Квантовой механикой называют современную теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, ядер) и их систем. Необычность квантово-механических представлений по сравнению с классической физикой открыла период ломки основных физических моделей, которые казались очевидными и нерушимыми. Главным образом это коснулось понятия частицы и принципов ее движения.

В этой главе дается понятие не только о квантовой механике, но и о тех идеях и опытах, которые привели к этой теории. Как метод, основанный на волновых свойствах электронов, рассматривается электронная микроскопия.

28.1. ГИПОТЕЗА ДЕ БРОЙЛЯ. ОПЫТЫ ПО ДИФРАКЦИИ ЭЛЕКТРОНОВ И ДРУГИХ ЧАСТИЦ

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем (1924) 1 .

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

1 Гипотеза де Бройля была сформулирована до опытов, подтверждающих волновые свойства частиц. Де Бройль об этом позднее, в 1936 г. писал так: «... не можем ли мы предположить, что и электрон так же двойственен, как и свет? На первый взгляд такая идея казалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законам классической динамики. Электрон никогда явно не проявлял волновых свойств, таких, скажем, какие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспериментальных доказательств, могла выглядеть как ненаучная фантазия».

В гл. 24 было отмечено, что дифракция рентгеновских лучей наблюдается на кристаллических телах; следовательно, для дифракции электронов необходимо также использовать кристаллические вещества.

К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов на монокристалле никеля, Дж.П. Томсон и независимо от него П.С. Тартаков-ский - на металлической фольге (по-ликристаллиаеское тело).

На рис. 28.1 изображена электроно-грамма - дифракционная картина, полученная от взаимодействия электронов с поликристаллической фольгой.

Сравнивая этот рисунок с рис. 24.21, можно заметить сходство дифракции электронов и рентгеновских лучей.

Способностью дифрагировать обладают и другие частицы, как заряженные (протоны, ионы и др.), так и нейтральные (нейтроны, атомы, молекулы).

Аналогично рентгеноструктурному анализу можно применять дифракцию частиц для определения упорядоченного или разупорядочен-ного расположения атомов и молекул вещества и для оценки параметров кристаллических решеток.

В настоящее время широкое распространение имеют методы электронографии (дифракция электронов) и нейтронографии (дифракция нейтронов).

Могут возникнуть вопросы: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, т.е. как бы отдельных частиц, показали, что при этом электрон не «размазывается» по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

28.2. ЭЛЕКТРОННЫЙ МИКРОСКОП. ПОНЯТИЕ ОБ ЭЛЕКТРОННОЙ ОПТИКЕ

Волновые свойства частиц можно использовать не только для дифракционного структурного анализа, но и для получения увеличенных изображений предмета.

Из (26.19) следует, что предел разрешения оптического микроскопа в основном определяется предельным значением длины волны света, воспринимаемого глазом человека. Подставив в эту формулу значение длины волны де Бройля (28.3), найдем предел разрешения электронного микроскопа, в котором изображение предмета формируется электронными пучками:

Как нетрудно убедиться, предел разрешения z электронного микроскопа зависит от ускоряющего напряжения, и можно добиться, чтобы он был значительно меньше, а разрешающая способность значительно больше, чем у оптического микроскопа.

Электронный микроскоп и его отдельные элементы по своему назначению подобны оптическому, поэтому воспользуемся аналогией для объяснения его устройства и принципа действия. Схемы обоих микроскопов изображены на рис. 28.2 (а - оптический; б - электронный).

В оптическом микроскопе носителем информации о предмете АВ является фотон, свет. Источником света обычно служит лампа накаливания /. После взаимодействия с предметом (поглощение, рассеяние, дифракция) поток фотонов преобразуется и содержит информацию о предмете. Поток фотонов формируется с помощью оптических устройств, в основном линз: конденсора 3, объектива 4, окуляра 5. Изображение А 1 В 1 регистрируется глазом 7 (или фотопластинкой, фотолю-минесцирующим экраном и т.д.).

В электронном микроскопе носителем информации о предмете является электрон, а источником электронов - подогреваемый катод 1. Ускорение электронов и образование пучка осуществляют фокусирующим электродом и анодом - системой, называемой электронной пушкой 2. После взаимодействия с предметом (в основном рассеяние) поток электронов преобразуется и содержит информацию о предмете. Формирование потока электронов происходит под воздействием электрического поля (система электродов и конденсаторов) и магнитного (систе-

ма катушек с током). Эти системы называют электронными линзами по аналогии с оптическими линзами, которые формируют световой поток (3 - конденсорная; 4 - электронная, служащая объективом, 5 - проекционная). Изображение регистрируется на чувствительной к электронам фотопластинке или катодолюминесцирующем экране 6.

Чтобы оценить предел разрешения электронного микроскопа, подставим в формулу (28.4) ускоряющее напряжение 100 кВ и угловую апертуру порядка 10 -2 рад (приблизительно такие углы используют в электронной микроскопии). Тогда получим z ~ 0,1 нм, что в сотни раз лучше, чем у оптических микроскопов. Применение ускоряющего напряжения, большего 100 кВ, хотя и повышает разрешающую способность, но связано с некоторыми сложностями, в частности происходит

разрушение исследуемого объекта электронами, имеющими большую скорость. Практически даже с помощью самого хорошего электронного микроскопа можно достичь предела разрешения порядка 10 -10 м; это в сотни раз лучше, чем у оптических микроскопов.

К достоинствам электронного микроскопа следует отнести большую разрешающую способность, позволяющую рассматривать крупные молекулы, возможность изменять при необходимости ускоряющее напряжение и, следовательно, предел разрешения и сравнительно удобное управление потоком электронов с помощью магнитных и электрических полей.

Укажем некоторые особенности эксплуатации электронного микроскопа. В тех частях его, где пролетают электроны, должен быть вакуум, так как в противном случае столкновение электронов с молекулами воздуха (газа) приведет к искажению изображения. Это требование к электронной микроскопии усложняет процедуру исследования, делает аппаратуру более громоздкой и дорогой. Вакуум искажает нативные свойства биологических объектов, а в ряде случаев разрушает или деформирует их.

Для рассматривания в электронном микроскопе пригодны лишь очень тонкие срезы, так как электроны сильно поглощаются и рассеиваются веществом. Поэтому в некоторых случаях целесообразно сделать оттиск исследуемой поверхности объекта на тонком слое пластмассы. Эту процедуру называют репликацией, а пластмассовую копию поверхности - репликой.


Современный отечественный электронный микроскоп ЭВМ-100 ЛМ (рис. 28.3) дает максимальное 600 000-кратное увеличение и гарантированный предел разрешения 3 ? 10 -10 м. На рис. 28.4 приведены снимки молекул РНК в разных состояниях, полученные на электронном микроскопе с увеличением в 100 000 раз.

Наличие волновых и корпускулярных свойств как у фотонов, так и у электронов и других частиц позволяет ряд положений и законов оптики распространить и на описание движения заряженных частиц в электрических и магнитных полях.

Эта аналогия позволила выделить как самостоятельный раздел электронную оптику - область физики, в которой изучается структура пучков заряженных частиц, взаимодействующих с электрическими и магнитными полями. Как и обычную оптику, электронную можно подразделить на геометрическую (лучевую) и волновую (физическую).

В рамках геометрической электронной оптики, в частности, описывается движение заряженных частиц в электрическом и магнитном полях. Схематическое изображение построения изображения в электронном микроскопе (см. рис. 28.2, б) основывается на геометрической электронной оптике.

Подход волновой электронной оптики существен в том случае, когда проявляются волновые свойства заряженных частиц. Хорошей иллюстрацией является нахождение разрешающей способности (предела разрешения), приведенное в начале параграфа.

28.3. ВОЛНОВАЯ ФУНКЦИЯ И ЕЕ ФИЗИЧЕСКИЙ СМЫСЛ

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: ψ(χ, у, z, t).

Если силовое поле, действующее на частицу, является стационарным, т.е. не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой - от координат:

В дальнейшем будем рассматривать только стационарные состояния; ψ-функция является вероятностной характеристикой состояния частицы. Поясним смысл этого утверждения.

Выделим в пространстве достаточно малый объем d V = dxdjdz, в пределах которого значения ψ-функции можно считать одинаковыми. Вероятность нахождения d W B частицы в этом объеме пропорциональна объему и зависит от квадрата модуля ψ-функции:

Квадрат модуля волновой функции равен плотности вероятности, т.е. отношению вероятности нахождения частицы в объеме к этому объему.

Интегрируя выражение (28.6) по некоторому объему V, находим вероятность нахождения частицы в этом объеме:

28.4. СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δχ и Δр х.

1 Реально осуществить такой опыт невозможно, так как размеры щели должны быть порядка атомов, поэтому описывается некоторый мысленный эксперимент.

шение (28.11) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис. 28.6), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.

«Размытость» уровней приводит к неопределенности энергии АЕ излучаемого фотона и его частоты Ау при переходе системы с одного энергетического уровня на другой:

Так как состояние микрочастицы описывают ψ-функцией, то надо указать способ нахождения этой функции с учетом внешних условий. Это возможно в результате решения основного уравнения квантовой механики, предложенного Э. Шредингером (1926). Такое уравнение в квантовой механике постулируется так же, как в классической механике постулируется второй закон Ньютона.

Применительно к стационарным состояниям уравнение Шредин-гера может быть записано так:

Это проявляется в уширении спектральных линий.

28.5. УРАВНЕНИЕ ШРЕДИНГЕРА. ЭЛЕКТРОН В ПОТЕНЦИАЛЬНОЙ ЯМЕ

где m - масса частицы; Е и Е п - ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени).

Если частица перемещается только вдоль некоторой линии, например вдоль оси Х (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид:

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

Пусть электрон перемещается вдоль оси Х только в пределах 0 < х < l (рис. 28.7). Это означает, что в указанном интервале ψ-функция отлична от нуля, а вне интервала (х <0, х >l) равна нулю.

Так как на частицу в выделенном интервале силовые поля не действуют, то ее потенциальная энергия может иметь любое постоянное значение (наиболее удобно принять Е п = 0). Вне этого интервала электрона нет, поэтому следует считать его потенциальную энергию бесконечно большой. На рис. 28.7 показана графическая зависимость Е п = Д х). Интервал 0 < х < l, удовлетворяющий сформулированным выше условиям, называют одномерной прямоугольной потенциальной ямой с бесконечно высокими стенками. С учетом Е п = 0 уравнение Шредингера (28.14) для интервала 0 < х < l имеет вид:

Это уравнение аналогично дифференциальному уравнению гармонического колебания (см. 7.1), решение которого:

Прежде всего примечательно, что решение уравнения Шрединге-ра для электрона в потенциальной яме без каких-либо дополнительных постулатов приводит к дискретным, квантованным значениям энергии:

Из (28.21) видно, что при некотором фиксированном значении n дискретность, т.е. различие энергий соседних уровней, тем меньше, чем больше размеры потенциальной ямы. Так, например, рассчитаем два случая при n = 1:

1) l = 5 ? 10 -10 м, что примерно соответствует размерам атома; тогда ΔΕ = 4,5 эВ. Это по порядку величины совпадает со значениями, полученными для атома водорода по теории Бора;

2) l = 10 -1 м, что фактически соответствует такой ширине потенциальной ямы, что электрон можно считать свободным; при этом ΔΕ = 1,1 ? 10 -16 эВ. Здесь дискретность ничтожна и практически можно считать, что энергия электрона изменяется непрерывно.

Возведя (28.20) в квадрат, получим плотность вероятности |ψ| 2 нахождения электрона в разных точках потенциальной ямы. На рис. 28.9 показана графическая зависимость |ψ| 2 от χ при разных дискретных состояниях, т.е. разных квантовых числах. Как видно из рисунка, электрон может с разной вероятностью находиться в различных местах потенциальной ямы. Есть такие точки, в которых вероятность нахождения электрона вообще равна нулю. Это существенно отличается от представлений классической физики, согласно которым равновероятно нахождение частицы в разных местах потенциальной ямы (рис. 28.10) и невозможно разделение ямы точками, в которых исключено нахождение частицы.

Уравнение Шредингера можно применить и к более сложным силовым полям, например к электрону в атоме. Это приведет к дополнительным математическим трудностям, но не изменит основных особенностей

атомных систем: дискретности энергетических состояний, вероятностных суждений о нахождении электрона, своеобразной зависимости |ψ| 2 от координат и т.д.

28.6. ПРИМЕНЕНИЕ УРАВНЕНИЯ ШРЕДИНГЕРА К АТОМУ ВОДОРОДА. КВАНТОВЫЕ ЧИСЛА

Описание состояний атомов и молекул с помощью уравнения Шре-дингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи выходит за рамки нашего курса, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (28.13) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - е (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

При центральной симметрии поля, созданного ядром, удобнее решать задачу не в декартовых прямоугольных координатах, а в сферических r, θ и р.

Решение уравнения Шредингера находят в виде произведения трех функций, каждая из которых зависит от одной переменной:

Аналогично тому, как для электрона в прямоугольной потенциальной яме с бесконечно высокими стенками граничные условия привели к конкретным возможным значениям ψ и энергии, так и в потенциальной яме, соответствующей атому водорода, физические условия приводят к возможным значениям f1, f 2 , f 3 и, следовательно, ψ-функции. Здесь также проявляется главная особенность квантово-механических систем - дискретность состояний.

Дискретность математически заключается в том, что любая из функций уравнения (28.23) имеет целый набор (спектр) решений, каждому из которых отвечает определенное квантовое число. В отличие от прямоугольной потенциальной ямы с бесконечно высокими стенками состояние электрона в атоме характеризуется не одним, а несколькими квантовыми числа-ми 1 . Первое из них - главное квантовое число п - 1, 2, 3... Оно определяет уровни энергии электрона по закону:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (см. 28.7).

На рис. 28.11 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е П от расстояния r между электроном и ядром [см. (28.22)]. С возрастанием главного квантового числа п увеличивается r [см., например, (28.33)], а полная [см. (28.24)] и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е >0) соответствует состоянию свободного электрона.

1 В общем случае квантовыми числами называют целые (0, 1, 2...) или полуцелые (1/2, 3/2, 5/2...) числа, определяющие возможные дискретные значения физических величин, которые характеризуют квантовые системы и элементарные частицы.

1 Наличие спина у частиц не следует из уравнения Шредингера.

с этим расчетом: больше времени она находилась в местах с большей плотностью вероятности, менее длительно - в местах с меньшей плотностью вероятности. В результате экспозиции на фотопленке получились места разной интенсивности, которые иллюстрируют распределение электрона в атоме. Из рисунков видно, сколь условно и даже неверно понятие «орбита» применительно к движению электрона.

Спиновый и орбитальный магнитные моменты взаимодействуют между собой, это изменяет систему энергетических уровней атома по сравнению с той, которая была бы без такого взаимодействия. Говорят, что спин-орбитальное взаимодействие приводит к тонкой структуре энергетических уровней. Если оно существенно, то необходимо учитывать полный момент импульса электрона - орбитальный плюс спиновый. При этом вместо m l и m s используют другие квантовые числа: j и nij.

Квантовое число j - орбитальное плюс спиновое - определяет дискретные значения полного момента импульса L электрона:

Магнитное квантовое число m } характеризует возможные проекции полного момента импульса на некоторое произвольно выбранное направление Z:

При заданном l квантовое число j принимает два значения: ±1/2

(табл. 28.1).

Таблица 28.1

При заданном j квантовое число nij принимает 2j + 1 значений: -j, -j + 1 ... + j.

28.7. ПОНЯТИЕ О ТЕОРИИ БОРА

Еще до создания квантовой механики в 1913 г. датский физик Н. Бор предложил теорию атома водорода и водородоподобных ионов, которая основывалась на ядерной модели атома и двух его постулатах. Постулаты Бора не укладывались в рамки классической физики.

Согласно первому постулату, атом и атомные системы могут длительно пребывать только в некоторых стационарных состояниях. Находясь в таких состояниях, атом не излучает и не поглощает энергии. Стационарным состояниям соответствуют дискретные значения энергии: Е 1 , Е 2 ...

Любое изменение энергии атома или атомной системы связано со скачкообразным переходом из одного стационарного состояния в другое.

По второму постулату, при переходе атома из одного состояния в другое атом испускает или поглощает фотон, энергия которого определяется уравнением (29.1).

Переход от состояния с большей энергией в состояние с меньшей энергией сопровождается излучением фотона. Обратный процесс возможен при поглощении фотона.

Согласно теории Бора, электрон в атоме водорода вращается по круговой орбите вокруг ядра. Из всех возможных орбит стационарные состояния соответствуют только тем, для которых момент импульса равен целому числу h/(2π):

(n = 1, 2, 3...), (28.31)

где m - масса электрона; υ η - его скорость на n-й орбите; rn - ее радиус. На электрон, вращающийся по круговой орбите в атоме, действует куло-новская сила притяжения со стороны положительно заряженного ядра, которая, по второму закону Ньютона, равна произведению массы электрона на центростремительное ускорение (запись дана для вакуума):

Несмотря на большой успех теории Бора, скоро стали заметны и ее недостатки. Так, в рамках этой теории не удалось объяснить различие интенсивностей спектральных линий, т.е. ответить на вопрос, почему одни энергетические переходы более вероятны, чем другие. Теория Бора не раскрыла спектральных закономерностей более сложной атомной системы - атома гелия (два электрона, вращающиеся вокруг ядра).

Недостатком теории Бора была ее непоследовательность. Эта теория не была ни классической, ни квантовой, она объединяла в себе положения принципиально отличных теорий: классической и квантовой физики. Так, например, в теории Бора считается, что электрон вращается в атоме по определенной орбите (классические представления), но при этом он не излучает электромагнитной волны (квантовые представления).

В первой четверти нашего века стало ясно, что теория Бора должна быть заменена другой теорией атома. Появилась квантовая механика.

28.8. ЭЛЕКТРОННЫЕ ОБОЛОЧКИ СЛОЖНЫХ АТОМОВ

Квантовые числа, описывающие состояние электрона в атоме водорода, используют для приближенной характеристики состояния отдельных электронов сложных атомов. Однако при этом следует учитывать по крайней мере два существенных отличия сложных атомов от атома водорода:

1) в сложных атомах энергия электронов из-за их взаимодействия зависит не только от n, но и от /;

2) отличие обусловлено принципом Паули, согласно которому в атоме не может быть двух (и более) электронов с четырьмя одинаковыми квантовыми числами.

При образовании электронной конфигурации, соответствующей нормальному состоянию, каждый электрон атома стремится иметь наименьшую энергию. Если бы не принцип Паули, то все электроны расположились бы на самом нижнем энергетическом уровне. Фактически же, за некоторыми исключениями, электроны занимают ту последовательность состояний, которая указана для атома водорода в табл. 29.

Электроны с одинаковым главным квантовым числом образуют слой. Слои называются К, L, М, N и т.д. в соответствии с n = 1, 2, 3, 4... Электроны, имеющие одинаковые пары значений n и / , входят в состав оболочки, которая кратко обозначается так же, как соответствующие состояния для электрона атома водорода: 1s, 2s, 2^ и т.д. Так, например, называют 2s-оболочка, 2s-электроны и т.п.

Число электронов в оболочке обозначают справа вверху около символической записи оболочки, например 2р 4 .

Распределение электронов по оболочкам в атоме (электронные конфигурации) обычно указывают следующим образом: для азота 1s 2 , 2s 2 , 2р 3 , для кальция 1s 2 , 2s 2 , 2р 6 , 3s 2 , 3р 6 , 4s 2 и т.д.

Так как энергия электронов сложных атомов зависит не только от n, но и от l, то построение таблицы Менделеева не всегда происходит постепенным заполнением слоев по мере усложнения атома. У калия (Z = 19), например, вместо заполнения слоя М (возможно, было 1s 2 , 2s 2 , 2^ 6 , 3s 2 , 6 , 3а 1) начинается заполнение слоя N и создается следующая электронная конфигурация: 1 s 2 , 2s 2 , 2р 6, 3s 2, 6, 4s 1.

Аналогичные отклонения от регулярного заполнения слоев имеются и у других элементов.

Всегда выполняется общее правило: электроны невозбужденного атома занимают состояние с наименьшей энергией и в соответствии с принципом Паули. На рис. 28.13 схематически без соблюдения масштаба показаны энергетические состояния сложного атома и соответствующее им число электронов.

В заключение отметим, что состояние многоэлектронного атома в целом определяется следующими квантовыми числами: L - полного орбитального момента атома, которое принимает значения 0, 1, 2, 3 и т.д. 1 ; J - полного момента атома, которое может принимать значения с интервалом в единицу от |L - S | до |L + S |; S - результирующего спинового момента атома; магнитного m J , который определяет дискретные значения проекции полного момента атома на некоторую ось Z:

При заданном Jm J принимает 2J + 1 значений:

-J, -J + 1 ... +J.

1 Не следует смешивать это обозначение с названием электронного слоя L и с полным моментом импульса электрона.

28.9. ЭНЕРГЕТИЧЕСКИЕ УРОВНИ МОЛЕКУЛ

Так как молекулы состоят из атомов, то внутримолекулярное движение сложнее внутриатомного. В молекуле кроме движения электронов относительно ядер происходит колебательное движение атомов около их положения равновесия (колебание ядер вместе с окружающими их электронами) и вращательное движение молекулы как целого.

Электронному, колебательному и вращательному движениям молекулы соответствуют три типа уровней энергии: Е эл, Е кол и Е вр. Согласно квантовой механике, энергия всех видов движения в молекуле принимает только дискретные значения (квантуется). Представим приближенно полную энергию Е молекулы суммой квантованных значений энергий разных видов:

Е = Е эл + Е кол + Е вр. (28.37)

На рис. 28.14 схематически изображена система уровней молекулы: далеко отстоящие электронные уровни энергии а" и а" ", для которых Е кол = Е вр = 0; более близко расположенные колебательные уровни v" , v" ", для них Е вр = 0; наиболее тесно расположенные вращательные уровни J" и J"" с различными значениями Е вр.

Расстояние между электронными уровнями энергии порядка нескольких электрон-вольт, между соседними колебательными уровнями 10 -2 -10 -1 эВ, между соседними вращательными уровнями 10 -5 -10 -3 эВ.

Гипотеза де-Бройля. Волны де-Бройля.

Как было сказано ранее, свет (и вообще излучение) имеет двойственную природу: в одних явлениях (интерференция, дифракция и др.) свет проявляет себя как волны, в других явлениях с не меньшей убедительностью – как частицы. Это и побудило де-Бройля (в 1923 г.) высказать идею о том, что материальные частицы должны обладать и волновыми свойствами, т.е. распространить подобный корпускулярно-волновой дуализм на частицы с массой покоя, отличной от нуля.

Если с такой частицей связана какая-то волна, можно ожидать, что она распространяется в направлении скорости υ частицы. О природе этой волны ничего определенного де-Бройлем не было высказало. Не будем и мы пока выяснять их природу, хотя сразу же подчеркнем, что эти волны не электромагнитные. Они имеют, как мы увидим далее, специфическую природу, для которой нет аналога в классической физике.

Итак, де-Бройль высказал гипотезу, что соотношение для импульса p=ћω/c , относящееся к фотонам, имеет универсальный характер, т. е. частицам можно сопоставить волну, длина которой

Эта формула получила название формулы де-Бройля , а λ – дебройлевской длины волны частицы с импульсом р .

Де-Бройль также предположил, что пучок частиц, падающих на двойную щель, должен за ними интерферировать.

Вторым, независимым от формулы (3.13.1), соотношением является связь между энергией Е частицы и частотой ω дебройлевской волны:

В принципе энергия Е определена всегда с точностью до прибавления произвольной постоянной (в отличие от ΔЕ ), следовательно, частота ω является принципиально ненаблюдаемой величиной (в отличие от дебройлевской длины волны).

С частотой ω и волновым числом k связаны две скорости - фазовая υ ф и групповая u :

(3.13.3)

Умножив числитель и знаменатель обоих выражений на ћ с учетом (3.13.1) и (3.13.2), получим, ограничившись рассмотрением только нерелятивистского случая, т.е. полагая E = p 2 /2m (кинетическая энергия):

(3.13.4)

Отсюда видно, что групповая скорость равна скорости частицы, т. е. является принципиально наблюдаемой величиной, в отличие от υ ф ‑ из-за неоднозначности Е .

Из первой формулы (3.13.4) следует, что фазовая скорость дебройлевских волн

(3.13.5)

т. е. зависит от частоты ω, а значит дебройлевские волны обладают дисперсией даже в вакууме. Далее будет показано, что в соответствии с современной физической интерпретацией фазовая скорость дебройлевских волн имеет чисто символическое значение, поскольку эта интерпретация относит их к числу принципиально ненаблюдаемых величин. Впрочем, сказанное видно и сразу, так как Е в (3.13.5) определена, как уже говорилось, с точностью до прибавления произвольной постоянной.

Установление того факта, что согласно (3.13.4) групповая скорость дебройлевских волн равна скорости частицы, сыграло в свое время важную роль в развитии принципиальных основ квантовой физики, и в первую очередь в физической интерпретации дебройлевских волн. Сначала была сделана попытка рассматривать частицы как волновые пакеты весьма малой протяженности и таким образом решить парадокс двойственности свойств частиц. Однако подобная интерпретация оказалась ошибочной, так как все составляющие пакет гармонические волны распространяются с разными фазовыми скоростями. При наличии большой дисперсии, свойственной дебройлевским волнам даже в вакууме, волновой пакет «расплывается». Для частиц с массой порядка массы электрона пакет расплывается практически мгновенно, в то время как частица является стабильным образованием.

Таким образом, представление частицы в виде волнового пакета оказалось несостоятельным. Проблема двойственности свойств частиц требовала иного подхода к своему решению.

Вернемся к гипотезе де-Бройля. Выясним, в каких явлениях могут проявиться волновые свойства частиц, если они, эти свойства, действительно существуют. Мы знаем, что независимо от физической природы волн - это интерференция и дифракция. Непосредственно наблюдаемой величиной в них является длина волны. Во всех случаях дебройлевская длина волны определяется формулой (3.13.1). Проведем с помощью нее некоторые оценки.

Прежде всего, убедимся, что гипотеза де-Бройля не противоречит понятиям макроскопической физики. Возьмем в качестве макроскопического объекта, например, пылинку, считая, что ее масса m = 1мг и скорость V = 1 мкм/с. Соответствующая ей дебройлевская длина волны

(3.13.6)

Т. е. даже у такого небольшого макроскопического объекта как пылинка дебройлевская длина волны оказывается неизмеримо меньше размеров самого объекта. В таких условиях никакие волновые свойства, конечно, проявить себя не могут в условиях доступных измерению размеров.

Иначе обстоит дело, например, у электрона с кинетической энергией K и импульсом . Его дебройлевская длина волны

(3.13.7)

где K должно быть измерено в электрон-вольтах (эВ). При K = 150 эВ дебройлевская длина волны электрона равна согласно (3.13.7) λ = 0,1нм. Такой же порядок величины имеет постоянная кристаллической решетки. Поэтому, аналогично тому, как в случае рентгеновских лучей, кристаллическая структура может быть подходящей решеткой для получения дифракции дебройлевских волн электронов. Однако гипотеза де-Бройля представлялась настолько нереальной, что довольно долго не подвергалась экспериментальной проверке.

Экспериментально гипотеза де-Бройля была подтверждена в опытах Дэвиссона и Джермера (1927г.). Идея их опытов заключалась в следующем. Если пучок электронов обладает волновыми свойствами, то можно ожидать, даже не зная механизма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентгеновских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаружения дифракционных максимумов (если таковые есть) измерялись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опыте использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.3.13. Если его повернуть вокруг вертикальной оси в Рис.3.13.1

Положение, соответствующее рисунку, то в этом положении

сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d = 0,215нм. Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50 0 и ускоряющем напряжении V = 54B наблюдался особенно отчётливый максимум отраженных Рис.3.13.2.

электронов, полярная диаграмма которых показала на рис.3.13.2.Этот максимум можно истолковать как интерференционный максимум первого порядка от плоской дифракционной решетки с указанным выше периодом в соответствии с формулой

Что видно из рис.3.13.3. На этом рисунке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Период d может быть измерен независимо, например, по дифракции рентгеновских лучей. Рис.3.13.3.

Вычисленная по формуле (3.13.7) дебройлевская длина волны для V = 54B равна 0,167нм. Соответствующая же длина волны, найденная из формулы (3.13.8), равна 0,165нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным подтверждением гипотезы де-Бройля.

Другими опытами, подтверждающим гипотезу де-Бройля, были опыты Томсона и Тартаковского. В этих опытах пучок электронов пропускался через поликристаллическую фольгу (по методу Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, расположенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате падения электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести постоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная картина сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (десятки кэВ), П.С. Тарковский - со сравнительно медленными электронами (до 1,7 кэВ).

Для успешного наблюдения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточно малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проделаны и также полностью подтвердили гипотезу де-Бройля в применении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что волновые свойства являются универсальным свойством всех частиц. Они не обусловлены какими-то особенностями внутреннего строения той или иной частицы, а отражают их общий закон движения.

Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возникает естественный вопрос: наблюдаемые волновые свойства выражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке, и каждый рассеянный электрон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны попадали в различные точки фотопластинки совершенно беспорядочным на первый взгляд образом (рис.3.13.4а ). Между тем при достаточно длительной экспозиции на фотопластинке возникала дифракционная картина (рис.3.13.4б ), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойствами обладают и отдельные частицы.

Таким образом, мы имеем дело с микрообъектами, которые обладают одновременно как корпускулярными, так и волно-

выми свойствами. Это позволяет нам в дальнейшем говорить

об электронах, но выводы, к которым мы придем, имеют Рис.3.13.4.

общий смысл и в равной степени применимы к любым частицам.

Парадоксальное поведение микрочастиц.

Рассмотренные в предыдущем параграфе эксперименты вынуждают констатировать, что перед нами один из загадочнейших парадоксов: что означает утверждение «электрон - это одновременно частица и волна »?

Попытаемся разобраться в этом вопросе с помощью мысленного эксперимента, аналогичного опыту Юнга по изучению интерференции света (фотонов) от двух щелей. После прохождения пучка электронов через две щели на экране образуется система максимумов и минимумов, положение которых можно рассчитать по формулам волновой оптики, если каждому электрону сопоставить дебройлевскую волну.

В явлении интерференции от двух щелей таятся сама суть квантовой теории, поэтому уделим этому вопросу особое внимание.

Если мы имеем дело с фотонами, то парадокс (частица - волна) можно устранить, предположив, что фотон в силу своей специфичности расщепляется на две части (на щелях), которые затем интерферируют.

А электроны? Они ведь никогда не расщепляются - это установлено совершенно достоверно. Электрон может пройти либо через щель 1, либо через щель 2 (рис.3.13.5). Следовательно, распределение их на экране Э должно быть суммой распределений 1 и 2 (рис.3.13.5а ) - оно показано пунктирной кривой. Рис.13.13.5.

Хотя логика в этих рассуждениях безупречна, такое распределение не осуществляется. Вместо этого мы наблюдаем совершенно иное распределение (рис.3.13.5б ).

Не есть ли это крушение чистой логики и здравого смысла? Ведь все выглядит так, как если бы 100 + 100 = 0 (в точке P). В самом деле, когда открыта или щель 1 или щель 2, то в точку P приходит, скажем, по 100 электронов в секунду, а если открыты обе щели, то ни одного!..

Более того, если сначала открыть щель 1, а потом постепенно открывать щель 2, увеличивая ее ширину, то по здравому смыслу число электронов, приходящих в точку P ежесекундно, должно расти от 100 до 200. В действительности же - от 100 до нуля.

Если подобную процедуру повторить, регистрируя частицы, например, в точке O (см. рис.3.13.5б ), то возникает не менее парадоксальный результат. По мере открывания щели 2 (при открытой щели 1) число частиц в точке O растет не до 200 в секунду, как следовало бы ожидать, а до 400!

Как открывание щели 2 может повлиять на электроны, которые, казалось бы, проходят через щель 1? Т. е. дело обстоит так, что каждый электрон, проходя через какую-то щель, «чувствует» и соседнюю щель, корректируя свое поведение. Или подобно волне проходит сразу через обе щели (!?). Ведь иначе интерференционная картина не может возникнуть. Попытка все же определить, через какую щель проходит тот или иной электрон, приводит к разрушению интерференционной картины, но это уже совсем другой вопрос.

Какой же вывод? Единственный способ «объяснения», этих парадоксальных результатов заключается в создании математического формализма, совместимого с полученными результатами и всегда правильно предсказывающего наблюдаемые явления. Причем, разумеется, этот формализм должен быть внутренне непротиворечивым.

И такой формализм был создан. Он ставит в соответствие каждой частице некоторую комплексную пси-функцию Ψ(r , t ). Формально она обладает свойствами классических волн, поэтому ее часто называют волновой функцией . Поведение свободной равномерно движущейся в определенном направлении частицы описывает плоская волна де-Бройля

Но более подробно об этой функции, ее физическом смысле и уравнении, которое управляет ее поведением в пространстве и времени, речь пойдет в следующей лекции.

Возвращаясь к поведению электронов при прохождении через две щели, мы должны признать: тот факт, что в принципе нельзя ответить на вопрос, через какую щель проходит электрон (не разрушая интерференционной картины), несовместим с представлением о траектории. Таким образом, электронам, вообще говоря, нельзя приписать траектории .

Однако при определенных условиях, а именно когда дебройлевская длина волны микрочастицы становится очень малой и может оказаться много меньше, например, расстояния между щелями или атомных размеров, понятие траектории снова приобретает смысл. Рассмотрим этот вопрос более подробно и сформулируем более корректно условия, при которых можно пользоваться классической теорией.

Принцип неопределенности

В классической физике исчерпывающее описание состояния частицы определяется динамическими параметрами, такими как координаты, импульс, момент импульса, энергия и др. Однако реальное поведение микрочастиц показывает, что существует принципиальный предел точности, с которой подобные переменные могут быть указаны и измерены.

Глубокий анализ причин существования этого предела, который называют принципом неопределенности , провел В. Гейзенберг (1927г.). Количественные соотношения, выражающие этот принцип в конкретных случаях, называют соотношениями неопределенностей .

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Существуют пары величин, которые не могут быть одновременно определены точно.

Наиболее важными являются два соотношения неопределенностей.

Первое из них ограничивает точности одновременного измерения координат и соответствующих проекций импульса частицы. Для проекции, например, на ось х оно выглядит так:

Второе соотношение устанавливает неопределенность измерения энергии, ΔE , за данный промежуток времени Δt :

Поясним смысл этих двух соотношений. Первое из них утверждает, что если положение частицы, например, по оси х известно с неопределенностью Δx , то в тот же момент проекцию импульса частицы на эту же ось можно измерить только с неопределенностью Δp= ћ x . Заметим, что эти ограничения не касаются одновременного измерения координаты частицы по одной оси и проекции импульса - по другой: величины x и p y , y и p x и т. д. могут иметь одновременно точные значения.

Согласно второму соотношению (3.13.11) для измерения энергии с погрешностью ΔЕ необходимо время, не меньшее, чем Δt =ћ E . Примером может служить «размытие» энергетических уровней водородоподобных систем (кроме основного состояния). Это связано с тем, что время жизни во всех возбужденных состояниях этих систем порядка 10 -8 с. Размытие же уровней приводит к уширению спектральных линий (естественное уширение), которое действительно наблюдается. Сказанное относится и к любой нестабильной системе. Если время жизни ее до распада порядка τ, то из-за конечности этого времени энергия системы имеет неустранимую неопределенность, не меньшую, чем ΔE≈ ћ /τ.

Укажем еще пары величин, которые не могут быть одновременно точно определены. Это любые две проекции момента импульса частицы. Поэтому не существует состояния, в котором бы все три и даже какие-либо две из трех проекций момента импульса имели определенные значения.

Обсудим более подробно смысл и возможности соотношения Δx ·Δp x ≥ћ . Прежде всего, обратим внимание на то, что оно определяет принципиальный предел неопределенностей Δx и Δp x , с которыми состояние частицы можно характеризовать классически, т.е. координатой x и проекцией импульса p x . Чем точнее x , тем с меньшей точностью, возможно установить p x , и наоборот.

Подчеркнем, что истинный смысл соотношения (3.13.10) отражает тот факт, что в природе объективно не существует состояний частицы с точно определенными значениями обеих переменных, x и p х. Вместе с тем мы вынуждены, поскольку измерения проводятся с помощью макроскопических приборов, приписывать частицам не свойственные им классические переменные. Издержки такого подхода и выражают соотношения неопределенностей.

После того, как выяснилась необходимость описывать поведение частиц волновыми функциями, соотношения неопределенностей возникают естественным образом - как математическое следствие теории.

Считая соотношение неопределенностей (3.13.10) универсальным, оценим, как бы оно сказалось на движении макроскопического тела. Возьмем очень маленький шарик массы m = 1мг. Определим, например, с помощью микроскопа его положение с погрешностью Δx≈ 10 -5 см (она обусловлена разрешающей способностью микроскопа). Тогда неопределенность скорости шарика Δυ = Δp /m≈ (ћ x )/m ~ 10 -19 см/с. Такая величина недоступна никакому измерению, а потому и отступление от классического описания совершенно несущественно. Другими словами, даже для такого маленького (но макроскопического) шарика понятие траектории применимо с высокой степенью точности.

Иначе ведет себя электрон в атоме. Грубая оценка показывает, что неопределенность скорости электрона, движущегося по боровской орбите атома водорода, сравнима с самой скоростью: Δυ ≈ υ. При таком положении представление о движении электрона по классической орбите теряет всякий смысл. И вообще, при движении микрочастиц в очень малых областях пространства понятие траектории оказывается несостоятельным .

Вместе с тем, при определенных условиях движение даже микрочастиц может рассматриваться классически, т. е. как движение по траектории. Так происходит, например, при движении заряженных частиц в электромагнитных полях (в электронно-лучевых трубках, ускорителях и др.). Эти движения можно рассматривать классически, поскольку для них ограничения, обусловленные соотношением неопределенностей, пренебрежимо малы по сравнению с самими величинами (координатами и импульсом).

Опыт со щелью . Соотношение неопределенностей (3.13.10) проявляет себя при любой попытке точного измерения положения или импульса микрочастицы. И каждый раз мы приходим к «неутешительному» результату: уточнение положения частицы приводит к увеличению неопределенности импульса, и наоборот. В качестве иллюстрации такой ситуации рассмотрим следующий пример.

Попытаемся определить координату x свободно движущейся с импульсом p частицы, поставив на ее пути перпендикулярно направлению движения экран со щелью шириной b (рис.3.13.6). До прохождения частицы через щель ее проекция импульса p х имеет точное значение: p x = 0. Это значит, что Δ p x = 0, но

Координата x частицы является совершенно неопреде ленной согласно (3.13.10): мы не можем сказать, Рис.3.13.6.

пройдет ли данная частица через щель.

Если частица пройдет сквозь щель, то в плоскости щели координата x будет зарегистрирована с неопределенностью Δx ≈ b . При этом вследствие дифракции с наибольшей вероятностью частица будет двигаться в пределах угла 2θ, где θ - угол, соответствующий первому дифракционному минимуму. Он определяется условием, при котором разность хода волн от обоих краев щели будет равна λ (это доказывается в волновой оптике):

В результате дифракции возникает неопределенность значения p х - проекции импульса, разброс которого

Учитывая, что b ≈ Δх и p = 2πћ /λ., получим из двух предыдущих выражений:

что согласуется по порядку величины с (3.13.10).

Таким образом, попытка определить координату x частицы, действительно, привела к появлению неопределенности Δp в импульсе частицы.

Анализ многих ситуаций, связанных с измерениями, показывает, что измерения в квантовой области принципиально отличаются от классических измерений. В отличие от последних, в квантовой физике существует естественный предел точности измерений. Он в самой природе квантовых объектов и не может быть преодолен никаким совершенствованием приборов и методов измерений. Соотношение (3.13.10) и устанавливает один из таких пределов. Взаимодействие между микрочастицей и макроскопическим измерительным прибором нельзя сделать сколь угодно малым. Измерение, например координаты частицы, неизбежно приводит к принципиально неустранимому и неконтролируемому искажению состояния микрочастицы, а значит и к неопределенности в значении импульса.

Некоторые выводы .

Соотношение неопределенностей (3.13.10) является одним из фундаментальных положений квантовой теории. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, в частности:

1. Невозможно состояние, в котором частица находилась бы в состоянии покоя.

2. При рассмотрении движения квантового объекта необходимо во многих случаях отказаться от самого понятия классической траектории.

3. Часто теряет смысл деление полной энергии E частицы (как квантового объекта) на потенциальную U и кинетическую K . В самом деле, первая, т. е. U , зависит от координат, а вторая - от импульса. Эти же динамические переменные не могут иметь одновременно определенного значения.

Главная > Практикум

Волновые свойства микрочастиц.

Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны: λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплексной волновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер, в отличие от объектов макромира, которые описываются законами классической механики.Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.Открытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.

Дифракция электронов.

Для получения спектра световых волн и определения их длины используется дифракционная решетка. Она представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками, например, стеклянная пластинка с нанесенными на ней царапинами (штрихами). Как и от двух щелей (смотри лаб. работу 2), при прохождении через такую решетку плоской монохроматической волны, каждая щель станет источником вторичных когерентных волн, в результате сложения которых возникнет интерференционная картина. Условие возникновения максимумов интерференции на экране, расположенном на расстоянии L от дифракционной решетки, определяется разностью хода между волнами от соседних щелей. Если в точке наблюдения разность хода будет равна целому числу волн, то произойдет их усиление и будет наблюдаться максиму интерференционной картины. Расстояние между максимумами для света определенной длины волны λ определяется по формуле: h 0 = λL/d. Величина d называется периодом решетки и равна сумме ширины прозрачного и непрозрачного промежутков. Для наблюдения дифракции электронов в качестве естественной дифракционной решетки используют кристаллы металла. Периоду d такой естественной дифракционной решетки соответствует характерное расстояние между атомами кристалла.Схема установки для наблюдения электронной дифракции приведена на рисунке 1. Проходя разность потенциалов U между катодом и анодом, электроны приобретают кинетическую энергию E кин. = Ue, где e - заряд электрона. Из формулы кинетической энергии E кин. = (m e v 2)/2 можно найти скорость электрона: . Зная массу электрона m e можно определить его импульс и соответственно длину волны де Бройля.

По такой же схеме в 30-е годы был создан электронный микроскоп, дающий увеличение в 10 6 раз. В нем вместо световых волн используются волновые свойства пучка электронов, ускоренных до больших энергий в условиях глубокого вакуума. Были изучены существенно более мелкие объекты, чем с помощью светового микроскопа, а по разрешающей способности улучшение - в тысячи раз. При благоприятных условиях можно сфотографировать даже отдельные крупные атомы, максимально близко расположенные детали объекта размером порядка 10 -10 м. Без него вряд ли была возможность контролировать дефектов микросхем, получать чистые вещества, развивать микроэлектронику, молекулярную биологию и т.д.

Лабораторная работа № 7. Порядок выполнения работы.

Откройте рабочее окно.

А). Переместив движок в правой стороне рабочего окна, задайте произвольное значение ускоряющего напряжения U (пока вы не переместите движок, кнопки будут неактивны!!! ) и запишите это значения. Нажмите кнопку Пуск . Пронаблюдайте на экране рабочего окна, как проявляется интерференционная картина при дифракции электронов на металлической фольге. Обратите внимание, что попадание электронов в различные точки экрана носит случайный характер, однако вероятность попадания электронов в определенные области экрана равна нулю, а в другие отлична от нуля. Именно поэтому и проявляется интерференционная картина.Дождитесь, пока на экране четко не проявятся концентрические круги интерференционной картины и нажмите кнопку Тест . Внимание! Пока интерференционная картина не станет достаточно четкой, кнопка Тест будет неактивна. Она станет активной после того, как курсор мыши, при наведении на эту кнопку, изменит вид со стрелки на руку!!! На экране появится графическое изображение вероятности распределения электронов по оси x, соответствующее интерференционной картине. Перетащите измерительную линейку в область графика. С помощью правой кнопки мыши увеличьте изображение графика и определите расстояние между двумя крайними максимумами интерференции с точностью до десятых долей миллиметра. Запишите это значение. Разделив, это значение на 4 вы получите расстояние h 0 между максимумами интерференционной картины. Запишите его. С помощью правой кнопки мыши верните изображение в исходное состояние. Используя формулы в теоретической части определите длину волны де Бройля. Подставьте это значение в окно теста и нажмите кнопку Проверить Правильно!!! Б). Используя формулы в теоретической части, по ускоряющему напряжению найдите скорость электронов, и запишите ее. Подставьте это значение в окно теста и нажмите кнопку Проверить . Если расчеты сделаны правильно, появиться надпись Правильно!!! Рассчитайте импульс электрона, и по формуле де Бройля найдите длину волны. Сравните полученное значение с найденным по интерференционной картине.В). Измените напряжение и нажав кнопку Тест повторите пункты А и Б . Результаты проведенных тестов покажите преподавателю. По результатам измерений составьте таблицу:

Скорость электрона v

Импульс электрона p

Г). Сравните рассчитанное значение λ для разных напряжений. Как меняется длина волны с изменением скорости электрона?Д). Волновые свойства проявляются только для объектов микромира. Однако в формуле де Бройля нет никаких указаний о том, что ее можно использовать только для микрообъектов. Зная импульс макрообъекта, можно рассчитать длину волны де Бройля. Рассчитайте ее для автомобиля массой 1000 кг, движущегося со скоростью 150 км/час. Сравните ее с характерным минимальным размером в квантовой физике, так называемой Планковской длиной (10 -33 см). Почему, автомобиль не может проявить свои волновые свойства – например, «не заметить» какой-нибудь объект?

Лабораторная работа № 7. Форма отчета.

В заголовке указываются:


НАЗВАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

Задание. Дифракция электронов.

А). Найденное расстояние h 0 . Расчет длины волны λ.

Б). Расчеты скорости электрона, импульса и длины волны.

В). Повтор пунктов А и Б .Таблица с результатами:

h 0 (расстояние между максимумами)

Скорость электрона v

Импульс электрона p

Г). Анализ результатов. Ответы на вопросы.

Д). Определение длины волны де Бройля для автомобиля. Ответы на вопросы. Выводы.

1. В чем суть гипотезы Луи де Бройля?
2. Какие эксперименты подтвердили эту гипотезу?
3. Какова специфика описания состояния объектов микромира в отличие от описания объектов макромира?
4. Почему открытие волновых свойств у микрочастиц, наряду с проявлением корпускулярных свойств у электромагнитных волн (света) позволило говорить о корпускулярно-волновом дуализме материи? Поясните суть этих представлений.
5. Как зависит длина волны де Бройля от массы и от скорости микрочастицы?
6. Почему макрообъекты не проявляют волновых свойств?

Лабораторная работа № 8. ОПИСАНИЕ

Дифракция фотонов. Соотношение неопределенностей.

Рабочее окно

Вид рабочего окна приведен на Рис. 1.1. В рабочем окне приведена модель дифракции фотонов. В нижней правой части окна расположены кнопки теста. В окно под кнопками теста вводятся рассчитанные параметры. В верхнем положении переключателя это неопределенность импульса фотона, а в нижнем - произведение неопределенности импульса на неопределенность координаты x. В окнах, расположенных ниже, фиксируется число правильных ответов и число попыток. Перемещением движков можно изменять длину волны фотона и размеры щели.

Рисунок 1.1.

Для измерения расстояния от максимума дифракционной картины до минимума используется движок расположенный справа от окна модели. Измерения проводятся для нескольких значений размеров щели. Тестовая система фиксирует количество правильно данных ответов и общее число попыток.

Лабораторная работа № 8. Теория

Соотношение неопределенностей.

ЦЕЛЬ РАБОТЫ: На примере дифракции фотонов дать представление студентам о соотношении неопределенностей. Используя модель дифракции фотонов на щели, наглядно продемонстрировать, что чем точнее определена координата x фотона, тем менее точно определено значение проекции его импульса p x .

Соотношение неопределенностей

В 1927 г. В.Гейзенберг открыл так называемые соотношения неопределенностей , в соответствии с которыми неопределенности координат и импульсов связаны между собой соотношением:
, где
, h постоянная Планка. Своеобразие описания микромира в том, что произведение неопределенности (точности определения) положения Δx и неопределенности (точности определения) импульса Δp x всегда должно быть равно или больше константы, равной –. Из этого следует, что уменьшение одной из этих величин должно приводить к увеличению другой. Хорошо известно, что любое измерение сопряжено с определенными ошибками и совершенствуя приборы измерения, можно уменьшать погрешности, т. е. повышать точность измерения. Но Гейзенберг показал, что существуют сопряженные (дополнительные) характеристики микрочастицы, точное одновременное измерение которых, принципиально невозможно. Т.е. неопределенность – свойство самого состояния, оно не связано с точностью прибора.Для других сопряженных величин – энергии E и времени t соотношение имеет вид: . Это означает, что при характерном времени эволюции системы Δt , погрешность определения ее энергии не может быть меньше чем . Из этого соотношения следует возможность возникновения из ничего, так называемых, виртуальных частиц на промежуток времени меньший, чем
и обладающих энергией ΔE . При этом закон сохранения энергии не будет нарушен. Поэтому по современным представлениям вакуум это не пустота, в которой отсутствуют поля и частицы, а физическая сущность, в которой постоянно возникают и исчезают виртуальные частицы. Одним из основных принципов квантовой механики является принцип неопределенностей , открытый Гейзенбергом. Получение информации об одних величинах, описывающих микрообъект, неизбежно ведет к уменьшению информации о других величинах, дополнительных к первым. Приборы, регистрирующие величины, связанные соотношениями неопределенности, разного типа, они дополнительны друг к другу. Под измерением в квантовой механике подразумевается всякий процесс взаимодействия между классическим и квантовыми объектами, происходящий помимо и независимо от какого-либо наблюдателя. Если в классической физике измерение не возмущало сам объект, то в квантовой механике каждое измерение разрушает объект, уничтожая его волновую функцию. Для нового измерения объект нужно готовить заново. В этой связи Н. Бор выдвинул п ринцип дополнительности , суть которого в том, что для полного описания объектов микромира необходимо использование, двух противоположных, но дополняющих друг друга представлений.

Дифракция фотонов, как иллюстрация соотношения неопределенностей

С точки зрения квантовой теории свет можно рассматривать как поток световых квантов - фотонов. При дифракции монохроматической плоской волны света на узкой щели, каждый фотон, прошедший через щель, попадает в определенную точку на экране (Рис 1.). Предсказать, в какую именно точку попадет фотон невозможно. Однако в совокупности, попадая в разные точки экрана, фотоны дают дифракционную картину. Когда фотон проходит через щель, можно говорить, что его координата x, была определена с погрешностью Δx, которая равна размеру щели. Если фронт плоской монохроматической волны параллелен плоскости экрана со щелью, то каждый фотон имеет импульс, направленный по оси z перпендикулярно экрану. Зная длину волны, этот импульс можно точно определить: p = h/λ.

Однако после прохождения через щель, направление импульса меняется, в результате чего и наблюдается дифракционная картина. Модуль импульса остается постоянным, так как при дифракции света длина волны не меняется. Отклонение от первоначального направления возникает за счет появления составляющей Δp x вдоль оси х (Рис. 1.). Величину этой составляющей для каждого конкурентного фотона определить невозможно, но максимальное ее значение по модулю определяет ширину 2S дифракционной картины. Максимальное значение Δp x и является мерой неопределенности импульса фотона, возникающей при определении его координаты с погрешностью Δx. Как видно из рисунка, максимальное значение Δp x равно: Δp x = psinθ,
. Если L >> s , тогда можно записать: sinθ =s/L и Δp x = p(s/L ).

Лабораторная работа № 8. Порядок выполнения работы.

Ознакомьтесь с теоретической частью работы.

Откройте рабочее окно. А). Переместив движки с правой стороны рабочего окна, задайте произвольные значения длины волны λ и размера щели Δx. Запишите эти значения. Нажмите кнопку Тест . Используя правую кнопку мыши, увеличьте изображение дифракционной картины. С помощью движка, находящегося справа от изображения дифракционной картины, определите максимальное расстояние s, на которое отклоняются фотоны по оси x, и запишите его. С помощью правой кнопки мыши верните изображение в исходное состояние. Используя формулы в теоретической части определите Δp x . Подставьте это значение в окно теста и нажмите кнопку Проверить . Если расчеты сделаны правильно, появиться надпись Правильно!!! Б). Используя найденные значения, найдите произведение Δp x Δx. Подставьте это значение в окно теста и нажмите кнопку Проверить . Если расчеты сделаны правильно, появиться надпись Правильно!!! .В). Измените размер щели и нажав кнопку Тест повторите пункты А и Б . Результаты проведенных тестов покажите преподавателю. По результатом измерений составьте таблицу:

Δx (ширина щели)

Импульс фотона p

Δp x (рассчитанное)

Г). Сравните рассчитанное значение Δp x Δx с постоянной Планка h и сделайте вывод. Как меняется погрешность в определении импульса с уменьшением погрешности измерения координаты?Д). С точки зрения квантовой механики классическим объектом (прибором) является экран со щелью, а квантовым объектом фотон. В момент измерения (прохождения фотона сквозь щель) мы с погрешностью Δx определяем координату x фотона, при этом возникает неопределенность Δp x импульса фотона. Можно ли после взаимодействия с прибором точно указать траекторию движения этого фотона? Останется ли его координата x после прохождения щели той же самой. Какова роль прибора в микромире?

Лабораторная работа № 8. Форма отчета.

Общие требования к оформлению.

Работа выполняется на листах бумаги формата A4, или на двойных тетрадных листах.

В заголовке указываются:

Фамилия и инициалы студента, № группы
НАЗВАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

Каждое задание лабораторной работы оформляется как ее раздел и должно иметь заголовок. В отчете по каждому заданию, должны быть даны ответы на все вопросы и, если это указано, сделаны выводы и приведены необходимые рисунки. Результаты тестовых заданий обязательно должны быть показаны преподавателю. В заданиях, включающих в себя измерения и расчеты, должны быть приведены данные измерений и данные проведенных расчетов.

Задание. Соотношение неопределенностей.

А). Значения длины волны λ и размера щели Δx. Измеренное максимальное расстояние s. Расчеты импульса фотона и Δp x .

Б). Расчеты произведения Δp x Δx.
В). Повтор пунктов А и Б .Таблица с результатами:

Δx (ширина щели)

Импульс фотона p

Δp x (рассчитанное)

Г). Анализ результатов. Выводы. Ответы на вопросы.

Д). Ответы на вопросы.

Контрольные вопросы для проверки усвоения темы лабораторной работы:

1. Поясните, почему из соотношения неопределенностей следует невозможность одновременного точного определения сопряженных величин?
2. Энергетические спектры излучения связаны с переходом электронов с более высоких энергетических уровней на более низкие. Этот переход происходит за определенный промежуток времени. Можно ли абсолютно точно определить энергию излучения?
3. Изложите суть принципа неопределенностей.
4. Какова роль прибора в микромире?
5. Из соотношения неопределенностей объясните, почему при дифракции фотонов уменьшение размера щели приводит к увеличению ширины дифракционной картины?
6. Изложите суть принципа дополнительности Бора.
7. Чем по современным представлениям является вакуум?

Лабораторная работа № 9. ОПИСАНИЕ

Тепловое движение (1)

Рабочее окно

Вид рабочего окна приведен на Рис. 6.1. В левой части рабочего окна приведена модель теплового движения частиц в объеме, который разделен на две части перегородкой. При помощи мыши перегородку можно переместить влево (нажав левую кнопку мыши на ее верхней части) или удалить (щелкнув на нижней части).

Р

исунок 6.1.

В правой части рабочего окна приведены: температура (в правой и левой части, моделируемого объема), мгновенные скорости частиц, а также регистрируется число столкновений частиц со стенками в процессе наблюдения. Кнопкой Пуск запускается движение частиц, при этом начальные скорости и расположение частиц задаются случайным образом. В окошке рядом с кнопкой Пуск задается число частиц. Кнопка Стоп останавливает движение. При нажатии на кнопку Продолжить движение возобновляется, и очищаются окна регистрации числа столкновений со стенками. При помощи кнопки Нагрев можно увеличивать температуру в правой части моделируемого объема. Кнопка Выкл. отключает нагрев. Переключателем справа от кнопок управления можно задать несколько разных режимов работы.

Для открытия рабочего окна нажмите на его изображение.

Лабораторная работа № 9. Теория

КЛАССИЧЕСКИЕ МОДЕЛИ АТОМА И ИХ НЕДОСТАТКИ.

Идеи о том, что атомы не являются неделимыми частицами и содержат в качестве составляющих

частиц элементарные заряды, были впервые высказаны в конце XIX в. Термин "электрон" предложил в 1881 г. английский физик Джордж Стоней. В 1897 г. электронная гипотеза получила экспериментальное подтверждение в исследованиях Эмиля Вихерта и Джозефа Джана Томсона . С этого момента началось создание разнообразных электронных моделей атомов и молекул. Первая модель Томсона предполагала, что положительный заряд равномерно рассредоточен по всему атому, а в него, подобно изюму в булочке, вкраплены электроны. Несоответствие этой модели экспериментальным данным стало ясно после проведения в 1906 г. опыта Эрнестом Резерфордом, который исследовал

процесс рассеяния а-частиц атомами. Из опыта был сделан вы вод, что положительный заряд сосредоточен внутри образования, существенно меньшего, чем размеры атома. Это образование назвали атомным ядром, размеры которого составляли 1 о- 12 см, а размеры атома- 1 о-в см.

В соответствии с классическими Представлениями электромагнетизма между каждым электроном и ядром должна действовать кулоновская сила притяжения. Зависимость этой силы от расстояния должна быть такой же, как и в законе всемирного тяготения. Следовательно, движение

электронов в атоме должно быть подоб но движению планет Солнечной системы. Так родилась планетарная модель атома Резерфорда. Дальнейшее исследование устойчивости атома дало ошеломляющий результат: расчеты показали, что за время 1 о-9 с электрон должен упасть на ядро

вследствие потери энергии на излучение. Кроме того, такая модель давала непрерывные, а не дискретные спектры излучения атомов.

ТЕОРИЯ АТОМА БОРА.

Следующий важный шаг в разработке теории атомов был сделан Нильсом Бором.

Важнейшей гипотезой, выдвинутой Бором в 1913 г., явилась гипотеза о дискретном строении

энергетических уровней электрона в атоме. Это положение проиллюстрировано на энергетических

диаграммах. Традиционно на энергетических диаграммах энергия откладывается по вертикальной

оси. Отличие движения тела в гравитационном поле от движения электрона в атоме в соответствии с гипотезой Бора состоит в том, что энергия тела может непрерывно изменяться, а энергия электрона при отрицательных значениях может принимать ряд дискретных значений, изображенных на рисунке отрезками голубого цвета. Эти дискретные значения были названы уровнями энергии или, иначе, энергетическими уровнями. Конечно же, идея дискретных уровней энергии была взята из гипотезы Планка. Изменение энергии электрона в соответствии с теорией Бора могло происходить только скачком (с одного уровня энергии на другой). Теория Бора прекрасно объясняла линейчатый характер

атомных спектров. Однако на вопрос о причине дискретности

уровней теория фактически не давала ответа.

ВОЛНЫ ВЕЩЕСТВА.

Следующий шаг в развитии теории микромира был сделан Луи де Бройлем. В 1924 г. он высказал предположение о том, что движение микрочастиц нужно описывать не как классическое механическое

движение, а как некоторое волновое движение. Именно из законов волнового движения должны быть получены рецепты вычисления различ ных наблюдаемых величин. Так в науке наряду с волнами электромагнитного поля появились волны вещества. Гипотеза о волновом характере движения частиц была такой же смелой, как и гипотеза Планка о дискретных свойствах поля. Эксперимент, прямо подтверждающий гипотезу де Бройля, был поставлен только в 1927 г. В этом эксперименте наблюдалась дифракция электронов на кристалле, подобно дифракции электромагнитной волны. Гипотеза о волнах вещества позволяла объяснить дискретную природу

энергетических уровней. Из теории волн было известно, что ограниченная в пространстве волна всегда имеет дискретные частоты. Примерам является волна в таком музыкальном инструменте, как флейта. Частота звучания в этом случае определяется размерами пространства, которыми ограничена волна (размерами флейты). Оказывается, что это общее свойство волн. Но в соответствии с гипотезой Планка частоты кванта электромагнитной волны пропорциональны энергии кванта. Следовательно, и энергия электрона должна принимать дискретные значения. Идея де Бройля оказалась очень плодотворной, хотя, как уже говорилось, прямой эксперимент, подтверждающий волновые свойства электрона , был проведен лишь в 1927 г. В 1926 г. Эрвин Шредингер вывел уравнение, которому должна подчиняться волна электрона, и, решив это уравнение применительно к атому водорода, получил все результаты, которые была способна дать теория Бора. Фактически это было началом современной теории, описывающей процессы в микромире, поскольку волновое уравнение легко обобщалось для самых разных систем - многоэлектронных атомов, молекул, кристаллов. Развитие теории привело к пониманию того, что волна, соответствующая частице, определяет вероятность нахождения частицы в данной точке пространства. Так в физику микромира вошло понятие вероятности. Согласно новой теории волна, соответствующая частице, полностью определяет движение частицы. Но общие свойства волн таковы, что волна не может быть локализована в какой-либо точке пространства, т.е. бессмысленно говорить о координатах частицы в данный момент времени. Следствием этого явилось полное исключение из физики микромира таких понятий, как траектория движения частицы и электронные орбиты в атоме. Красивая и наглядная планетарная модель атома, как оказалось,

Корпускулярно-волновой дуализм – свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других – как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц – фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/λ, где λ – длина электромагнитной волны, а h – постоянная Планка. Эта формула сама по себе – свидетельство дуализма. В ней слева – импульс отдельной частицы (фотона), а справа – длина волны фотона. Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/λ (р – импульс электрона, а λ – его длина волны де Бройля). Корпускулярно-волновой дуализм лежит в основе квантовой физики.

Волна(мех) – процесс, всегда связанный с к-либо материальной средой, занимающей определенный объем в пространстве.

64. Волны де Бройля. Дифракция электронов Волновые свойства микрочастиц.

Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны : λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплекснойволновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер , в отличие от объектов макромира, которые описываются законами классической механики.

Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.

Октрытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.