne institucije (nivo profila) ed. A. G. Mordkovich. -M.: Mnemosyne, 2009.

2. Algebra i početak analize, 10. ocjena (iz dva dijela). Problematika za obrazovne ustanove (profilni nivo), ur. A. G. Mordkovich. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra i računica za 10. razred ( tutorial za učenike škola i odeljenja sa dubinska studija matematika).-M.: Obrazovanje, 1996.

4. Galitsky M.L., Moshkovich M.M., Shvartsburd S.I. Napredni studij algebre i matematička analiza.-M.: Obrazovanje, 1997.

5. Zbirka zadataka iz matematike za kandidate za visokoškolske ustanove (priredio M.I. Skanavi) - M.: Viša škola, 1992.

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Algebarski simulator.-K.: A.S.K., 1997.

7. Zvavich L.I., Shlyapochnik L.Ya., Chinkina algebra i počeci analize. 8-11 razred: Priručnik za škole i odeljenja sa detaljnim proučavanjem matematike (didaktički materijali) - M.: Drfa, 2002.

8. Sahakyan S.M., Goldman A.M., Denisov D.V. Problemi iz algebre i principi analize (priručnik za učenike 10-11 razreda opšteobrazovnih ustanova) - M.: Prosveščenie, 2003.

9. Karp A.P. Zbirka zadataka iz algebre i principi analize: udžbenik. dodatak za 10-11 razred. sa dubinom studirao Matematika.-M.: Obrazovanje, 2006.

10. Glazer G.I. Istorija matematike u školi. 9-10 razred (priručnik za nastavnike).-M.: Prosveta, 1983

Dodatni web resursi

2. Portal Prirodne nauke ().

Napravite ga kod kuće

br. 42.2, 42.3 (Algebra i počeci analize, 10. razred (iz dva dijela). Zadatak za opšteobrazovne ustanove (profilni nivo) priredio A. G. Mordkovich. - M.: Mnemosyne, 2007.)

Odluči se fizički zadaci ili primjera iz matematike potpuno je nemoguće bez poznavanja derivacije i metoda njenog izračunavanja. Izvod je jedan od najvažnijih koncepata u matematičkoj analizi. Odlučili smo današnji članak posvetiti ovoj temeljnoj temi. Šta je derivat, šta je njegov fizički i geometrijsko značenje kako izračunati derivaciju funkcije? Sva ova pitanja mogu se spojiti u jedno: kako razumjeti derivat?

Geometrijsko i fizičko značenje derivacije

Neka postoji funkcija f(x) , specificirano u određenom intervalu (a, b) . Tačke x i x0 pripadaju ovom intervalu. Kada se x promijeni, mijenja se i sama funkcija. Promjena argumenta - razlika u njegovim vrijednostima x-x0 . Ova razlika je zapisana kao delta x i naziva se povećanje argumenta. Promjena ili povećanje funkcije je razlika između vrijednosti funkcije u dvije točke. Definicija derivata:

Derivat funkcije u tački je granica omjera prirasta funkcije u datoj tački i priraštaja argumenta kada potonji teži nuli.

Inače se može napisati ovako:

Koja je svrha pronalaženja takve granice? A evo šta je to:

derivacija funkcije u tački jednaka je tangenti ugla između ose OX i tangente na graf funkcije u datoj tački.


Fizičko značenje derivat: derivacija putanje u odnosu na vrijeme jednaka je brzini pravolinijskog kretanja.

Zaista, još od školskih dana svi znaju da je brzina poseban put x=f(t) i vrijeme t . Prosječna brzina u određenom vremenskom periodu:

Da biste saznali brzinu kretanja u datom trenutku t0 morate izračunati granicu:

Prvo pravilo: postavite konstantu

Konstanta se može izvaditi iz predznaka derivacije. Štaviše, to se mora uraditi. Kada rješavate primjere iz matematike, uzmite to kao pravilo - Ako možete pojednostaviti izraz, obavezno ga pojednostavite .

Primjer. Izračunajmo derivaciju:

Drugo pravilo: derivacija zbira funkcija

Derivat zbira dviju funkcija jednak je zbroju izvoda ovih funkcija. Isto vrijedi i za derivaciju razlike funkcija.

Nećemo dati dokaz ove teoreme, već ćemo razmotriti praktični primjer.

Pronađite izvod funkcije:

Treće pravilo: derivacija proizvoda funkcija

Derivat proizvoda dvije diferencijabilne funkcije izračunava se po formuli:

Primjer: pronađite derivaciju funkcije:

Rješenje:

Ovdje je važno govoriti o izračunavanju izvoda složenih funkcija. Derivat kompleksne funkcije jednak je proizvodu izvoda ove funkcije u odnosu na međuargument i derivacije međuargumenata u odnosu na nezavisnu varijablu.

U gornjem primjeru nailazimo na izraz:

U ovom slučaju, srednji argument je 8x na peti stepen. Da bismo izračunali derivaciju takvog izraza, prvo izračunamo derivaciju eksterne funkcije u odnosu na međuargument, a zatim pomnožimo sa derivacijom samog međuargumena u odnosu na nezavisnu varijablu.

Četvrto pravilo: derivacija količnika dvije funkcije

Formula za određivanje derivacije kvocijenta dvije funkcije:

Pokušali smo da pričamo o derivatima za lutke od nule. Ova tema nije tako jednostavna kao što se čini, stoga budite upozoreni: u primjerima često postoje zamke, stoga budite oprezni pri izračunavanju izvedenica.

Za sva pitanja o ovoj i drugim temama možete se obratiti studentskoj službi. U kratkom vremenu pomoći ćemo vam da riješite najteži test i shvatite zadatke, čak i ako nikada prije niste radili izvedene proračune.

Vrlo lako za pamćenje.

Pa, da ne idemo daleko, pogledajmo to odmah inverzna funkcija. Koja je funkcija inverzna eksponencijalna funkcija? logaritam:

U našem slučaju, osnova je broj:

Takav logaritam (tj. logaritam s bazom) naziva se „prirodnim“, a za njega koristimo posebnu notaciju: umjesto toga pišemo.

Čemu je to jednako? Naravno, .

Izvod prirodnog logaritma je također vrlo jednostavan:

primjeri:

  1. Pronađite izvod funkcije.
  2. Što je derivacija funkcije?

odgovori: Izlagač i prirodni logaritam- funkcije su jedinstveno jednostavne u smislu izvoda. Eksponencijalne i logaritamske funkcije s bilo kojom drugom bazom imat će drugačiji izvod, koji ćemo analizirati kasnije, nakon što prođemo kroz pravila diferencijacije.

Pravila diferencijacije

Pravila čega? Opet novi mandat, opet?!...

Diferencijacija je proces pronalaženja derivata.

To je sve. Kako još jednom riječju nazvati ovaj proces? Nije derivacija... Matematičari diferencijal nazivaju istim prirastom funkcije u. Ovaj izraz dolazi od latinskog differentia - razlika. Evo.

Prilikom izvođenja svih ovih pravila, koristit ćemo dvije funkcije, na primjer, i. Također će nam trebati formule za njihove priraštaje:

Postoji ukupno 5 pravila.

Konstanta se izvlači iz predznaka derivacije.

Ako - neki konstantni broj (konstanta), onda.

Očigledno, ovo pravilo radi i za razliku: .

Dokažimo to. Neka bude, ili jednostavnije.

Primjeri.

Pronađite derivate funkcija:

  1. u jednom trenutku;
  2. u jednom trenutku;
  3. u jednom trenutku;
  4. u tački.

rješenja:

  1. (izvod je isti u svim tačkama, pošto je linearna funkcija, sjećate se?);

Derivat proizvoda

Ovdje je sve slično: uvedemo novu funkciju i pronađemo njen prirast:

Derivat:

primjeri:

  1. Naći izvode funkcija i;
  2. Pronađite izvod funkcije u tački.

rješenja:

Derivat eksponencijalne funkcije

Sada je vaše znanje dovoljno da naučite kako pronaći derivaciju bilo koje eksponencijalne funkcije, a ne samo eksponenata (jeste li već zaboravili šta je to?).

Dakle, gdje je neki broj.

Već znamo derivaciju funkcije, pa pokušajmo svesti našu funkciju na novu bazu:

Za ovo ćemo koristiti jednostavno pravilo: . onda:

Pa, upalilo je. Sada pokušajte pronaći izvod i ne zaboravite da je ova funkcija složena.

Desilo se?

Evo, uvjerite se sami:

Ispostavilo se da je formula vrlo slična izvedenici eksponenta: onakva kakva je bila, ostala je ista, pojavio se samo faktor, koji je samo broj, ali ne i varijabla.

primjeri:
Pronađite derivate funkcija:

odgovori:

Ovo je samo broj koji se ne može izračunati bez kalkulatora, odnosno ne može se više zapisati u jednostavnom obliku. Stoga ga ostavljamo u ovom obliku u odgovoru.

    Imajte na umu da je ovdje kvocijent dvije funkcije, pa primjenjujemo odgovarajuće pravilo diferencijacije:

    U ovom primjeru, proizvod dvije funkcije:

Derivat logaritamske funkcije

Ovdje je slično: već znate derivaciju prirodnog logaritma:

Stoga, da biste pronašli proizvoljan logaritam s različitom bazom, na primjer:

Ovaj logaritam moramo svesti na bazu. Kako se mijenja baza logaritma? Nadam se da se sjećate ove formule:

Tek sada ćemo umjesto toga napisati:

Imenilac je jednostavno konstanta (konstantan broj, bez varijable). Izvod se dobija vrlo jednostavno:

Derivati ​​eksponencijalnog i logaritamske funkcije gotovo se nikada ne pojavljuju na Jedinstvenom državnom ispitu, ali ne bi škodilo da ih poznajete.

Derivat kompleksne funkcije.

Šta je "složena funkcija"? Ne, ovo nije logaritam, niti arktangens. Ove funkcije mogu biti teško razumljive (mada ako vam je logaritam težak, pročitajte temu “Logaritmi” i biće vam dobro), ali sa matematičke tačke gledišta, riječ “složeno” ne znači “teško”.

Zamislite malu pokretnu traku: dvoje ljudi sjede i rade neke radnje s nekim predmetima. Na primjer, prvi umota čokoladicu u omot, a drugi je veže trakom. Rezultat je kompozitni predmet: čokoladica umotana i vezana vrpcom. Da biste pojeli čokoladicu, morate učiniti obrnutim koracima obrnutim redoslijedom.

Napravimo sličan matematički cevovod: prvo ćemo pronaći kosinus broja, a zatim kvadrirati rezultirajući broj. Dakle, dat nam je broj (čokolada), ja pronađem njegov kosinus (omotač), a onda kvadriraš ono što sam dobio (zaveži ga vrpcom). Šta se desilo? Funkcija. Ovo je primjer složene funkcije: kada, da bismo pronašli njenu vrijednost, izvršimo prvu akciju direktno s promjenljivom, a zatim drugu akciju s onim što je rezultat prve.

Drugim riječima, složena funkcija je funkcija čiji je argument druga funkcija: .

Za naš primjer, .

Lako možemo napraviti iste korake obrnutim redoslijedom: prvo ga kvadriraš, a ja onda tražim kosinus rezultirajućeg broja: . Lako je pretpostaviti da će rezultat gotovo uvijek biti drugačiji. Važna karakteristika složenih funkcija: kada se redoslijed radnji promijeni, funkcija se mijenja.

Drugi primjer: (ista stvar). .

Akcija koju radimo posljednja će biti pozvana "vanjska" funkcija, a radnja izvedena prva - prema tome "interne" funkcije(ovo su neformalni nazivi, koristim ih samo da objasnim gradivo jednostavnim jezikom).

Pokušajte sami odrediti koja je funkcija vanjska, a koja unutrašnja:

odgovori: Razdvajanje unutrašnjih i vanjskih funkcija vrlo je slično mijenjanju varijabli: na primjer, u funkciji

  1. Koju akciju ćemo prvo izvesti? Prvo izračunajmo sinus, pa ga tek onda kockiraj. To znači da je to interna funkcija, ali vanjska.
    A originalna funkcija je njihov sastav: .
  2. Interni: ; eksterno: .
    Ispitivanje: .
  3. Interni: ; eksterno: .
    Ispitivanje: .
  4. Interni: ; eksterno: .
    Ispitivanje: .
  5. Interni: ; eksterno: .
    Ispitivanje: .

Mijenjamo varijable i dobijamo funkciju.

Pa, sada ćemo izvaditi našu čokoladicu i potražiti derivat. Procedura je uvijek obrnuta: prvo tražimo izvod vanjske funkcije, a zatim rezultat množimo s izvodom unutrašnje funkcije. U odnosu na originalni primjer, to izgleda ovako:

Drugi primjer:

Dakle, hajde da konačno formulišemo zvanično pravilo:

Algoritam za pronalaženje derivacije kompleksne funkcije:

Čini se jednostavno, zar ne?

Provjerimo na primjerima:

rješenja:

1) Interni: ;

Vanjski: ;

2) Interni: ;

(Samo nemojte pokušavati da ga isečete do sada! Ništa ne izlazi ispod kosinusa, sjećate se?)

3) Interni: ;

Vanjski: ;

Odmah je jasno da se radi o složenoj funkciji na tri nivoa: na kraju krajeva, ovo je već složena funkcija sama po sebi, a iz nje izvlačimo i korijen, odnosno izvodimo treću radnju (stavite čokoladu u omot i sa vrpcom u aktovci). Ali nema razloga za strah: i dalje ćemo „raspakovati“ ovu funkciju istim redoslijedom kao i obično: od kraja.

Odnosno, prvo razlikujemo korijen, zatim kosinus, pa tek onda izraz u zagradama. A onda sve to pomnožimo.

U takvim slučajevima, zgodno je numerisati radnje. Odnosno, zamislimo šta znamo. Kojim redoslijedom ćemo izvršiti radnje za izračunavanje vrijednosti ovog izraza? Pogledajmo primjer:

Što se radnja izvrši kasnije, to će odgovarajuća funkcija biti „spoljašnja“. Redoslijed radnji je isti kao i prije:

Ovdje je gniježđenje općenito na 4 nivoa. Hajde da odredimo pravac akcije.

1. Radikalni izraz. .

2. Root. .

3. Sinus. .

4. Kvadrat. .

5. Stavljajući sve zajedno:

DERIVAT. UKRATKO O GLAVNIM STVARIMA

Derivat funkcije- omjer povećanja funkcije i inkrementa argumenta za beskonačno mali prirast argumenta:

Osnovni derivati:

Pravila diferencijacije:

Konstanta je uzeta iz predznaka derivacije:

Derivat sume:

Derivat proizvoda:

Derivat količnika:

Derivat kompleksne funkcije:

Algoritam za pronalaženje derivacije kompleksne funkcije:

  1. Definiramo “internu” funkciju i nalazimo njen izvod.
  2. Definiramo “vanjsku” funkciju i nalazimo njen izvod.
  3. Množimo rezultate prve i druge tačke.

Ako slijedite definiciju, onda je derivacija funkcije u tački granica omjera prirasta funkcije Δ y na prirast argumenta Δ x:

Čini se da je sve jasno. Ali pokušajte koristiti ovu formulu da izračunate, recimo, derivaciju funkcije f(x) = x 2 + (2x+ 3) · e x grijeh x. Ako sve radite po definiciji, onda ćete nakon nekoliko stranica proračuna jednostavno zaspati. Stoga postoje jednostavniji i efikasniji načini.

Za početak, napominjemo da iz čitavog niza funkcija možemo razlikovati takozvane elementarne funkcije. To je relativno jednostavni izrazi, čiji su derivati ​​odavno izračunati i navedeni u tabeli. Takve funkcije je prilično lako zapamtiti - zajedno sa njihovim derivatima.

Derivati ​​elementarnih funkcija

Osnovne funkcije su sve one navedene u nastavku. Izvodi ovih funkcija moraju se znati napamet. Štaviše, nije ih uopće teško zapamtiti - zato su elementarni.

Dakle, derivati ​​elementarnih funkcija:

Ime Funkcija Derivat
Konstantno f(x) = C, CR 0 (da, nula!)
Potencija sa racionalnim eksponentom f(x) = x n n · x n − 1
Sinus f(x) = grijeh x cos x
Kosinus f(x) = cos x −sin x(minus sinus)
Tangenta f(x) = tg x 1/cos 2 x
Kotangens f(x) = ctg x − 1/grijeh 2 x
Prirodni logaritam f(x) = log x 1/x
Proizvoljni logaritam f(x) = log a x 1/(x ln a)
Eksponencijalna funkcija f(x) = e x e x(ništa se nije promijenilo)

Ako se elementarna funkcija pomnoži sa proizvoljnom konstantom, onda se derivacija nove funkcije također lako izračunava:

(C · f)’ = C · f ’.

Generalno, konstante se mogu izvući iz predznaka izvoda. Na primjer:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

Očigledno, elementarne funkcije se mogu dodavati jedna drugoj, množiti, dijeliti - i još mnogo toga. Tako će se pojaviti nove funkcije, više ne posebno elementarne, ali i diferencirane po određenim pravilima. Ova pravila su razmotrena u nastavku.

Derivat zbira i razlike

Neka su funkcije zadane f(x) I g(x), čiji su nam derivati ​​poznati. Na primjer, možete uzeti elementarne funkcije o kojima smo gore govorili. Tada možete pronaći derivaciju zbira i razlike ovih funkcija:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Dakle, derivacija zbira (razlike) dvije funkcije jednaka je zbiru (razlici) izvoda. Možda ima više termina. Na primjer, ( f + g + h)’ = f ’ + g ’ + h ’.

Strogo govoreći, u algebri ne postoji koncept „oduzimanja“. Postoji koncept „negativnog elementa“. Stoga razlika fg može se prepisati kao zbir f+ (−1) g, a onda ostaje samo jedna formula - derivacija sume.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Funkcija f(x) je zbir dvije elementarne funkcije, dakle:

f ’(x) = (x 2 + sin x)’ = (x 2)’ + (grijeh x)’ = 2x+ cos x;

Slično razmišljamo o funkciji g(x). Samo što već postoje tri pojma (sa stanovišta algebre):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

odgovor:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Derivat proizvoda

Matematika je logička nauka, tako da mnogi ljudi vjeruju da ako je derivacija sume jednaka zbroju izvoda, onda derivacija proizvoda štrajk">jednako umnošku derivata. Ali jebi se! Derivat proizvoda se izračunava po potpuno drugoj formuli. Naime:

(f · g) ’ = f ’ · g + f · g

Formula je jednostavna, ali se često zaboravlja. I ne samo školarci, već i studenti. Rezultat su pogrešno riješeni problemi.

Zadatak. Pronađite derivate funkcija: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Funkcija f(x) je proizvod dvije elementarne funkcije, tako da je sve jednostavno:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (− sin x) = x 2 (3cos xx grijeh x)

Funkcija g(x) prvi faktor je malo komplikovaniji, ali opšta šema ovo se ne menja. Očigledno, prvi faktor funkcije g(x) je polinom i njegov izvod je izvod zbira. Imamo:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)’ · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

odgovor:
f ’(x) = x 2 (3cos xx grijeh x);
g ’(x) = x(x+ 9) · e x .

Imajte na umu da na poslednji korak derivat je faktorizovan. Formalno, to ne treba da se radi, ali većina derivata se ne izračunavaju sami, već da se ispita funkcija. To znači da će se dalje derivacija izjednačiti sa nulom, odrediti njeni predznaci i tako dalje. Za takav slučaj, bolje je imati izraz faktoriziran.

Ako postoje dvije funkcije f(x) I g(x), i g(x) ≠ 0 na skupu koji nas zanima, možemo definirati novu funkciju h(x) = f(x)/g(x). Za takvu funkciju možete pronaći i izvod:

Nije slaba, ha? Odakle minus? Zašto g 2? I ovako! Ovo je jedna od najsloženijih formula - ne možete je shvatiti bez boce. Stoga ga je bolje proučavati na konkretnim primjerima.

Zadatak. Pronađite derivate funkcija:

Brojnik i nazivnik svakog razlomka sadrže elementarne funkcije, tako da sve što nam treba je formula za izvod količnika:


Prema tradiciji, hajde da faktorizujemo brojilac - ovo će uvelike pojednostaviti odgovor:

Složena funkcija nije nužno formula duga pola kilometra. Na primjer, dovoljno je uzeti funkciju f(x) = grijeh x i zamijenite varijablu x, recimo, na x 2 + ln x. To će uspjeti f(x) = grijeh ( x 2 + ln x) - ovo je složena funkcija. Takođe ima derivat, ali ga neće biti moguće pronaći koristeći pravila o kojima smo gore govorili.

Sta da radim? U takvim slučajevima, zamjena varijable i formule za izvod složene funkcije pomaže:

f ’(x) = f ’(t) · t', Ako x je zamijenjen sa t(x).

U pravilu je situacija s razumijevanjem ove formule još tužnija nego s izvodom količnika. Stoga je bolje i to objasniti na konkretnim primjerima, sa detaljnim opisom svakog koraka.

Zadatak. Pronađite derivate funkcija: f(x) = e 2x + 3 ; g(x) = grijeh ( x 2 + ln x)

Imajte na umu da ako je u funkciji f(x) umjesto izraza 2 x+ 3 će biti lako x, tada dobijamo elementarnu funkciju f(x) = e x. Stoga pravimo zamjenu: neka 2 x + 3 = t, f(x) = f(t) = e t. Tražimo derivat kompleksne funkcije koristeći formulu:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

A sada - pažnja! Vršimo obrnutu zamjenu: t = 2x+ 3. Dobijamo:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Pogledajmo sada funkciju g(x). Očigledno ga treba zamijeniti x 2 + ln x = t. Imamo:

g ’(x) = g ’(t) · t’ = (grijeh t)’ · t’ = cos t · t

Obrnuta zamjena: t = x 2 + ln x. onda:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

To je sve! Kao što se može vidjeti iz posljednjeg izraza, cijeli problem je sveden na izračunavanje sume derivata.

odgovor:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Vrlo često u svojim lekcijama umjesto izraza „derivat“ koristim riječ „prime“. Na primjer, hod zbroja jednak je zbroju poteza. Je li to jasnije? Pa, to je dobro.

Dakle, izračunavanje derivata se svodi na oslobađanje od tih istih poteza prema gore navedenim pravilima. As posljednji primjer Vratimo se deriviranoj potenciji sa racionalnim eksponentom:

(x n)’ = n · x n − 1

Malo ljudi to zna u ulozi n može delovati razlomak broj. Na primjer, korijen je x 0.5. Šta ako postoji nešto fensi ispod korijena? Opet, rezultat će biti složena funkcija - oni vole davati takve konstrukcije testovi i ispite.

Zadatak. Pronađite izvod funkcije:

Prvo, prepišimo korijen kao stepen s racionalnim eksponentom:

f(x) = (x 2 + 8x − 7) 0,5 .

Sada pravimo zamjenu: neka x 2 + 8x − 7 = t. Izvod pronalazimo pomoću formule:

f ’(x) = f ’(t) · t ’ = (t 0,5)’ · t’ = 0,5 · t−0,5 · t ’.

Uradimo obrnutu zamjenu: t = x 2 + 8x− 7. Imamo:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)’ = 0,5 · (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Konačno, povratak korijenima: