Slijedi iz njegove definicije. I tako logaritam broja b na osnovu A definira se kao eksponent na koji se broj mora podići a da dobijem broj b(logaritam postoji samo za pozitivne brojeve).

Iz ove formulacije proizilazi da je proračun x=log a b, je ekvivalentno rješavanju jednačine a x =b. Na primjer, log 2 8 = 3 jer 8 = 2 3 . Formulacija logaritma omogućava da se opravda ako b=a c, zatim logaritam broja b na osnovu a jednaki With. Takođe je jasno da je tema logaritama usko povezana sa temom stepena broja.

Sa logaritmima, kao i sa svakim brojevima, možete operacije sabiranja, oduzimanja i transformisati na svaki mogući način. Ali zbog činjenice da logaritmi nisu sasvim obični brojevi, ovdje vrijede njihova posebna pravila, koja se nazivaju glavna svojstva.

Sabiranje i oduzimanje logaritama.

Uzmimo dva logaritma sa istim osnovama: log a x I log a y. Tada je moguće izvršiti operacije sabiranja i oduzimanja:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a(x 1 . x 2 . x 3 ... x k) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k.

Od logaritamski kvocijent teorema Može se dobiti još jedno svojstvo logaritma. Opšte je poznato da log a 1= 0, dakle

log a 1 /b=log a 1 - log a b= -log a b.

To znači da postoji jednakost:

log a 1 / b = - log a b.

Logaritmi dva recipročna broja iz istog razloga će se međusobno razlikovati isključivo po znaku. dakle:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.


Nastavljamo da proučavamo logaritme. U ovom članku ćemo govoriti o izračunavanje logaritama, ovaj proces se zove logaritam. Prvo ćemo razumjeti izračunavanje logaritama po definiciji. Dalje, pogledajmo kako se vrijednosti logaritama pronalaze pomoću njihovih svojstava. Nakon toga ćemo se fokusirati na izračunavanje logaritama kroz početno navedene vrijednosti drugih logaritama. Na kraju, hajde da naučimo kako koristiti logaritamske tablice. Cijela teorija je opskrbljena primjerima sa detaljnim rješenjima.

Navigacija po stranici.

Izračunavanje logaritama po definiciji

U najjednostavnijim slučajevima moguće je izvesti prilično brzo i lako nalaženje logaritma po definiciji. Pogledajmo bliže kako se ovaj proces odvija.

Njegova suština je da broj b predstavi u obliku a c, iz kojeg je, po definiciji logaritma, broj c vrijednost logaritma. To jest, po definiciji, sljedeći lanac jednakosti odgovara pronalaženju logaritma: log a b=log a a c =c.

Dakle, izračunavanje logaritma po definiciji se svodi na pronalaženje broja c takvog da je a c = b, a sam broj c je željena vrijednost logaritma.

Uzimajući u obzir informacije iz prethodnih paragrafa, kada je broj pod znakom logaritma zadan određenom snagom baze logaritma, možete odmah naznačiti čemu je logaritam jednak - jednak je eksponentu. Pokažimo rješenja na primjerima.

Primjer.

Naći log 2 2 −3 i izračunati prirodni logaritam broja e 5,3.

Rješenje.

Definicija logaritma nam omogućava da odmah kažemo da je log 2 2 −3 =−3. Zaista, broj pod predznakom logaritma jednak je bazi 2 na stepen −3.

Slično, nalazimo drugi logaritam: lne 5.3 =5.3.

odgovor:

log 2 2 −3 =−3 i lne 5,3 =5,3.

Ako broj b ispod znaka logaritma nije naveden kao stepen osnove logaritma, onda morate pažljivo pogledati da li je moguće doći do prikaza broja b u obliku a c. Često je ovaj prikaz prilično očigledan, posebno kada je broj pod znakom logaritma jednak bazi na stepen od 1, ili 2, ili 3, ...

Primjer.

Izračunajte logaritme log 5 25 , i .

Rješenje.

Lako je vidjeti da je 25=5 2, ovo vam omogućava da izračunate prvi logaritam: log 5 25=log 5 5 2 =2.

Pređimo na izračunavanje drugog logaritma. Broj se može predstaviti kao stepen 7: (pogledajte ako je potrebno). dakle, .

Prepišimo treći logaritam u sljedećem obliku. Sada to možete vidjeti , iz čega zaključujemo da . Dakle, po definiciji logaritma .

Ukratko, rješenje bi se moglo napisati na sljedeći način: .

odgovor:

log 5 25=2 , i .

Kada je pod znakom logaritma dovoljno veliki prirodni broj, onda ne bi škodilo da ga uračunate u osnovne faktore. Često pomaže da se takav broj predstavi kao neki stepen baze logaritma i da se stoga izračuna ovaj logaritam po definiciji.

Primjer.

Pronađite vrijednost logaritma.

Rješenje.

Neka svojstva logaritama vam omogućavaju da odmah odredite vrijednost logaritama. Ova svojstva uključuju svojstvo logaritma jedinice i svojstvo logaritma broja jednakog bazi: log 1 1=log a a 0 =0 i log a a=log a a 1 =1. Odnosno, kada se pod znakom logaritma nalazi broj 1 ili broj a jednak osnovici logaritma, tada su u ovim slučajevima logaritmi jednaki 0 ​​i 1, respektivno.

Primjer.

Čemu su jednaki logaritmi i log10?

Rješenje.

Budući da , onda iz definicije logaritma slijedi .

U drugom primjeru, broj 10 pod predznakom logaritma se poklapa sa njegovom bazom, pa je decimalni logaritam od deset jednak jedan, odnosno lg10=lg10 1 =1.

odgovor:

I lg10=1 .

Imajte na umu da izračunavanje logaritama po definiciji (o čemu smo govorili u prethodnom pasusu) podrazumijeva korištenje jednakosti log a a p =p, što je jedno od svojstava logaritama.

U praksi, kada se broj pod znakom logaritma i baza logaritma lako mogu predstaviti kao stepen određenog broja, vrlo je zgodno koristiti formulu , što odgovara jednom od svojstava logaritma. Pogledajmo primjer pronalaženja logaritma koji ilustruje upotrebu ove formule.

Primjer.

Izračunajte logaritam.

Rješenje.

odgovor:

.

Svojstva logaritama koja nisu pomenuta se takođe koriste u proračunima, ali ćemo o tome govoriti u narednim paragrafima.

Pronalaženje logaritama kroz druge poznate logaritme

Informacije u ovom odlomku nastavljaju na temu korištenja svojstava logaritama prilikom njihovog izračunavanja. Ali ovdje je glavna razlika u tome što se svojstva logaritma koriste za izražavanje originalnog logaritma u terminima drugog logaritma čija je vrijednost poznata. Dajemo primjer za pojašnjenje. Recimo da znamo da je log 2 3≈1,584963, onda možemo pronaći, na primjer, log 2 6 tako što ćemo napraviti malu transformaciju koristeći svojstva logaritma: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

U gornjem primjeru bilo nam je dovoljno koristiti svojstvo logaritma proizvoda. Međutim, mnogo češće je potrebno koristiti širi arsenal svojstava logaritama da bi se kroz zadane izračunao originalni logaritam.

Primjer.

Izračunajte logaritam od 27 do baze 60 ako znate da je log 60 2=a i log 60 5=b.

Rješenje.

Dakle, moramo pronaći log 60 27 . Lako je vidjeti da je 27 = 3 3 , a originalni logaritam, zbog svojstva logaritma stepena, može se prepisati kao 3·log 60 3 .

Sada da vidimo kako izraziti log 60 3 u terminima poznatih logaritama. Svojstvo logaritma broja jednakog bazi omogućava nam da zapišemo log jednakosti 60 60=1. S druge strane, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . dakle, 2 log 60 2+log 60 3+log 60 5=1. dakle, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Konačno, izračunavamo originalni logaritam: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

odgovor:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Odvojeno, vrijedi spomenuti značenje formule za prijelaz na novu bazu logaritma oblika. Omogućuje vam prelazak s logaritma s bilo kojom bazom na logaritme s određenom bazom, čije su vrijednosti poznate ili ih je moguće pronaći. Obično se iz originalnog logaritma, koristeći prelaznu formulu, prelaze na logaritme u jednoj od baza 2, e ili 10, jer za ove baze postoje tablice logaritama koje omogućavaju da se njihove vrijednosti izračunaju s određenim stupnjem tačnost. U sljedećem paragrafu ćemo pokazati kako se to radi.

Logaritamske tablice i njihova upotreba

Za približno izračunavanje vrijednosti logaritma mogu se koristiti logaritamske tablice. Tabela logaritama baze 2 koja se najčešće koristi je tabela prirodni logaritmi i tablicu decimalnih logaritama. Kada radite u decimalnom brojevnom sistemu, zgodno je koristiti tablicu logaritama na bazi deset. Uz njegovu pomoć naučit ćemo pronaći vrijednosti logaritama.









Prikazana tablica vam omogućava da pronađete vrijednosti decimalnih logaritama brojeva od 1.000 do 9.999 (sa tri decimalna mjesta) s točnošću od jedne desetohiljaditinke. Analizirat ćemo princip pronalaženja vrijednosti logaritma pomoću tablice decimalnih logaritama na konkretnom primjeru - ovako je jasnije. Nađimo log1.256.

U lijevom stupcu tablice decimalnih logaritama nalazimo prve dvije cifre broja 1.256, odnosno nalazimo 1.2 (ovaj broj je zaokružen plavom bojom radi jasnoće). Treća znamenka broja 1.256 (cifra 5) nalazi se u prvom ili posljednjem redu lijevo od dvostrukog reda (ovaj broj je zaokružen crvenom bojom). Četvrta znamenka originalnog broja 1.256 (cifra 6) nalazi se u prvom ili posljednjem redu desno od dvostrukog reda (ovaj broj je zaokružen zelenom linijom). Sada nalazimo brojeve u ćelijama tabele logaritama na preseku označenog reda i označenih kolona (ovi brojevi su istaknuti narandžasta). Zbir označenih brojeva daje željenu vrijednost decimalni logaritam tačno na četvrtu decimalu, tj. log1.236≈0.0969+0.0021=0.0990.

Da li je moguće, koristeći gornju tabelu, pronaći vrijednosti decimalnih logaritama brojeva koji imaju više od tri znamenke iza decimalnog zareza, kao i onih koji izlaze iz raspona od 1 do 9,999? Da, možeš. Pokažimo kako se to radi na primjeru.

Izračunajmo lg102.76332. Prvo treba da zapišete broj u standardnom obliku: 102,76332=1,0276332·10 2. Nakon ovoga, mantisu treba zaokružiti na treću decimalu, imamo 1.0276332 10 2 ≈1.028 10 2, dok je originalni decimalni logaritam približno jednak logaritmu rezultirajućeg broja, odnosno uzimamo log102.76332≈lg1.028·10 2. Sada primjenjujemo svojstva logaritma: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. Konačno, vrijednost logaritma lg1.028 nalazimo iz tabele decimalnih logaritama lg1.028≈0.0086+0.0034=0.012. Kao rezultat, cijeli proces izračunavanja logaritma izgleda ovako: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

U zaključku, vrijedno je napomenuti da pomoću tablice decimalnih logaritama možete izračunati približnu vrijednost bilo kojeg logaritma. Da biste to učinili, dovoljno je koristiti formulu prijelaza za prelazak na decimalne logaritme, pronaći njihove vrijednosti u tablici i izvršiti preostale proračune.

Na primjer, izračunajmo log 2 3 . Prema formuli za prijelaz na novu bazu logaritma, imamo . Iz tabele decimalnih logaritama nalazimo log3≈0,4771 i log2≈0,3010. dakle, .

Bibliografija.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. i dr. Algebra i počeci analize: Udžbenik za 10. - 11. razred opšteobrazovnih ustanova.
  • Gusev V.A., Mordkovich A.G. Matematika (priručnik za one koji upisuju tehničke škole).

Logaritam broja b (b > 0) na osnovu a (a > 0, a ≠ 1)– eksponent na koji se broj a mora podići da bi se dobio b.

Logaritam od 10 od b može se zapisati kao dnevnik(b), a logaritam bazi e (prirodni logaritam) je ln(b).

Često se koristi pri rješavanju problema s logaritmima:

Svojstva logaritama

Postoje četiri glavna svojstva logaritama.

Neka je a > 0, a ≠ 1, x > 0 i y > 0.

Svojstvo 1. Logaritam proizvoda

Logaritam proizvoda jednak zbiru logaritama:

log a (x ⋅ y) = log a x + log a y

Svojstvo 2. Logaritam količnika

Logaritam količnika jednaka razlici logaritama:

log a (x / y) = log a x – log a y

Svojstvo 3. Logaritam stepena

Logaritam stepena jednak proizvodu stepena i logaritma:

Ako je osnova logaritma u stepenu, onda se primjenjuje druga formula:

Svojstvo 4. Logaritam korijena

Ovo svojstvo se može dobiti iz svojstva logaritma stepena, jer je n-ti korijen stepena jednak stepenu 1/n:

Formula za pretvaranje iz logaritma u jednoj bazi u logaritam u drugoj bazi

Ova formula se također često koristi pri rješavanju različitih zadataka na logaritmima:

poseban slučaj:

Poređenje logaritama (nejednakosti)

Neka imamo 2 funkcije f(x) i g(x) pod logaritmima sa istim bazama i između njih postoji znak nejednakosti:

Da biste ih uporedili, prvo morate pogledati bazu logaritma a:

  • Ako je a > 0, onda je f(x) > g(x) > 0
  • Ako je 0< a < 1, то 0 < f(x) < g(x)

Kako riješiti probleme s logaritmima: primjeri

Problemi sa logaritmima uključeni u Jedinstveni državni ispit iz matematike za 11. razred u zadatku 5 i zadatku 7, zadatke sa rješenjima možete pronaći na našoj web stranici u odgovarajućim odjeljcima. Također, zadaci sa logaritmima nalaze se u banci matematičkih zadataka. Sve primjere možete pronaći pretraživanjem stranice.

Šta je logaritam

Logaritmi su oduvijek razmatrani kompleksna tema V školski kurs matematike. Ima ih mnogo različite definicije logaritam, ali iz nekog razloga većina udžbenika koristi najsloženije i najneuspješnije od njih.

Logaritam ćemo definirati jednostavno i jasno. Da bismo to uradili, napravimo tabelu:

Dakle, imamo moći dvojke.

Logaritmi - svojstva, formule, kako riješiti

Ako uzmete broj iz donje linije, lako ćete pronaći stepen na koji ćete morati podići dva da biste dobili ovaj broj. Na primjer, da biste dobili 16, trebate podići dva na četvrti stepen. A da biste dobili 64, trebate podići dva na šesti stepen. To se vidi iz tabele.

A sada - zapravo, definicija logaritma:

baza a argumenta x je stepen na koji se broj a mora podići da bi se dobio broj x.

Oznaka: log a x = b, gdje je a baza, x je argument, b je ono čemu je logaritam zapravo jednak.

Na primjer, 2 3 = 8 ⇒log 2 8 = 3 (osnovni 2 logaritam od 8 je tri jer je 2 3 = 8). Sa istim uspjehom, log 2 64 = 6, budući da je 2 6 = 64.

Operacija pronalaženja logaritma broja prema datoj bazi se zove. Dakle, dodajmo novi red u našu tabelu:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Nažalost, nisu svi logaritmi izračunati tako lako. Na primjer, pokušajte pronaći log 2 5. Broj 5 nije u tabeli, ali logika nalaže da će logaritam ležati negdje u intervalu. Jer 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Takvi brojevi se nazivaju iracionalni: brojevi iza decimalnog zareza mogu se pisati beskonačno i nikada se ne ponavljaju. Ako se ispostavi da je logaritam iracionalan, bolje je ostaviti ga tako: log 2 5, log 3 8, log 5 100.

Važno je shvatiti da je logaritam izraz sa dvije varijable (osnovom i argumentom). U početku, mnogi ljudi brkaju gdje je osnova, a gdje argument. Da biste izbjegli dosadne nesporazume, samo pogledajte sliku:

Pred nama nije ništa drugo do definicija logaritma. Zapamtite: logaritam je stepen, u koji se baza mora ugraditi da bi se dobio argument. To je baza koja je podignuta na snagu - na slici je istaknuta crvenom bojom. Ispostavilo se da je baza uvijek na dnu! Svojim učenicima govorim ovo divno pravilo već na prvoj lekciji - i ne nastaje zabuna.

Kako brojati logaritme

Shvatili smo definiciju - preostaje samo da naučimo kako računati logaritme, tj. riješite se znaka "log". Za početak, napominjemo da iz definicije proizlaze dvije važne činjenice:

  1. Argument i baza uvijek moraju biti veći od nule. Ovo proizilazi iz definicije stepena racionalni indikator, na koji se svodi definicija logaritma.
  2. Baza mora biti različita od jedinice, jer jedan u bilo kom stepenu i dalje ostaje jedan. Zbog toga je besmisleno pitanje „na koju snagu se mora podići da bi se dobilo dva“. Ne postoji takva diploma!

Takva ograničenja se nazivaju raspon prihvatljivih vrijednosti(ODZ). Ispada da ODZ logaritma izgleda ovako: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Imajte na umu da nema ograničenja za broj b (vrijednost logaritma). Na primjer, logaritam može biti negativan: log 2 0,5 = −1, jer 0,5 = 2 −1.

Međutim, sada razmatramo samo numeričke izraze, gdje nije potrebno znati VA logaritma. Autori problema su već uzeli u obzir sva ograničenja. Ali kada logaritamske jednačine i nejednakosti uđu u igru, DL zahtjevi će postati obavezni. Uostalom, osnova i argument mogu sadržavati vrlo jake konstrukcije koje nužno ne odgovaraju gornjim ograničenjima.

Sada razmotrimo opšta šema izračunavanje logaritama. Sastoji se od tri koraka:

  1. Izrazite bazu a i argument x kao stepen sa minimalnom mogućom bazom većom od jedan. Usput je bolje da se riješite decimala;
  2. Riješite jednačinu za varijablu b: x = a b ;
  3. Rezultirajući broj b će biti odgovor.

To je sve! Ako se pokaže da je logaritam iracionalan, to će biti vidljivo već u prvom koraku. Zahtjev da baza bude veća od jedan je vrlo važan: to smanjuje vjerovatnoću greške i uvelike pojednostavljuje proračune. Isto sa decimale: ako ih odmah pretvorite u obične, bit će mnogo manje grešaka.

Pogledajmo kako ova shema funkcionira na konkretnim primjerima:

Zadatak. Izračunajte logaritam: log 5 25

  1. Zamislimo bazu i argument kao stepen petice: 5 = 5 1 ; 25 = 5 2 ;
  2. Kreirajmo i riješimo jednačinu:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Dobili smo odgovor: 2.

Zadatak. Izračunaj logaritam:

Zadatak. Izračunajte logaritam: log 4 64

  1. Zamislimo bazu i argument kao stepen dvojke: 4 = 2 2 ; 64 = 2 6 ;
  2. Kreirajmo i riješimo jednačinu:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Dobili smo odgovor: 3.

Zadatak. Izračunajte logaritam: log 16 1

  1. Zamislimo bazu i argument kao stepen dvojke: 16 = 2 4 ; 1 = 2 0 ;
  2. Kreirajmo i riješimo jednačinu:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Dobili smo odgovor: 0.

Zadatak. Izračunajte logaritam: log 7 14

  1. Zamislimo bazu i argument kao stepen od sedam: 7 = 7 1 ; 14 se ne može predstaviti kao stepen sedam, jer 7 1< 14 < 7 2 ;
  2. Iz prethodnog stava proizilazi da se logaritam ne računa;
  3. Odgovor je bez promjene: dnevnik 7 14.

Mala napomena za posljednji primjer. Kako možete biti sigurni da broj nije tačan stepen drugog broja? Vrlo je jednostavno - samo ga uračunajte u osnovne faktore. Ako ekspanzija ima najmanje dva različita faktora, broj nije točna snaga.

Zadatak. Saznajte da li su brojevi tačni potenci: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tačan stepen, jer postoji samo jedan množitelj;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nije tačna snaga, jer postoje dva faktora: 3 i 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tačan stepen;
35 = 7 · 5 - opet nije tačna snaga;
14 = 7 · 2 - opet nije tačan stepen;

Imajte na umu da su sami prosti brojevi uvijek tačni potenci sami za sebe.

Decimalni logaritam

Neki logaritmi su toliko uobičajeni da imaju poseban naziv i simbol.

argumenta x je logaritam bazi 10, tj. Potencija na koju se broj 10 mora podići da bi se dobio broj x. Oznaka: lg x.

Na primjer, log 10 = 1; LG 100 = 2; lg 1000 = 3 - itd.

Od sada, kada se u udžbeniku pojavi fraza poput „Pronađi lg 0,01“, znajte da ovo nije greška u kucanju. Ovo je decimalni logaritam. Međutim, ako niste upoznati s ovom notacijom, uvijek je možete prepisati:
log x = log 10 x

Sve što vrijedi za obične logaritme vrijedi i za decimalne logaritme.

Prirodni logaritam

Postoji još jedan logaritam koji ima svoju oznaku. Na neki način, to je čak i važnije od decimalnog. Govorimo o prirodnom logaritmu.

argumenta x je logaritam bazi e, tj. stepen na koji se broj e mora podići da bi se dobio broj x. Oznaka: ln x.

Mnogi će se pitati: koji je broj e? Ovo iracionalan broj, njegovu tačnu vrijednost je nemoguće pronaći i zapisati. Navest ću samo prve brojke:
e = 2,718281828459…

Nećemo ulaziti u detalje koji je to broj i zašto je potreban. Samo zapamtite da je e baza prirodnog logaritma:
ln x = log e x

Tako je ln e = 1; ln e 2 = 2; ln e 16 = 16 - itd. S druge strane, ln 2 je iracionalan broj. Općenito, prirodni logaritam bilo kojeg racionalni broj iracionalno. Osim, naravno, jednog: ln 1 = 0.

Za prirodne logaritme vrijede sva pravila koja vrijede za obične logaritme.

Vidi također:

Logaritam. Svojstva logaritma (snaga logaritma).

Kako predstaviti broj kao logaritam?

Koristimo definiciju logaritma.

Logaritam je eksponent na koji se baza mora podići da bi se dobio broj ispod predznaka logaritma.

Dakle, da biste određeni broj c predstavili kao logaritam prema bazi a, potrebno je potenciranje sa istom osnovom kao i osnova logaritma staviti pod znak logaritma, a ovaj broj c napisati kao eksponent:

Apsolutno svaki broj se može predstaviti kao logaritam - pozitivan, negativan, cijeli, razlomak, racionalan, iracionalan:

Kako ne biste pobrkali a i c u stresnim uvjetima testa ili ispita, možete koristiti sljedeće pravilo pamćenja:

ono što je dole ide dole, ono što je gore ide gore.

Na primjer, trebate predstaviti broj 2 kao logaritam bazi 3.

Imamo dva broja - 2 i 3. Ovi brojevi su baza i eksponent, koje ćemo zapisati pod znakom logaritma. Ostaje da odredimo koji od ovih brojeva treba zapisati, na osnovu stepena, a koji - nagore, na eksponent.

Osnova 3 u zapisu logaritma je na dnu, što znači da kada predstavljamo dva kao logaritam bazi 3, također ćemo zapisati 3 na bazu.

2 je veće od tri. A u notaciji stepena dva pišemo iznad tri, odnosno kao eksponent:

Logaritmi. Prvi nivo.

Logaritmi

Logaritam pozitivan broj b na osnovu a, Gdje a > 0, a ≠ 1, naziva se eksponent na koji se broj mora podići a, Za dobijanje b.

Definicija logaritma može se ukratko napisati ovako:

Ova jednakost važi za b > 0, a > 0, a ≠ 1. Obično se zove logaritamski identitet.
Akcija pronalaženja logaritma broja se zove logaritmom.

Svojstva logaritama:

Logaritam proizvoda:

Logaritam količnika:

Zamjena baze logaritma:

Logaritam stepena:

Logaritam korijena:

Logaritam sa bazom stepena:





Decimalni i prirodni logaritmi.

Decimalni logaritam brojevi pozivaju logaritam ovog broja na bazu 10 i pišu   lg b
Prirodni logaritam brojevi se nazivaju logaritam tog broja prema bazi e, Gdje e- iracionalan broj približno jednak 2,7. U isto vrijeme pišu ln b.

Ostale napomene o algebri i geometriji

Osnovna svojstva logaritama

Osnovna svojstva logaritama

Logaritmi, kao i svi brojevi, mogu se sabirati, oduzimati i transformirati na sve načine. Ali pošto logaritmi nisu baš obični brojevi, ovdje postoje pravila koja se nazivaju glavna svojstva.

Svakako morate znati ova pravila - bez njih se ne može riješiti nijedan ozbiljan logaritamski problem. Osim toga, vrlo ih je malo - sve možete naučiti u jednom danu. Pa počnimo.

Sabiranje i oduzimanje logaritama

Razmotrimo dva logaritma sa istim bazama: log a x i log a y. Tada se mogu sabirati i oduzimati i:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Dakle, zbir logaritama je jednak logaritmu proizvoda, a razlika je jednaka logaritmu količnika. Imajte na umu: ključna stvar je ovdje identične osnove. Ako su razlozi drugačiji, ova pravila ne funkcionišu!

Ove formule će vam pomoći da izračunate logaritamski izraz čak i kada se njegovi pojedinačni dijelovi ne uzimaju u obzir (pogledajte lekciju “Šta je logaritam”). Pogledajte primjere i pogledajte:

Dnevnik 6 4 + log 6 9.

Pošto logaritmi imaju iste baze, koristimo formulu sume:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Zadatak. Pronađite vrijednost izraza: log 2 48 − log 2 3.

Osnove su iste, koristimo formulu razlike:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Zadatak. Pronađite vrijednost izraza: log 3 135 − log 3 5.

Opet su baze iste, tako da imamo:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kao što vidite, originalni izrazi su sastavljeni od „loših“ logaritama, koji se ne računaju zasebno. Ali nakon transformacija dobijaju se sasvim normalni brojevi. Mnogi su izgrađeni na ovoj činjenici test papiri. Da, izrazi poput testa se nude u potpunosti (ponekad i bez ikakvih promjena) na Jedinstvenom državnom ispitu.

Izdvajanje eksponenta iz logaritma

Sada da malo zakomplikujemo zadatak. Šta ako je osnova ili argument logaritma potencija? Tada se eksponent ovog stepena može izvaditi iz predznaka logaritma prema sljedećim pravilima:

Lako je vidjeti da posljednje pravilo slijedi prva dva. Ali ipak je bolje zapamtiti to - u nekim slučajevima to će značajno smanjiti količinu izračuna.

Naravno, sva ova pravila imaju smisla ako se poštuje ODZ logaritma: a > 0, a ≠ 1, x > 0. I još nešto: naučite primjenjivati ​​sve formule ne samo s lijeva na desno, već i obrnuto , tj. Možete unijeti brojeve prije znaka logaritma u sam logaritam.

Kako riješiti logaritme

To je ono što se najčešće traži.

Zadatak. Pronađite vrijednost izraza: log 7 49 6 .

Oslobodimo se stepena u argumentu koristeći prvu formulu:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Zadatak. Pronađite značenje izraza:

Imajte na umu da nazivnik sadrži logaritam, čija su osnova i argument tačni potenci: 16 = 2 4 ; 49 = 7 2. Imamo:

Mislim da posljednji primjer zahtijeva pojašnjenje. Gdje su nestali logaritmi? Do poslednjeg trenutka radimo samo sa imeniocem. Osnovu i argument logaritma koji tu stoji predstavili smo u obliku stepena i iznijeli eksponente - dobili smo razlomak od tri sprata.

Pogledajmo sada glavni razlomak. Brojilac i imenilac sadrže isti broj: log 2 7. Pošto je log 2 7 ≠ 0, možemo smanjiti razlomak - 2/4 će ostati u nazivniku. Prema pravilima aritmetike, četvorka se može prenijeti u brojilac, što je i učinjeno. Rezultat je bio odgovor: 2.

Prelazak na novu osnovu

Govoreći o pravilima za sabiranje i oduzimanje logaritama, posebno sam naglasio da oni rade samo sa istim osnovama. Šta ako su razlozi drugačiji? Šta ako nisu tačne snage istog broja?

Formule za prelazak na novu podlogu dolaze u pomoć. Formulirajmo ih u obliku teoreme:

Neka se da logaritam log sjekira. Tada je za bilo koji broj c takav da je c > 0 i c ≠ 1 tačna jednakost:

Konkretno, ako postavimo c = x, dobijamo:

Iz druge formule proizilazi da se baza i argument logaritma mogu zamijeniti, ali se u ovom slučaju cijeli izraz „obrće“, tj. logaritam se pojavljuje u nazivniku.

Ove formule se rijetko nalaze u konvencionalnim numeričke izraze. Koliko su zgodne moguće je procijeniti samo odlučivanjem logaritamske jednačine i nejednakosti.

Međutim, postoje problemi koji se nikako ne mogu riješiti osim preseljenjem u novu osnovu. Pogledajmo par ovih:

Zadatak. Pronađite vrijednost izraza: log 5 16 log 2 25.

Imajte na umu da argumenti oba logaritma sadrže tačne potencije. Izvadimo indikatore: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Sada "obrnimo" drugi logaritam:

Kako se proizvod ne mijenja pri preraspodjelu faktora, mirno smo pomnožili četiri i dva, a zatim se pozabavili logaritmima.

Zadatak. Pronađite vrijednost izraza: log 9 100 lg 3.

Osnova i argument prvog logaritma su tačni potenci. Zapišimo ovo i riješimo se indikatora:

Sada se riješimo decimalnog logaritma pomicanjem na novu bazu:

Osnovni logaritamski identitet

Često je u procesu rješavanja potrebno predstaviti broj kao logaritam na datu bazu.

U ovom slučaju pomoći će nam sljedeće formule:

U prvom slučaju, broj n postaje eksponent u argumentu. Broj n može biti apsolutno bilo koji, jer je samo logaritamska vrijednost.

Druga formula je zapravo parafrazirana definicija. Tako se to zove: .

U stvari, šta se dešava ako se broj b podigne na takav stepen da broj b na ovaj stepen daje broj a? Tako je: rezultat je isti broj a. Pažljivo pročitajte ovaj odlomak ponovo - mnogi ljudi zaglave u njemu.

Kao i formule za prelazak na novu bazu, osnovni logaritamski identitet je ponekad jedino moguće rješenje.

Zadatak. Pronađite značenje izraza:

Imajte na umu da je log 25 64 = log 5 8 - jednostavno uzet kvadrat iz baze i argumenta logaritma. Uzimajući u obzir pravila za množenje potencija sa istom osnovom, dobijamo:

Ako neko ne zna, ovo je bio pravi zadatak sa Jedinstvenog državnog ispita :)

Logaritamska jedinica i logaritamska nula

U zaključku ću dati dva identiteta koja se teško mogu nazvati svojstvima – radije su to posljedice definicije logaritma. Stalno se pojavljuju u problemima i, iznenađujuće, stvaraju probleme čak i „naprednim“ učenicima.

  1. log a a = 1 je. Zapamtite jednom za svagda: logaritam bilo koje baze a te baze jednak je jedan.
  2. log a 1 = 0 je. Baza a može biti bilo koja, ali ako argument sadrži jedan, logaritam je jednak nuli! Zato što je 0 = 1 direktna posljedica definicije.

To je sva imovina. Obavezno vježbajte u njihovoj primjeni! Preuzmite cheat sheet na početku lekcije, odštampajte ga i riješite probleme.

Kao što znate, kada se množe izrazi sa stepenom, njihovi eksponenti se uvijek sabiraju (a b *a c = a b+c). Ovaj matematički zakon je izveo Arhimed, a kasnije, u 8. veku, matematičar Virasen je napravio tabelu celobrojnih eksponenata. Upravo su oni poslužili za dalje otkrivanje logaritama. Primjeri korištenja ove funkcije mogu se naći gotovo svugdje gdje trebate pojednostaviti glomazno množenje jednostavnim sabiranjem. Ako odvojite 10 minuta čitajući ovaj članak, objasnit ćemo vam što su logaritmi i kako s njima raditi. Jednostavnim i pristupačnim jezikom.

Definicija u matematici

Logaritam je izraz sljedećeg oblika: log a b=c, to jest, logaritam bilo kojeg nenegativnog broja (tj. bilo kojeg pozitivnog) “b” na njegovu bazu “a” smatra se stepenom “c ” na koju se baza “a” mora podići da bi se na kraju dobila vrijednost “b”. Analizirajmo logaritam na primjerima, recimo da postoji izraz log 2 8. Kako pronaći odgovor? Vrlo je jednostavno, potrebno je pronaći takvu snagu da od 2 do tražene snage dobijete 8. Nakon nekih proračuna u glavi, dobijamo broj 3! I to je tačno, jer 2 na stepen od 3 daje odgovor kao 8.

Vrste logaritama

Za mnoge učenike i studente ova se tema čini komplikovanom i nerazumljivom, ali zapravo logaritmi nisu toliko strašni, najvažnije je razumjeti njihovo općenito značenje i zapamtiti njihova svojstva i neka pravila. Postoje tri odvojene vrste logaritamskih izraza:

  1. Prirodni logaritam ln a, gdje je baza Ojlerov broj (e = 2,7).
  2. Decimala a, gdje je osnova 10.
  3. Logaritam bilo kojeg broja b na osnovu a>1.

Svaki od njih se rješava na standardni način, uključujući pojednostavljenje, redukciju i naknadno svođenje na jedan logaritam korištenjem logaritamskih teorema. Da biste dobili ispravne vrijednosti logaritama, trebali biste zapamtiti njihova svojstva i redoslijed radnji prilikom njihovog rješavanja.

Pravila i neka ograničenja

U matematici postoji nekoliko pravila-ograničenja koja su prihvaćena kao aksiom, odnosno nisu predmet rasprave i predstavljaju istinu. Na primjer, nemoguće je podijeliti brojeve sa nulom, a također je nemoguće izvući paran korijen negativni brojevi. Logaritmi također imaju svoja pravila, slijedeći koja možete lako naučiti raditi čak i sa dugim i prostranim logaritamskim izrazima:

  • Osnova “a” uvijek mora biti veća od nule, a ne jednaka 1, inače će izraz izgubiti svoje značenje, jer su “1” i “0” u bilo kojem stepenu uvijek jednaki njihovim vrijednostima;
  • ako je a > 0, onda a b > 0, ispada da “c” takođe mora biti veće od nule.

Kako riješiti logaritme?

Na primjer, daje se zadatak pronaći odgovor na jednadžbu 10 x = 100. Ovo je vrlo lako, potrebno je odabrati stepen podizanjem broja deset na koji dobijamo 100. Ovo je, naravno, 10 2 = 100.

Sada predstavimo ovaj izraz u logaritamskom obliku. Dobijamo log 10 100 = 2. Prilikom rješavanja logaritma, sve radnje se praktično konvergiraju da bi se pronašla potencija na koju je potrebno unijeti bazu logaritma da bi se dobio dati broj.

Da biste precizno odredili vrijednost nepoznatog stepena, morate naučiti kako raditi s tablicom stupnjeva. izgleda ovako:

Kao što vidite, neki eksponenti se mogu pogoditi intuitivno ako imate tehnički um i poznavanje tablice množenja. Međutim, za veće vrijednosti trebat će vam stol za napajanje. Mogu ga koristiti čak i oni koji ne znaju ništa o složenim matematičkim temama. Lijeva kolona sadrži brojeve (osnova a), gornji red brojeva je vrijednost stepena c na koji je broj a podignut. Na raskrsnici ćelije sadrže brojčane vrijednosti koje su odgovor (a c =b). Uzmimo, na primjer, prvu ćeliju sa brojem 10 i kvadriramo je, dobićemo vrijednost 100, koja je naznačena na sjecištu naše dvije ćelije. Sve je tako jednostavno i lako da će i najistinskiji humanista razumjeti!

Jednačine i nejednačine

Ispada da je pod određenim uslovima eksponent logaritam. Stoga se bilo koji matematički numerički izrazi može zapisati kao logaritamska jednakost. Na primjer, 3 4 =81 se može napisati kao logaritam 81 na bazi 3 jednak četiri (log 3 81 = 4). Za negativne potencije pravila su ista: 2 -5 = 1/32 zapišemo to kao logaritam, dobijemo log 2 (1/32) = -5. Jedna od najfascinantnijih sekcija matematike je tema "logaritma". U nastavku ćemo pogledati primjere i rješenja jednadžbi, odmah nakon proučavanja njihovih svojstava. Pogledajmo sada kako izgledaju nejednakosti i kako ih razlikovati od jednačina.

Dat je izraz sljedećeg oblika: log 2 (x-1) > 3 - jeste logaritamska nejednakost, pošto je nepoznata vrijednost "x" pod znakom logaritma. I također se u izrazu upoređuju dvije veličine: logaritam željenog broja na osnovu dva je veći od broja tri.

Najvažnija razlika između logaritamskih jednadžbi i nejednačina je u tome što jednadžbe sa logaritmima (na primjer, logaritam 2 x = √9) podrazumijevaju jednu ili više specifičnih brojčanih vrijednosti u odgovoru, dok se pri rješavanju nejednadžbe uzimaju i raspon prihvatljivih vrijednosti ​​i tačke se određuju kršenjem ove funkcije. Kao posljedica toga, odgovor nije jednostavan skup pojedinačnih brojeva, kao u odgovoru na jednadžbu, već kontinuirani niz ili skup brojeva.

Osnovne teoreme o logaritmima

Prilikom rješavanja primitivnih zadataka pronalaženja vrijednosti logaritma, njegova svojstva možda neće biti poznata. Međutim, kada su u pitanju logaritamske jednačine ili nejednačine, prije svega je potrebno jasno razumjeti i primijeniti u praksi sva osnovna svojstva logaritama. Kasnije ćemo pogledati primjere jednadžbi; hajde da prvo pogledamo svako svojstvo detaljnije.

  1. Glavni identitet izgleda ovako: a logaB =B. Primjenjuje se samo kada je a veće od 0, nije jednako jedan, a B je veće od nule.
  2. Logaritam proizvoda se može predstaviti sljedećom formulom: log d (s 1 * s 2) = log d s 1 + log d s 2. U ovom slučaju, obavezan uslov je: d, s 1 i s 2 > 0; a≠1. Možete dati dokaz za ovu logaritamsku formulu, sa primjerima i rješenjem. Neka log a s 1 = f 1 i log a s 2 = f 2, tada a f1 = s 1, a f2 = s 2. Dobijamo da je s 1 * s 2 = a f1 *a f2 = a f1+f2 (osobine stepeni ), a zatim po definiciji: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, što je trebalo dokazati.
  3. Logaritam količnika izgleda ovako: log a (s 1/s 2) = log a s 1 - log a s 2.
  4. Teorema u obliku formule ima sljedeći oblik: log a q b n = n/q log a b.

Ova formula se naziva “svojstvo stepena logaritma”. Podsjeća na svojstva običnih stupnjeva, i nije iznenađujuće, jer se sva matematika zasniva na prirodnim postulatima. Pogledajmo dokaz.

Neka log a b = t, ispada da je a t = b. Ako oba dijela podignemo na stepen m: a tn = b n ;

ali pošto je a tn = (a q) nt/q = b n, dakle log a q b n = (n*t)/t, onda log a q b n = n/q log a b. Teorema je dokazana.

Primjeri problema i nejednakosti

Najčešći tipovi zadataka o logaritmima su primjeri jednačina i nejednačina. Nalaze se u gotovo svim knjigama zadataka, a također su obavezan dio ispita iz matematike. Za upis na fakultet ili polaganje prijemni ispiti u matematici morate znati kako pravilno rješavati takve probleme.

Nažalost, ne postoji jedinstveni plan ili shema za rješavanje i određivanje nepoznate vrijednosti logaritma, ali se određena pravila mogu primijeniti na svaku matematičku nejednačinu ili logaritamsku jednačinu. Prije svega, trebali biste saznati može li se izraz pojednostaviti ili svesti na opći oblik. Pojednostavite duge logaritamski izrazi moguće ako pravilno koristite njihova svojstva. Hajde da ih brzo upoznamo.

Prilikom rješavanja logaritamskih jednadžbi moramo odrediti koji tip logaritma imamo: primjer izraza može sadržavati prirodni logaritam ili decimalni.

Evo primjera ln100, ln1026. Njihovo rješenje se svodi na činjenicu da treba odrediti snagu kojoj će baza 10 biti jednaka 100 i 1026, respektivno. Da biste riješili prirodne logaritme, morate primijeniti logaritamske identitete ili njihova svojstva. Pogledajmo primjere rješavanja logaritamskih problema različitih tipova.

Kako koristiti logaritamske formule: s primjerima i rješenjima

Dakle, pogledajmo primjere korištenja osnovnih teorema o logaritmima.

  1. Svojstvo logaritma proizvoda može se koristiti u zadacima gdje je potrebno proširiti veliki značaj brojeve b u jednostavnije činioce. Na primjer, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odgovor je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kao što vidite, koristeći četvrto svojstvo stepena logaritma, uspjeli smo riješiti naizgled složen i nerješiv izraz. Vi samo trebate faktorisati bazu, a zatim izvući vrijednosti eksponenta iz predznaka logaritma.

Zadaci sa Jedinstvenog državnog ispita

Logaritmi se često nalaze u prijemni ispiti, posebno puno logaritamskih problema na Jedinstvenom državnom ispitu ( Državni ispit za sve maturante). Obično su ovi zadaci prisutni ne samo u dijelu A (najlakši test dio ispit), ali i u dijelu C (najsloženiji i najobimniji zadaci). Ispit zahtijeva tačno i savršeno poznavanje teme „Prirodni logaritmi“.

Primjeri i rješenja problema preuzeti su od zvaničnika Opcije objedinjenog državnog ispita. Pogledajmo kako se takvi zadaci rješavaju.

Dat log 2 (2x-1) = 4. Rješenje:
prepišimo izraz, pojednostavljujući ga malo log 2 (2x-1) = 2 2, po definiciji logaritma dobijamo da je 2x-1 = 2 4, dakle 2x = 17; x = 8,5.

  • Najbolje je sve logaritme svesti na istu bazu kako rješenje ne bi bilo glomazno i ​​zbunjujuće.
  • Svi izrazi pod predznakom logaritma su označeni kao pozitivni, stoga, kada se eksponent izraza koji je pod predznakom logaritma i kao njegova baza izvadi kao množitelj, izraz koji ostaje pod logaritmom mora biti pozitivan.