ВОЕННАЯ МЫСЛЬ № 12/1987, стр. 36-44

УПРАВЛЕНИЕ ВОЙСКАМИ

Б. А. КОКОВИ X ИН ,

контр-адмирал запаса, кандидат военно-морских наук, доцент

В статье излагается сугубо личное мнение автора. Приглашаем читателей высказать свое отношение к рассматриваемым в ней вопросам.

В ДАННОЙ статье рассматривается вопрос создания математических моделей (методик) для обоснования расчетами решений, принимаемых командующими (командирами) при подготовке и ведении боевых действий. В принципе эта проблема существует в течение всей истории войн и военного искусства, но наиболее остро встала в XX веке в связи с появлением и быстрым развитием новых видов оружия и техники. В настоящее время она заключается в том, чтобы создать такие математические модели, которые могли бы полнее обеспечивать практическую деятельность командующих (командиров) и их штабов.

Из-за ряда обстоятельств эта задача полностью еще не решена. Долгое время считалось, что основные трудности и неудачи в ее решении обусловлены недостаточными возможностями вычислительной техники и математики. При современном уровне их развития эта точка зрения становится неубедительной и несостоятельной. Сейчас первоочередное внимание уделяется методологической стороне проблемы. Поэтому прежде всего необходимо вскрыть, проанализировать и устранить причины, затрудняющие создание приемлемых для практики моделей операций (боевых действий). На мой взгляд, первая (главная) причина лежит в области основных понятий (категорий) теории войны и военного искусства, а поэтому прежде всего важно точно знать, что представляют собой вооруженная борьба и составляющие ее военные действия, называемые удар, бой, сражение, операция, каковы их сущность, внутреннее, объективно необходимое содержание и структура, как они взаимосвязаны между собой, чем отличаются друг от друга.

К сожалению, на эти вопросы, как мне представляется, нет четких, ясных, логически обоснованных ответов. Например, «боевые действия» теория определяет так: 1) организованные действия частей, соединений всех видов ВС при выполнении поставленных боевых задач. К боевым действиям оперативно-стратегического и стратегического масштаба обычно применяют термин «военные действия»; 2) форма оперативного применения объединений и соединений видов ВС в рамках операции (или между операциями) в составе объединения более крупного масштаба. Разновидностями боевых действий являются систематические боевые действия как особая форма оперативного применения объединений войск ПВО, ВВС, ВМФ. Эти неясные, противоречивые, неподдающиеся логическому объяснению определения, на мой взгляд, порождены масштабной классификацией, согласно которой действия войск принято подразделять на боевые, оперативные и стратегические не в зависимости от их сущности и объективно необходимого содержания, а «в зависимости от масштаба вооруженной борьбы, возможностей войск (сил), цели и характера боевых задач».

Возникает вопрос: можно ли разработать практически приемлемые математические модели, не оперируя достаточно точными и глубокими основными понятиями (категориями) военного искусства? Вообще можно. Но к чему это ведет? Прошло много лет, затрачено немало сил и средств, но проблема так и не нашла своего полного теоретического и практического решения. Более того, порой поднимается вопрос, в том ли направлении ведутся исследования. Если необходимые модели создавать без строгих и глубоких теоретических обоснований, получаемые с их помощью результаты не будут заслуживать полного доверия. «Нельзя успешно двигаться вперед методом проб и ошибок. Это дорого обходится обществу». Следовательно, для обеспечения надежного, теоретически обоснованного решения проблемы прежде всего надо уточнить и углубить наши понятия о сущности, содержании, структуре вооруженной борьбы, составных частях военного искусства.

Для этого требуется.

Первое. Твердо придерживаться марксистско-ленинского определения войны как организованной вооруженной борьбы между государствами или классами внутри государства, которая по своей социально-политической природе есть «продолжение политики насильственными средствами». «Насилие - это в настоящее время армия и военный флот...» (К. Маркс и Ф. Энгельс. Соч., т. 20, с. 171). Политическая, экономическая, идеологическая и другие формы борьбы не только не прекращаются, а, наоборот, ожесточаются во время войны, оказывая в конечном итоге решающее влияние на ее исход, что, однако, не изменяет сущности и объективно необходимого содержания войны как вооруженной борьбы. Данное в Советской Военной Энциклопедии определение войны как совокупности всех форм борьбы, включая и вооруженную, повторяет устаревшую точку зрения, существовавшую еще в начале XIX века. Я считаю, что такое определение искаженно отражает действительность, вносит путаницу в понимание предмета военной науки, затрудняет решение теоретических и прикладных проблем, в том числе и моделирования операций (боевых действий). Исторический опыт подтверждает, что военная наука всегда занималась и занимается войной как вооруженной борьбой и военным искусством, а поэтому теория войны и военного искусства - это и есть собственно «военная» наука, ее философская (фундаментальная) часть.

Второе . Отделить теорию войны и военного искусства от теоретических описаний типовых вариантов ведения войны и военных действий в зависимости от складывающихся условий военно-политической обстановки в мире и взглядов военного руководства противостоящих сторон Дело в том, что типовые варианты и взгляды в форме уставных положений подменили военную науку. Офицерский корпус командно-штабной специальности учится, работает, обучает подчиненных не по науке, а по взглядам; действия своих войск организуются по нашим взглядам, противник оценивается по его взглядам. Все это неизбежно ведет к принятию шаблонных решений, которые не могут в полной мере обеспечить разработку математических моделей, приемлемых для штабов.

Третье. Обучение офицерского состава и лиц, привлекаемых к моделированию военных действий, необходимо начинать с доказательства истинности (соответствия объективной действительности) категорий военной науки, подобно тому, как, например, в геометрии доказываются теоремы. В. И. Ленин подчеркивал: «Категории надо вывести (а не произвольно или механически взять) (не «рассказывая», не «уверяя», а доказывая)...» (Полн. собр. соч., т. 29, с. 86). Это позволит обучаемым одновременно познать сущность способов стратегических, оперативных, боевых действий и теорию военного искусства в целом.

В работе «Категории военного искусства в свете материалистической диалектики» сделана попытка вывести категории войны и военного искусства, уточнить и свести их во взаимосвязанную систему, сформулировать следующие основные положения.

Действия войск (сил) в войне («военные» действия) включают развертывание, переразвертывание и создание группировок: на театре военных действий - для ведения взаимосвязанных операций («стратегические» действия); в операции - для ведения взаимосвязанных боев («оперативные» действия); в бою - для взаимосвязанного применения оружия, а также само его применение по противнику («боевые» действия). Следовательно, в современных условиях при ведении войны только обычным оружием военные действия - это совокупность стратегических, оперативных и боевых (тактических) действий. В принципе они могут вестись любым количеством войск, но верхний предел их целесообразно ограничивать таким количеством, при дальнейшем увеличении которого вероятность выполнения поставленной задачи практически остается на том же уровне.

Вооруженная борьба и составляющие ее военные действия ведутся не вообще, как кто хочет, а объективно необходимыми способами, которыми являются бой, операция, перегруппировка, военные действия. Способ - это организованные определенным образом действия войск данного состава при выполнении поставленной задачи в конкретных условиях сложившейся обстановки. Военные действия, как бы они ни назывались, есть не что иное, как проявление сущностей основных способов при различном их сочетании. При этом действия войск как одной, так и другой стороны в ходе войны непрерывно переходят друг в друга в строго определенной последовательности, которую невозможно изменить. Сущность их заключается в объединении и сосредоточении усилий, возможностей войск там и в тот момент, где и когда это необходимо. В бою это достигается путем объединения огневой мощи для поражения тех объектов (группировок) противника, уничтожением (выводом из строя) которых обеспечивается выполнение поставленной задачи. Такой путь позволяет значительно увеличить общую силу натиска или сопротивления войск, по отношению к арифметической сумме индивидуальных возможностей боевых единиц создать необходимое превосходство над противником и нанести ему поражение. В операции - объединением конечных результатов действий войск во всех боях, составляющих данную операцию, для поражения тех группировок и объектов противника, уничтожением которых обеспечивается выполнение поставленной задачи.

При этом предполагается не только поражение избранных объектов, но и использование результатов действий войск в одних боях для повышения их эффективности в других. При перегруппировке на ТВД - путем развертывания и переразвертывания войск при всестороннем их обеспечении в целях своевременного создания полностью подготовленных группировок для ведения операций в решающем месте и в решающий момент войны; в войне - объединением и использованием во взаимных интересах конечных результатов действий войск во всех операциях, направленных на разгром вооруженных сил противника на данном театре военных действий, а также путем своевременного создания всесторонне обеспеченных группировок для ведения запланированных операций.

На основании изложенного можно сказать, что для практической деятельности командующих (командиров) и их штабов требуется разрабатывать математические модели способов ведения боя (операции) на основе того качественного и количественного состава войск, который выделен или может быть выделен для выполнения поставленной задачи с учетом внутренней структуры войны и военного искусства (схема 1). При их создании важно также учитывать естественно-исторический процесс развития и смены способов ведения войны, составляющие ее военные действия в зависимости от появления и развития новых видов оружия и технических средств (схема 2).

Четвертое. Теорию войны и военного искусства, т. е. философскую (фундаментальную) часть военной науки, необходимо вывести из узковедомственного подчинения и передать в Академию наук СССР, где она должна быть представлена наравне со всеми другими общественными науками. Это, на мой взгляд, единственно реальный путь, способный поднять военную науку на более высокий, качественно новый уровень, обеспечивающий надежное, теоретически обоснованное решение многих прикладных проблем, в том числе и моделирования военных действий.

Вторая причина трудностей в разработке моделей заключается в том, что сейчас к ним предъявляется требование - учесть по возможности все факторы, которые могут влиять на организацию и ведение операции (боевых действий). Это неизбежно ведет к резкому увеличению непредсказуемой исходной информации. Такие модели могут быть использованы лишь в исследовательских целях, но не для работы командующих (командиров) и штабов при планировании военных действий.

В настоящее время модели разрабатываются заранее и представляют собой математический аналог типового боя (операции), в котором в максимально возможной степени учитываются: существующая организационная структура войск (сил), их штатный количественный и качественный состав; типовые параметры различных военных действий, зафиксированные в руководящих документах; конкретные военно-географические условия театров военных действий и др. Причем это касается как наших войск, так и противника. В жизни конкретные военные действия никогда полностью не совпадают с типовыми. Учитывая, что организация, штатный состав войск (сил) и другие условия непрерывно и быстро изменяются, разработанные модели также теряют свою практическую ценность. Это третья причина.

Четвертая заключается в том, что специалисты в области военного искусства (операторы) активно участвуют в создании типовых математических моделей военных действий, моделируют их только в части, касающейся разработки словесной модели в виде формулирования возможных вариантов решений воюющих сторон. Исходная информация закладывается заранее. Недостающая ее часть, необходимая для того, чтобы модель «работала» в условиях конкретной обстановки, периодически уточняется и выбирается из так называемой постоянной информации.

Общий недостаток штабных моделей заключается в том, что с их помощью можно оценить только одну сторону военного искусства командира (командующего), принимающего решение, которая характеризует его умение организовывать действия войск в целях максимального использования их потенциальных возможностей. Вторая (с точки зрения военного искусства более сложная и трудная сторона) - использование, а при возможности и создание (путем введения противника в заблуждение, быстрого и неожиданного маневра войск и т. д.) условий, позволяющих ослабить противника и значительно увеличить объединенные усилия своих войск на главном направлении в решающий момент боя (операции),- существующими моделями оценивается слабо.

На основании изложенных выше положений, касающихся теории войны и военного искусства, мною предлагается один из возможных подходов, который может обеспечить создание практически приемлемых для штабов математических моделей военных действий . Суть его сводится к следующему.

Каждая модель боя (операции) должна уточняться соответствующим командующим (командиром) и его штабом на основе той информации, которой они располагают в период выработки и принятия решения, при определении только замыслов действий противостоящих сторон.

Почему только замыслов?

Исторический опыт свидетельствует о том, что фактический ход военных действий обычно соответствовал именно замыслам действий сторон и никогда не совпадал полностью с подробно разработанными решениями (планами) независимо от того, какая сторона (наступающая или обороняющаяся) достигла или не достигла своей цели. Например, немецко-фашистская армия, военачальники которой отличались скрупулезностью, особенно при планировании внезапного нападения, успешно начала войну против Советского Союза и вела ее в 1941 году в соответствии с замыслом, положенным в основу плана «Барбаросса». Однако в дальнейшем ход событий значительно отличался от плана. Б конечном итоге цель войны не была достигнута из-за недостаточной обоснованности ее замысла: не были учтены единство, сплоченность советского народа и беспримерный героизм наших воинов.

Таким образом, модель, разработанная на основе информации, описывающей подробно предстоящий ход военных действий сторон, будет заведомо не соответствовать фактическому ходу событий, и результаты расчетов окажутся весьма сомнительными. При применении предлагаемого подхода важно, чтобы в формулировках замыслов действий сторон четко просматривалась сущность военного искусства, которая, на мой взгляд, заключается в умении стать сильнее противника, создать подавляющее превосходство над ним в решающий момент и в решающем месте войны и составляющих ее военных действий. (Здесь речь идет не о создании общего военного превосходства в глобальном масштабе, чего добиваются Соединенные Штаты Америки, а об искусстве (умении) победить имеющимися силами агрессора в случае его нападения). Понимание этого является той основой, которая объединяет в диалектическом единстве стратегию, оперативное искусство и тактику. Вместе с тем каждая составная часть военного искусства имеет свою сущность. Но, по моему мнению, сущность стратегии, оперативного искусства и тактики состоит в умении создать подавляющее превосходство над противником в решающий момент, в решающем месте путем объединения и взаимного использования конечных результатов всех операций (боев), направленных на достижение поставленной цели, а также в способности применять условия конкретной обстановки в интересах своевременного развертывания всесторонне обеспеченных группировок для ведения запланированных операций (боев).

Разработка моделей (производство расчетов) и анализ их результатов могут иметь следующий порядок: определяются общее соотношение сил сторон в районе проведения операции (боя) к моменту ее начала, а также варианты замыслов действий противника и своих войск; выбирается критерий оценки возможных замыслов; вычисляются по избранному критерию ожидаемые результаты при всех сочетаниях вариантов их замыслов; анализируются результаты и выбирается наиболее целесообразный замысел операции (боя).

При определении каждого варианта действий той и другой стороны, избираемого для оценки, требуется сформулировать: где (на каком направлении, в каком районе, в какой зоне, полосе и против каких объектов противника), когда (в какой момент, период) и как (каким путем, способом, приемом и т. п.) необходимо создать подавляющее превосходство над противником. Изменение ответа хотя бы на один изэтих вопросов рождает новый вариант замысла действий данной стороны.

Критерием оценки вариантов действий сторон при всех возможных их сочетаниях может служить вероятность нанесения поражения противнику (выполнения поставленной задачи) или соотношение сил сторон на главном направлении в решающий момент операции (боя). Переведя это на язык математики, можно сказать: на главном направлении в решающий момент надо суметь (именно «суметь» - в этом заключается искусство военачальника в пределах материальных возможностей войск) создать такое соотношение сил в свою пользу, при котором поставленная задача была бы выполнена с вероятностью, например, не менее 0,8. При этом следует подчеркнуть, что речь идет о качественном соотношении сил сторон, выраженном количественными величинами. Такая вероятность поражения служит критерием, обеспечивающим выбор наиболее целесообразных вариантов замысла предстоящей операции.

Анализ результатов расчетов и выбор оптимального варианта замысла операции (боя) целесообразно производить с помощью теории игр. При этом следует иметь в виду, что в данном случае определяются такие варианты, применяя которые противостоящие стороны не рискуют проиграть больше или выиграть меньше, чем это возможно по избранному критерию в данной обстановке.

Если противник равный или сильнее как по составу войск, так и по уровню военного искусства, выбор «гарантированных» замыслов никогда не сможет обеспечить достижение победы. Поэтому в предлагаемом методе моделирования операции (боевых действий) для анализа с помощью теории игр нужно отобрать только те варианты замыслов сторон, при которых достигается подавляющее превосходство над противником в решающий момент, в решающем месте боя (операции). Естественно, это рискованно, но без этого победить сильного противника нельзя. Из них можно выбрать относительно лучший по критерию, который должен установить командующий (командир), вырабатывающий замысел.

Применение предлагаемого подхода к созданию математических моделей попытаемся показать на двух классических примерах.

В известном сражении при Каннах (216 г. до н. э.) карфагенский полководец Ганнибал, несмотря на двойное общее численное превосходство противника, почти полностью уничтожил римское войско. Общий численный состав и потери сторон были следующими:

Это была не случайная победа. Еще до начала боя Ганнибал поставил перед собой цель не просто добиться успеха, а полностью уничтожить римскую армию. Свой замысел он искусно претворил в жизнь.

Римская пехота была построена в боевой порядок (фалангу), имеющий не менее 34 шеренг в глубину и около 1700 человек по фронту. Конница располагалась на флангах. Войска Ганнибала строились в шесть колонн, из которых две средние (общим числом 20 тыс. человек) состояли из слабой испанской и недавно навербованной галльской пехоты. Их окаймляли две колонны по 6 тыс. африканских испытанных ветеранов. На флангах пехоты находились кавалерийские колонны: на левом - тяжеловооруженная конница (кирасиры Газдрубала), на правом- легкая конница (преимущественно нумидийская).

Дальнейший ход событий был следующий. С началом боя конница Газдрубала опрокинула римских всадников, частью сил помогла нумидийской коннице обратить в бегство римских всадников на левом фланге римской пехоты и главными силами бросилась на тыл фаланги, заставив ее сначала повернуться назад, а потом остановиться. В центре фронта после короткой схватки римляне решительно атаковали галлов и испанцев, нанесли им большие потери и заставили карфагенский Центр попятиться. Личное присутствие здесь Ганнибала удержало галлов от разрыва фронта и бегства. В этот решительный момент под влиянием удара с тыла римская фаланга остановилась, что означало ее гибель, только крайние шеренги окруженной толпы римских легионов могли действовать оружием, а задние - представляли мишень для летящих камней, дротиков и стрел. Исход боя был решен. Дальше было побоище.

Исходя из фактического хода событий, словесную модель действий карфагенских войск, т. е. замысел Ганнибала, можно сформулировать так: малыми силами сдержать первый натиск фаланги римской пехоты в центре, смести римскую конницу на флангах, полностью окружить и ударом с тыла остановить продвижение фаланги, лишив ее тем самым наступательной силы, и, используя ее неповоротливость и слабую обученность римской пехоты, полностью разгромить противника. Замысел римского полководца Сервилия: всю силу пехоты направить на центр боевого построения карфагенян, решительной атакой смять противника, обратив его в бегство, после чего поочередно разбить разрозненные Части пехоты и кавалерии.

Суть сложившейся конфликтной ситуации и весь расчет сводятся здесь к решению одного вопроса: у кого было больше шансов - у Ганнибала, чтобы сдержать натиск римской фаланги в центре до того момента, когда конница Газдрубала нанесет по ней удар с тыла и остановит ее, или у Сервилия, чтобы сокрушить центр боевого построения карфагенян, прежде чем остановить и перестроить фалангу для действий на других направлениях? Математического описания самих действий войск сторон для решения этого вопроса не требуется.

Проанализировав, как говорится, «обратным ходом» конечный результат боя с позиций сущности военного искусства, можно сказать, что в решающий момент боя на решающем направлении (в центре) Ганнибал сумел создать (за счет удара, по фаланге с тыла) подавляющее (по меньшей мере четырехкратное) превосходство над противником и тем самым не допустил сокрушения центра своей пехоты.

В ходе Великой Отечественной войны при ведении военных действий на сталинградском направлении сложилась ситуация, аналогичная рассмотренной выше, только при другом общем количественном соотношении войск воюющих сторон и значительно большем размахе военных действий. Судя по фактическому ходу событий, общий замысел наших войск заключался в том, чтобы малыми силами удержать правый берег Волги в районе Сталинграда, сосредоточить на флангах немецко-фашистской группировки превосходящие силы, сходящимися ударами окружить и уничтожить ее.

Для обоснования этого замысла, на мой взгляд, достаточно создать такую математическую модель, которая решала бы один вопрос: кто имеет больше шансов - наши войска, чтобы удержать плацдарм на правом берегу Волги по меньшей мере до полного окружения противника, или противник, которому необходимо было сбросить наши обороняющиеся войска в Волгу прежде, чем повернуть свои войска навстречу нашим наступающим войскам? Разрабатывать для обоснования данного замысла сложную математическию модель таких крупномасштабных военных действий было бы нецелесообразно: она не дала бы более точных, заслуживающих доверия результатов. Скорее наоборот.

Конечно, анализируя отдельные примеры, нельзя делать категоричных выводов. Но некоторые соображения высказать можно.

Первое. Модели, не учитывающие военное искусство полководцев, будут неполно отражать объективную действительность и всегда давать однозначный ответ: победит сторона, которая имеет численное превосходство и большие материальные возможности. Применение таких моделей научит офицеров побеждать числом, а не умением. Чтобы учесть в математических моделях уровень военного искусства и выработать соответствующие коэффициенты, необходимо тщательно проанализировать исторический опыт, как это показано выше на двух примерах.

Второе. Основным условием успешного использования предлагаемого подхода является умение выявлять суть конфликтных ситуаций, складывающихся при подготовке и ведении военных действий, и оценить их с точки зрения сущности военного искусства.

Третье. Чем короче, четче и яснее сформулированы замыслы действий сторон, тем легче выявить сущность складывающейся конфликтной ситуации и определить вопрос, требующий расчетов для своего решения. Чем проще модель, тем она ближе к действительности, менее искаженно ее отражает, требует меньше исходной информации. Очевидно, что и математический аппарат для таких моделей также будет несложным (в пределах теории вероятностей и теории игр).

Напомним, что предлагаемый подход относится только к моделям для обоснования замыслов принимаемых решений. Математические модели для исследовательских целей, графического отображения на экране принимаемых решений по текущей обстановке и другие здесь не рассматриваются.

В заключение отметим, что заслуживает внимания еще один в общем-то известный подход к созданию моделей (которые условно можно назвать «дуэльными»), когда командующий (командир) играет «шахматную партию» с ЭВМ, имитирующей противника. Конечно, этот путь сложный, трудоемкий, но, на мой взгляд, перспективный с точки зрения повышения эффективности обучения офицеров военному искусству.

Математическая модель и методика оперативно-тактических расчетов - одно и то же.

Военная Мысль.- 1987.- № 7.- С 33-41

Военный энциклопедический словарь.- М.: Воениздат, 1986.- С. 89

Там же.-С. 145.

Материалы Пленума Центрального Комитета КПСС, 25-26 июня 1987 г.- М. Политиздат, 1987.-С. 12.

Советский энциклопедический словарь.- М.: Сов. энциклопедия, 1983.- С. 238

Военный энциклопедический лексикон.- Ч. III.- СПб, 1839.- С. 454.

Морской атлас-Т. III.- Ч. 1.-МО СССР, 1958 -Л. 1,

Для комментирования необходимо зарегистрироваться на сайте

Для обучения войск ВКО необходима новая материально-техническая база, создаваемая на основе современных максимально унифицированных технических средств обучения, разработанных с использованием современных технологий

Обеспечение высокого уровня подготовленности личного состава – от уровня отдельных подразделений до высших звеньев управления – с одновременным снижением материальных и финансовых затрат является весьма актуальным проблемным вопросом для подготовки войск (сил) и органов управления Войск ВКО.

Необходимость решения в настоящее время данного вопроса обусловлена следующими факторами:

  • постоянным изменением характеристик средств вооруженной борьбы вероятного противника;
  • возрастающей динамикой боевых действий;
  • участием разнородовых и разновидовых сил и средств ПВО и ПРО при решении задач ВКО;
  • ограниченными возможностями используемого типажа воздушных мишеней по созданию воздушной и помеховой обстановки при проведении тактических учений с боевой стрельбой на полигонах МО РФ;
  • возрастающей стоимостью проведения полномасштабных учений и совместных тренировок боевых расчетов различных уровней управления видов и родов войск;
  • ограниченными возможностями существующих тренажерных средств по комплексированию их в тренажерные комплексы и тренажные системы в интересах комплексной подготовки войск и органов управления ВКО.

Возможным подходом к решению проблемных вопросов, связанных с организацией и проведением мероприятий боевой и оперативной подготовки, может быть использование современных технологий моделирования вооруженного противоборства, применяемых в технических средствах обучения (ТСО) для подготовки войск (сил) и органов управления ВКО.

В настоящее время рядом организаций промышленности: Центром совместных технологических разработок, НИИ «Центрпрограммсистем», ЗАО «ЦНТУ «Динамика», ЗАО «НИИ ТС «Синвент», Конструкторским бюро приборостроения, ОАО «Тулаточмаш» и т. д. ведутся работы по созданию современных ТСО для Войск ВКО и разработке перспективных технологий моделирования военных действий и тренажа специалистов войск (сил) и органов управления соединений, объединений ВКО.

Однако их усилия в основном сосредоточены на создании технических средств обучения тактического уровня в виде автономных однородных тренажеров. Эти работы не предполагают интеграцию тренажеров и тренажерных комплексов в тренажные системы внутривидового и межвидового применения, что резко сужает область их применения при подготовке воинских формирований (ВФ) и органов управления, решающих задачи ВКО.

В общем случае типаж ТСО для Войск ВКО может включать:

  • учебно-тренировочные средства;
  • тренажерные комплексы;
  • тренажные системы внутривидового применения;
  • тренажные системы межвидового применения.

При этом следует различать, что учебно-тренировочное средство (УТС) – это аппаратно-программный комплекс, обеспечивающий полный цикл подготовки номеров боевого расчета одного уровня управления (подразделения) за счет проведения автоматизированного теоретического обучения по требуемым видам подготовки, формирования начальных навыков и умений ведения боевой работы (боя) путем проведения индивидуальных и автономных тренировок.

Тренажерный комплекс (ТК) – это структурно-организационное объединение информационно-сопряженных территориально разнесенных УТС, обеспечивающих требуемый уровень практической подготовленности расчетов различных уровней управления с учетом реализованного в образцах ВВТ уровня автоматизации процесса ведения боя путем проведения комплексных (двухстепенных) тренировок в требуемых условиях боевого применения ВВТ.

Тренажная система внутривидового применения (ТС ВП) – это структурно-организационное объединение информационно-сопряженных территориально разнесенных ТК и УТС в тактическом соединении войск, обеспечивающее требуемый уровень практической подготовленности и слаженности расчетов различных уровней управления путем проведения совместных (трехстепенных) тренировок соединений воинских формирований одного вида ВС.

Тренажная система межвидового применения (ТС МП) – это структурно-организационное объединение информационно сопряженных территориально разнесенных ТК и ТС внутривидового применения в оперативно-тактическом соединении войск, обеспечивающее требуемый уровень слаженности расчетов различных уровней управления путем проведения совместных тренировок соединений воинских формирований нескольких видов ВС.

В этой связи создаваемые технические средства обучения боевых расчетов КП и ПУ различного уровня управления Войск ВКО с учетом возможного привлечения разновидовых сил и средств для подготовки к решению задач ВКО должны рассматриваться на всех уровнях предложенной классификации по предназначению в зависимости от особенностей проведения мероприятий боевой и оперативной подготовки.

Основными проблемными вопросами, которые остаются при разработке тренажных средств, являются:

  • обеспечение высокой степени адекватности имитации работы оборудования, систем и средств образцов ВВТ и органов управления;
  • обеспечение требуемой степени адекватности имитируемой воздушной и наземной (при необходимости и морской) обстановки реальной;
  • обеспечение единой имитируемой воздушной и наземной обстановки для всех средств ВВТ и воинских формирований, задействованных в тренировках;
  • сопряжение территориально-разнесенных УТС и тренажерных комплексов в системы более высокого уровня для проведения многостепенных тренировок органов управления;
  • синхронизация во времени работы территориально разнесенных тренажеров и тренажерных комплексов для проведения различных видов тренировок в составе тренажных систем;
  • обеспечение объективности оценивания уровня профессиональной подготовленности специалистов, боевых расчетов и органов управления по результатам документирования их деятельности в процессе подготовки.

Для обучения Войск ВКО необходима новая материально-техническая база, создаваемая на основе современных максимально унифицированных ТСО, разработанных с использованием современных технологий. Подготовка высококвалифицированных специалистов и органов управления, готовых и способных в любой момент времени качественно решать возложенные на них задачи в любых условиях обстановки, практически невозможна без систематических тренировок с моделированием ситуаций, которые могут возникнуть в реальной боевой обстановке, включая нестандартные (нештатные, аварийные) ситуации.

Учитывая отечественную и зарубежную практику разработки ТСО, предлагается следующая концепция их создания:

  • во-первых, это создание многоуровневой системы имитационных и математических моделей средств образцов вооружения и военной техники (ВВТ) при подготовке ВФ (рис. 1);

  • во-вторых, это интеграция созданных имитационных моделей образцов ВВТ, элементов ВФ и тренажных средств в единую моделирующую среду с целью создания и использования единого виртуального боевого пространства при проведении мероприятий боевой и оперативной подготовки (рис. 2);

  • в-третьих, имитационные модели образцов ВВТ и тренажные средства должны взаимодействовать между собой и с моделирующей средой посредством реализации стандарта распределенного моделирования IEEE-1516, то есть по технологии HLA – High Level Architecture (рис. 3).

Создание современных ТСО практически обеспечит реализацию LVC-концепции подготовки войск, которая базируется на комплексном использовании трех видов моделирования: боевой реальности, виртуального и конструктивного моделирования. При этом каждый сегмент моделирования фактически определяет особенности построения ТСО и область его применения (рис. 4).

Так, моделирование боевой реальности (Live Simulator, L-сегмент) предполагает использование реальных военнослужащих и реальных систем при проведении тактических учений (ТУ) различных уровней. В процессе выполнения мероприятий боевой подготовки войска используют реальное вооружение в реальных условиях. Эффекты взаимодействия могут быть обозначены подыгрышем противоположной стороны с использованием мишеней при проведении боевых стрельб и полетов реальной авиации при проведении учебных стрельб. Данный вид моделирования характерен для полигонов ВКО.

Виртуальное моделирование (Virtual Simulator, V-сегмент) предполагает работу реальных людей с имитируемыми системами в информационно-моделирующей среде, то есть использование различных видов и типов тренажеров при проведении мероприятий боевой подготовки, направленных на одиночную подготовку обучаемых, обучение и слаживание боевых расчетов, расчетов КП (ПУ) различных уровней управления (см. рис. 3). Данный вид моделирования применим в местах постоянной дислокации при проведении различных видов тренировок.

Конструктивное моделирование (Constructive Simulator, C-сегмент) включает имитированный личный состав, технику, вооружение и воинские формирования. Реальные люди контролируют имитацию, в которой взаимодействуют смоделированные войска, техника и вооружение (рис. 5). Подобная система моделирования должна использоваться для проведения учебных мероприятий при подготовке органов управления (ОУ). Данный вид моделирования применим при проведении компьютерных командно-штабных тренировок (КШТ) и командно-штабных учений (КШУ) ОУ начиная с тактического звена.

Комплексное применение отмеченных видов моделирования предполагает возможность их объединения в тренажные системы внутривидового и межвидового применения. Предлагаемый вариант ТС межвидового применения ЗРВ (ВКО, ВВС, ПВО ВМФ, войск ПВО СВ) в условиях полигона представлен на рисунке 6, где воздушная (фоноцелевая) обстановка создается путем комплексирования полетов реальных и имитируемых целей. Сигналы от имитируемых целей поступают на вход радиоприемных средств ЗРВ и РТВ так же, как и сигналы от реальных целей, и создают общую обстановку. При этом реальная авиация отрабатывает способы преодоления ПВО и поражения объектов обороны посредством применения авиационных средств поражения. Необходимо отметить, что имитируемые цели могут быть также созданы на базе авиационных тренажеров с трехмерной визуализацией обстановки для пилотов. Особенности архитектуры полигона ВКО, реализующего LVC-концепцию подготовки войск, представлены на рисунке 7.

Необходимо учитывать, что интеграция тренажных средств (тренажеров, тренажерных комплексов и систем) в ЕИМС потребует решения ключевых проблем системного характера, а именно:

  • методических – разработка новых программ и методик обучения во взаимосвязи с созданием новых поколений ТСО и оснащение ими учебной материально-технической базы войск;
  • системотехнических – осуществление перехода к модульному принципу построения аппаратно-программных средств ТСО на качественно новой информационно-технологической базе;
  • технологических – создание отечественной технологической базы разработки средств обучения нового поколения внутривидового и межвидового применения.

Возможными направлениями решения отмеченных проблем следует считать:

  • использование перспективной элементной базы и современных аппаратно-программных средств при создании перспективных ТСО;
  • применение аппаратно-программных средств, построенных на основе сертифицированных программно-технических комплексов (ПТК), адаптированных к применению в составе тренажных систем для Войск ВКО;
  • максимально возможную унификацию аппаратно-программных средств, входящих в состав тренажных систем для Войск ВКО;
  • сопряжение аппаратно-программных средств, входящих в состав тренажных систем Войск ВКО, на основе высокоуровневых технологий комплексирования;
  • интеграцию ранее разработанных и разрабатываемых тренажеров (тренажерных комплексов) в единую информационно-моделирующую среду (ЕИМС) на основе технологии распределенного моделирования;
  • использование ЕИМС для всех средств, задействованных в проведении различных видов тренировок;
  • комплексирование различных сегментов моделирования (V-сегмент, C-сегмент) для проведения комплексных и многостепенных тренировок подразделений, частей и соединений и ОУ по единому замыслу и сценарию;
  • использование средств комплексной системы защиты информации в интересах обеспечения безопасности обработки, хранения и передачи информации.

По нашему мнению, реализация отмеченных направлений позволит образовать перспективную технологическую базу для создания тренажных систем внутривидового и межвидового применения и обеспечить:

  • увеличение доли обученных специалистов для Войск ВКО, несмотря на сокращение сроков общей продолжительности службы в Вооруженных силах;
  • интенсивную подготовку личного состава подразделений и соединений Войск ВКО на основе отработки вариантов обстановки любой сложности по замыслу руководителя обучения;
  • комплексную подготовку подразделений и органов управления воинских формирований Войск ВКО к выполнению боевых задач на более высоком методическом и техническом уровне;
  • достижение максимальной объективности контроля уровня подготовки военнослужащих, подразделений, соединений и органов управления;
  • совершенствование навыков командиров и должностных лиц органов управления в принятии решений и организации взаимодействия, решении других задач;
  • повышение морально-психологической устойчивости личного состава в условиях обстановки, близкой к реальной.

По нашим оценкам, реализация предлагаемой к применению в Войсках ВКО LVC-концепции подготовки войск и органов управления позволит обеспечить существенное снижение затрат (в 7–12 раз) на проведение слаживания межвидовых группировок сил и средств ПВО по отношению к обозначению воздушного противника с использованием реальных летных средств. Научный потенциал по дальнейшей разработке LVC-концепции имеет ВА ВКО им. Г. К. Жукова, а практический опыт по ее реализации при подготовке войск в перспективных центрах боевой подготовки – ОАО «НПО «Русские базовые информационные технологии», что позволяет сделать вывод о целесообразности совместного использования потенциалов данных заведений (предприятий) при проведении работ по созданию перспективных центров боевой подготовки (ЦБП) Войск ВКО.

Процесс создания математических моделей боевых действий трудоемок, длителен и требует использования труда специалистов достаточно высокого уровня, имеющих хорошую подготовку как в предметной области, связанной с объектом моделирования, так и в области прикладной математики, современных математических методов, программирования, знающих возможности и специфику современной вычислительной техники. Отличительной особенностью математических моделей боевых действий, создаваемых в настоящее время, является их комплексность, обусловленная сложностью моделируемых объектов. Необходимость построения таких моделей требует разработки системы правил и подходов, позволяющих снизить затраты на разработку модели и уменьшить вероятность появления трудноустранимых впоследствии ошибок. Важной составной частью такой системы правил являются правила, обеспечивающие корректный переход от концептуального к формализованному описанию системы на том или ином математическом языке, что достигается выбором определенной математической схемы. Под математической схемой понимается частная математическая модель преобразования сигналов и информации некоторого элемента системы, определяемая в рамках конкретного математического аппарата и ориентированная на построение моделирующего алгоритма данного класса элементов сложной системы .

В интересах обоснованного выбора математической схемы при построении модели целесообразно провести ее классификацию по цели моделирования, способу реализации, типу внутренней структуры, сложности объекта моделирования, способу представления времени.

Необходимо отметить, что выбор классификационных признаков определяется конкретными целями исследования. Целью классификации в данном случае является, с одной стороны, обоснованный выбор математической схемы описания процесса боевых действий и ее представление в модели в интересах получения достоверных результатов, а с другой - выявление особенностей моделируемого процесса, которые необходимо учитывать.

Цель моделирования - исследование динамики протекания процесса вооруженной борьбы и оценка показателей эффективности боевых действий. Под такими показателями понимается численная мера степени выполнения боевой задачи, которую количественно можно представить, например, относительной величиной предотвращаемого ущерба объектам обороны или наносимого противнику ущерба.

Способ реализации должен состоять в формализованном описании логики функционирования образцов вооружения и военной техники (ВВТ) в соответствии со своими аналогами в реально протекающем процессе. Необходимо учитывать, что современные образцы ВВТ - это сложные технические системы, решающие комплекс взаимосвязанных задач, которые тоже являются сложными техническими системами. При моделировании таких объектов целесообразно сохранить и отразить как естественный состав и структуру, так и алгоритмы боевого функционирования модели. Причем в зависимости от целей моделирования может потребоваться варьирование этими параметрами модели (составом, структурой, алгоритмами) для различных вариантов расчета. Данное требование определяет необходимость разрабатывать модель конкретного образца ВВТ как составную модель его подсистем, представляемых взаимосвязанными компонентами.

Таким образом, по классификационному признаку тип внутренней структуры модель должна быть составной и многокомпонентной, по способу реализации - обеспечивать имитационное моделирование боевых действий.

Сложность объекта моделирования. При разработке компонент, определяющих состав моделей образцов ВВТ, и объединении моделей образцов ВВТ в единую модель боевых действий необходимо учитывать отличающиеся на порядки характерные масштабы осреднения по времени величин, фигурирующих в компонентах.

Конечной целью моделирования является оценка показателей эффективности боевых действий. Именно для расчета этих показателей и разрабатывается модель, воспроизводящая процесс боевых действий, который условно назовем главным. Характерный временной масштаб всех остальных входящих в него процессов (первичной обработки радиолокационной информации, сопровождения целей, наведения ракет и др.) много меньше главного. Таким образом, все протекающие в вооруженной борьбе процессы целесообразно разделить на медленные, прогноз развития которых интересует, и быстрые, характеристики которых не интересуют, однако их влияние на медленные необходимо учитывать. В таких случаях характерный временной масштаб осреднения выбирается так, чтобы иметь возможность составить модель развития главных процессов. Что касается быстрых процессов, то в рамках создаваемой модели необходим алгоритм, позволяющий в моменты осуществления быстрых процессов учитывать их влияние на медленные.

Возможны два подхода к моделированию влияния быстрых процессов на медленные. Первый состоит в разработке модели их развития с соответствующим характерным временным масштабом осреднения, много меньшим, чем у главных процессов. При расчете развития быстрого процесса в соответствии с его моделью характеристики медленных процессов не меняются. Результатом расчета является изменение характеристик медленных процессов, с точки зрения медленного времени происходящее мгновенно. Для того чтобы иметь возможность реализовать этот способ расчета влияния быстрых процессов на медленные, необходимо вводить соответствующие внешние величины, идентифицировать и верифицировать их модели, что усложняет все этапы технологии моделирования.

Второй подход состоит в отказе от описания развития быстрых процессов с помощью моделей и рассмотрения их характеристик в качестве случайных величин. Для реализации этого способа необходимо иметь функции распределения случайных величин, которые характеризуют влияние быстрых процессов на медленные, а также алгоритм, определяющий моменты наступления быстрых процессов. Вместо расчета развития быстрых процессов производится выброс случайного числа и в зависимости от выпавшего значения в соответствии с известными функциями распределения случайных величин определяется значение, которое примут зависимые показатели медленных процессов, таким образом учитывается влияние быстрых процессов на медленные. В результате характеристики медленных процессов также становятся случайными величинами.

Необходимо отметить, что при первом способе моделирования влияния быстрых процессов на медленные быстрый процесс становится медленным, главным, и на его протекание влияют быстрые уже по отношению к нему процессы. Эта иерархическая вложенность быстрых процессов в медленные - одна из составляющих того качества моделирования процесса вооруженной борьбы, которое относит модель боевых действий к структурно-сложной.

Способ представления модельного времени. На практике используют три понятия времени: физическое, модельное и процессорное. Физическое время относится к моделируемому процессу, модельное - к воспроизведению физического времени в модели, процессорное - это время выполнения модели на компьютере. Соотношение физического и модельного времени задается коэффициентом K, определяющим диапазон физического времени, принимаемого за единицу модельного времени.

В силу дискретного характера взаимодействия образцов ВВТ и их представления в виде компьютерной модели модельное время целесообразно задавать путем приращения дискретных временных отрезков. При этом возможны два варианта его представления: 1) дискретное время есть последовательность равноудаленных друг от друга вещественных чисел; 2) последовательность временных точек определяется значимыми событиями, происходящими в моделируемых объектах (событийное время). С точки зрения вычислительных ресурсов второй вариант более рационален, поскольку позволяет активизировать объект и имитировать его работу только при наступлении некоторого события, а в промежутке между событиями предполагать, что состояние объектов остается неизменным.

Одной из основных задач при разработке модели является выполнение требования синхронизации всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели. При непрерывном представлении времени считается, что существуют единые для всех объектов часы, которые показывают единое время. Передача информации между объектами происходит мгновенно, и таким образом, сверяясь с едиными часами, можно установить временную последовательность всех происходивших событий. Если в модели существуют объекты с дискретным представлением времени, для формирования единых часов модели необходимо объединить множество временных отсчетов моделей объектов, упорядочить и доопределить значения сеточных функций на недостающих временных отсчетах. Синхронизировать модели объектов с событийным временем можно только явно, путем передачи сигнала о наступлении события. При этом необходима управляющая программа-планировщик организации выполнения событий различных объектов, которая и определяет требуемый хронологический порядок выполнения событий.

В модели боевых действий необходимо совместно использовать событийное и дискретное время, такое представление времени называют гибридным. При его использовании моделируемые объекты приобретают свойство изменять значения некоторых показателей состояния скачкообразно и практически мгновенно, то есть становятся объектами с гибридным поведением.

Подводя итог приведенной классификации, можно сделать вывод о том, что модель боевых действий должна представлять собой составную, структурно-сложную, многокомпонентную, динамическую, имитационную модель с гибридным поведением.

Для формализованного описания такой модели целесообразно использовать математическую схему на основе гибридных автоматов . В этом случае образцы ВВТ представляются многокомпонентными активными динамическими объектами. Компоненты описываются набором переменных состояния (внешние и внутренние), структурой (одноуровневой или иерархической) и поведением (карта поведения). Взаимодействие между компонентами осуществляется посредством посылки сообщений. Для объединения компонент в модель активного динамического объекта используются правила композиции гибридных автоматов.

Введем следующие обозначения:

sÎRn - вектор переменных состояния объекта, который определяется совокупностью входных воздействий на объект , воздействий внешней среды , внутренних (собственных) параметров объекта hkÎHk,;

Множество вектор-функций, определяющих закон функционирования объекта во времени (отражают его динамические свойства) и обеспечивающих существование и единственность решения s(t);

S0 - множество начальных условий, включающее все начальные условия компонент объекта, порождаемые функцией инициализации в процессе функционирования;

Предикат, определяющий смену поведения объекта (выделяет из всех специально отобранных состояний нужное, проверяет условия, которые должны сопутствовать наступившему событию, и принимает при их выполнении значение истина), задается множеством булевских функций;

Инвариант, определяющий некое свойство объекта, которое должно сохраняться на заданных промежутках времени, задается множеством булевских функций;

- множество вещественных функций инициализации, ставящих в соответствие значению решения в правой конечной точке текущего промежутка времени значение начальных условий в левой начальной точке на новом временном промежутке :s()=init(s());

Гибридное время, задается последовательностью временных отрезков вида , - замкнутые интервалы.

Элементы гибридного времени Pre_gapi, Post_gapi являются «временной щелью» очередного такта гибридного времени tH={t1, t2,…}. На каждом такте на отрезках локального непрерывного времени гибридная система ведет себя как классическая динамическая система до точки t*, в которой становится истинным предикат, определяющий смену поведения. Точка t* является конечной точкой текущего и началом следующего интервала. В интервале расположены две временные щели, в которых могут изменяться переменные состояния. Течение гибридного времени в очередном такте ti=(Pre_gapi,, Post_gapi) начинается с вычисления новых начальных условий во временной щели Pre_gapi. После вычисления начальных условий проводится проверка предиката на левом конце нового промежутка времени. Если предикат принимает значение истина, оcуществля-ется переход сразу во вторую временную щель, в противном случае выполняется дискретная после-довательность действий, соответствующих текущему такту времени. Временная щель Post_gapi предназначена для выполнения мгновенных дейст-вий после завершения длительного поведения на данном такте гибридного времени.

Под гибридной системой H понимается математический объект вида

.

Задача моделирования заключается в нахождении последовательности решений Ht={(s0(t),t, t0), (s1(t),t,t1),…}, определяющих траекторию гибридной системы в фазовом пространстве состояний. Для нахождения последовательности решений Ht необходимо проводить эксперимент или имитацию на модели при заданных исходных данных. Другими словами, в отличие от аналитических моделей, с помощью которых получают решение известными математическими методами, в данном случае необходим прогон имитационной модели, а не решение. Это означает, что имитационные модели не формируют свое решение в том виде, в каком это имеет место при использовании аналитических моделей, а являются средством и источником информации для анализа поведения реальных систем в конкретных условиях и принятия решений относительно их эффективности.

В 2 ЦНИИ МО РФ (г. Тверь) на основе представления моделируемых объектов в виде гибридных автоматов разработан имитационный моделирующий комплекс (ИМК) «Селигер», предназначенный для оценки эффективности группировок сил и средств воздушно-космической обороны при отражении ударов средств воздушно-космическо-го нападения (СВКН). Основу комплекса составляет система имитационных моделей объектов, имитирующая алгоритмы боевого функционирования реальных образцов ВВТ (зенитно-ракетный комплекс, радиолокационная станция, комплекс средств автоматизации командного пункта (для радиотехнических войск - радиолокационной роты, батальона, бригады, для зенитно-ракетных войск - полка, бригады и др.), боевой авиационный комплекс (истребительной авиации и средств воздушно-космического нападения), средства радиоэлектронного подавления, огневые комплексы нестратегической противоракетной обороны и др.). Модели объектов представлены в виде активных динамических объектов (АДО), в состав которых входят компоненты, позволяющие исследовать в динамике различные процессы при их функционировании.

Например, радиолокационная станция (РЛС) представлена следующими компонентами (рис. 1): антенная система (АС), радиопередающее устройство (РПрдУ), радиоприемное устройство (РПрУ), подсистема защиты от пассивных и активных помех (ПЗПАП), блок первичной обработки информации (ПОИ), блок вторичной обработки информации (ВОИ), аппаратура передачи данных (АПД) и др.

Композиция данных компонент в составе модели РЛС позволяет адекватно моделировать процессы приема-передачи сигналов, обнаружения эхосигналов и пеленга, алгоритмы помехозащиты, измерения параметров сигнала и др. В результате моделирования рассчитываются основные показатели, характеризующие качество РЛС как источника радиолокационной информации (параметры зоны обнаружения, точностные характеристики, разрешающая способность, производительность, помехозащищенность и т.п.), что позволяет оценить эффективность ее работы при различных условиях помехоцелевой обстановки.

Синхронизация всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели, осуществляется программой управления объектами (рис. 2). В функции данной программы также входят создание и удаление объектов, организация взаимодействия между объектами, протоколирование всех событий, происходящих в модели.

Использование протокола событий позволяет проводить ретроспективный анализ динамики боевых действий любым моделируемым объектом. Это дает возможность оценить степень адекватности моделей объектов как с использованием методов предельных точек, так и посредством контроля корректности моделирования процессов в компонентах объекта (то есть проверка адекватности методом прогона от входа к выходу ), что повышает достоверность и обоснованность получаемых результатов.

Необходимо отметить, что многокомпонентный подход позволяет варьировать их составом (например, исследовать боевую работу ЗРК с различным типом АСЦУ) в интересах синтеза структуры, удовлетворяющей определенным требованиям. Причем за счет типизации программного представления компонент, без перепрограммирования исходного кода программы.

Общим преимуществом данного подхода при построении модели является возможность оперативного решения ряда исследовательских задач: оценка влияния изменения состава и структуры системы управления (количество уровней, цикл управления и др.) на эффективность боевых действий группировки в целом; оценка влияния различных вариантов информационного обеспечения на потенциальные боевые возможности образцов и группировки в целом, исследование форм и способов боевого применения образцов и др.

Построенная на основе гибридных автоматов модель боевых действий представляет собой суперпозицию совместного поведения параллельно и/или последовательно функционирующих и взаимодействующих многокомпонентных АДО, являющихся композицией гибридных автоматов, функционирующих в гибридном времени и взаимодействующих через связи на основе сообщений.

Литература

1. Сирота А.А. Компьютерное моделирование и оценка эффективности сложных систем. М.: Техносфера, 2006.

2. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. СПб: БХВ-Петербург, 2006.

«Военная мысль» №5.2004г.

ВОЕННАЯ ТЕОРИЯ И ПРАКТИКА

Полковник А.А. ЕГОРОВ, кандидат военных наук

В МОДЕЛИРОВАНИИ, как и во всякой творческой деятельности, возможны различные концепции построения математических моделей, в том числе и те, которые характеризуются новаторскими идеями, предполагающими отступление от общепринятых принципов и правил моделирования. Это, например, попытка формализации мыслительной и психологической деятельности военачальников и военнослужащих воюющих сторон, применение ситуационного моделирования и др. Сегодня разработано большое количество математических моделей, различных по структуре и содержанию, но все они предназначены для решения практически одних и тех же задач.

Несмотря на множественность взглядов на способы моделирования, математические модели все же имеют некоторые сходные черты, которые позволяют объединять их в отдельные классы. Существующая классификация математических моделей боевых действий (операций) объединения ВВС учитывает следующие признаки: целевую направленность; способ описания функциональных связей; характер зависимостей в целевой функции и ограничениях; фактор времени; способ учета случайных факторов. Хотя эта классификация условна и относительна, она все же позволяет привести наши знания о моделировании в определенную систему, сравнить модели, а также выработать перспективные направления их развития.

Однако данная классификация моделей боевых действий (операций) не дает полного представления о методах построения моделей, предназначенных для поиска наилучших вариантов ведения боевых действий (операций) объединения ВВС, о иерархической структуре таких моделей, о полноте учета в них различного «рода» и «вида» неопределенностей, оказывающих доминирующее влияние на ход и исход моделируемых боевых действий (операций). Чтобы убедиться в этом, достаточно провести анализ существующей классификации моделей боевых действий (операций) объединения ВВС. Согласно ей в зависимости от целевой направленности математические модели боевых действий (операций) принято подразделять на «оценочные» и «оптимизационные».

В оценочных (описательных) моделях элементы замысла (решения, плана, варианта) предполагаемых действий сторон являются заданными, то есть входят в состав исходной информации. Итогом моделирования являются расчетные результаты действий сторон в боевых действиях (операциях). Такие модели чаще всего называют моделями оценки эффективности боевых действий (операций). Для них выработка рациональных способов применения сил и средств не является основной задачей.

В оптимизационных (оптимизирующих, нормативных) моделях конечная цель состоит в определении оптимальных способов ведения боевых действий (операций). Основу этих моделей составляют математические методы оптимизации. По сравнению с оценочными моделями оптимизационные представляют наибольший интерес для планирования боевых действий (операций), поскольку они позволяют не только провести количественную оценку эффективности вариантов ведения боевых действий (операций), но и осуществлять поиск наиболее эффективных вариантов для конкретной обстановки.

Так как сегодня отсутствует единый метод оптимизации, позволяющий учесть весь спектр причинно-следственных связей боевых действий (операций) объединения ВВС, существующие модели поиска наилучших вариантов применения войск (сил) структурно представляют собой комбинацию различных математических методов оптимизации. Особенность построения таких комбинированных моделей состоит в том, что задача моделирования боевых действий расчленяется на ряд подзадач, каждая из которых решается давно апробированным классическим методом оптимизации. Например, подзадачи распределения авиационных ударных средств по объектам поражения и подзадачи распределения средств ПВО по воздушным целям решаются с использованием методов нелинейного программирования, а подзадачи построения маршрутов полета к объектам поражения методом динамического программирования.

Однако сочетание в модели методов оптимизации не позволяет достичь основной цели моделирования боевых действий (операций) определить наилучший способ применения войск (сил), поскольку такой подход не дает возможности в полной мере учитывать глубокую взаимосвязь процессов, характеризующих ход вооруженного противоборства. Это обусловлено тем, что данные подзадачи имеют различные условия решения. Например, подзадача распределения ударных авиационных средств по наземным целям решается отдельно от подзадачи определения оптимального (рационального) способа прорыва ПВО. Вместе с тем это взаимосвязанные вопросы, поскольку от степени прорыва ПВО противника зависит величина потерь в ходе боевого вылета нашей ударной авиации, которая как раз и подлежит распределению по объектам авиационного удара.

Чтобы обеспечить комплексную оптимизацию действий войск (сил) в каждом эпизоде моделируемых боевых действий (операций), предложен новый метод построения моделей метод субоптимизации. Он предусматривает поиск рациональных способов ведения боевых действий (операций) «сверху вниз» последовательно на каждом из уровней управления, но в рамках общего замысла боевых действий (операций). Неоспоримым достоинством субоптимизации является то, что на каждом уровне управления более детально выявляются факторы и условия боевых действий соединений и частей и выбираются наиболее разумные способы их действий.

Таким образом, учитывая потребность командующих и штабов объединений ВВС в эффективном обеспечении поиска рациональных вариантов ведения боевых действий (операций), необходимо ввести новую классификацию оптимизационных моделей боевых действий (операций) объединения ВВС, которая предусматривает разделение моделей на комбинированные и субоптимизационные. Это может помочь пользователям значительно расширить представление об особенностях построения и функционирования моделей, предназначенных для поиска рациональных способов ведения боевых действий (операций).

Иерархичность принятия решения на боевые действия (операцию) не может не найти отражения при построении математических моделей боевых действий (операций) объединения ВВС, поскольку парадигмой построения моделей является максимальное отражение моделируемой действительности.

Однако парадигму моделирования разработчики существующих моделей оперативного уровня понимают односторонне, а именно: модели строят только методом детального воспроизведения воздушных, противовоздушных боев, составляющих основное содержание боевых действий (операций). При этом не уделяется должного внимания детальному воспроизведению иерархической сущности принятия решений на всех уровнях управления, что предоставляет командирам соединений и частей возможность проявлять разумную инициативу, но в рамках общего замысла боевых действий (операций) объединения.

Модели прямого воспроизведения только лишь воздушных и противовоздушных боев можно отнести к разряду одноуровневых моделей. Но поскольку в рамках тактического уровня («на поле» тактического уровня) решаются задачи и оперативного уровня, математическая модель становится громоздкой и неудобной для практического использования. Применение таких моделей сопряжено, во-первых, с необходимостью подготовки большого объема исходных данных, во-вторых, со снижением оперативности непосредственного моделирования боевых действий (операций) и, в-третьих, со сложностью восприятия полученных результатов моделирования.

Структура многоуровневых математических моделей боевых действий (операций) представляет собой целостную систему функционально взаимосвязанных подмоделей (агрегатов) различного уровня, которые взаимосвязаны не только горизонтальными отношениями между собой, но и отношениями подчиненности. Композиционный подход в многоуровневых моделях можно рассматривать как один из перспективных путей их совершенствования с сохранением требуемой степени детализации моделирования боевых действий (операций). Система подмоделей различного уровня управления создает благоприятные условия для моделирования боевых действий (операций) при параллельном или комбинированном методах планирования боевых действий. Оперативность планирования повышается в основном за счет подмоделей тактического уровня. Подготовка исходных данных, моделирование и трактовка его результатов на подмоделях тактического звена осуществляются параллельно соответствующими командирами и их штабами.

Предлагаемый подход к построению математических моделей боевых действий (операций) объединения ВВС, предусматривающий применение метода детального воспроизведения иерархической сущности принятия решений на боевые действия (операцию), позволил ввести еще один признак классификации математических моделей по иерархической структуре. Согласно этому признаку математические модели могут классифицироваться на одноуровневые и многоуровневые.

В существующей классификации математических моделей боевых действий (операций) важное место занимает классификация по способу описания функциональных связей между параметрами (процессов функционирования элементов системы). В соответствии с этим признаком математические модели подразделяются на аналитические и имитационные.

В аналитических моделях процессы функционирования элементов системы описываются в виде некоторых функциональных соотношений или логических условий. Наиболее полно исследование процесса можно провести, если известны явные зависимости, связывающие выходные характеристики с начальными условиями и входными переменными системы. Однако такие зависимости удается получить только для сравнительно простых моделей или при весьма жестких ограничениях, накладываемых на условия моделирования, что является неприемлемым для моделирования боевых действий (операций) объединения ВВС.

Аналитические модели в зависимости от вида применяемых в них аналитических зависимостей (целевая функция и ограничения) принято классифицировать на линейные и нелинейные. Если целевая функция и ограничения линейные, то модель называют линейной. В противном случае модель нелинейная. Например, модели, в основе которых лежит метод линейного программирования, являются линейными, а в моделях, построенных на основе методов максимального элемента или динамического программирования, целевая функция и (или) ограничения нелинейны.

В имитационных моделях имитируются (копируются) элементарные явления (бои, авиационные удары, специальные боевые полеты), составляющие основное содержание боевых действий (операций) с сохранением их логической структуры и последовательности протекания (во времени), что позволяет в определенные моменты времени оценить их характеристики. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др. В настоящее время имитационное моделирование наиболее эффективный и часто единственно доступный метод исследования таких сложных систем, как боевые действия (операции) объединения ВВС.

В зависимости от учета фактора времени модели боевых действий (операций) подразделяются на статические, динамические, непрерывные и дискретные.

Статические модели служат для описания боевых действий (операций) в какой-либо момент времени. Они отражают определенный «временной срез» боевых действий (операций). Поэтому статические модели применяются для исследования наиболее важных этапов боевых действий (операций). Как правило, это начальный этап, от исхода которого в значительной степени зависят дальнейший ход событий и конечный результат операции.

Динамические модели описывают боевые действия (операцию) в развитии. Это позволяет выявлять тенденции развития боевых действий (операций), факторы и взаимосвязи, которые, на первый взгляд, не оказывают существенного влияния на моделируемый процесс, но могут стать важным предметом рассмотрения. Тенденция развития динамических моделей боевых действий (операций) явно направлена на усиление их роли в исследовании способов применения войск (сил) сторон. Благодаря способности отражать преемственность между отдельными эпизодами боевых действий (операций) динамические модели нашли достойное применение для решения задач долгосрочного планирования и прогнозирования применения войск (сил).

Математические модели боевых действий (операций) с непрерывным временем моделирования характеризуются тем, что их переменные и выходные параметры изменяются непрерывно, без скачков и последовательно принимают все возможные вещественные значения на всем временном интервале. В непрерывных моделях для нахождения промежуточных значений используют интерполяцию. Так как она предусматривает нахождение промежуточных значений функции, то в основе модели должен лежать аналитический метод, обеспечивающий функциональную зависимость исходных и конечных величин. Аналитические методы наименее подходят для описания всей совокупности факторов боевых действий (операций) объединения ВВС, поэтому непрерывные модели не нашли широкого применения для поиска способов применения войск (сил).

Довольно большое распространение в моделировании боевых действий (операций) объединений ВВС получили дискретные модели. Главное достоинство последних состоит в том, что для их построения необязательно иметь аналитическую зависимость между входными и выходными величинами и можно использовать имитационный метод моделирования.

В дискретных моделях все процессы (входные и внутренние) отличаются скачкообразной, резко выраженной сменой конечного числа состояний: входных, выходных и внутренних. Продвигаясь в дискретной модели боевых действий (операций) последовательно от эпизода к эпизоду с заданным временным шагом моделирования, командующий и его штаб получают комплексное, системное представление о процессах, происходящих в ходе боевых действий (операций). Величина шага моделирования варьируется и может выбираться исходя из требуемой глубины моделирования отдельных эпизодов. Если необходимо глубже изучить тот или иной момент операции, величина шага уменьшается.

На развитие и исход боевых действий (операций) объединения ВВС влияет большое число факторов, имеющих в основном вероятностную природу. В зависимости от способа учета случайных факторов математические модели боевых действий (операций) принято классифицировать на детерминированные, стохастические (вероятностные) и комбинированные.

Однако данная классификация требует важного уточнения, касающегося стохастических (вероятностных) математических моделей боевых действий (операций). Название класса «стохастические (вероятностные) модели» не дает полного представления о способах учета в моделях других «видов» и «родов» неопределенностей. Чтобы уточнить классификацию математических моделей боевых действий (операций) по способу учета случайных факторов, рассмотрим подробно компоненты этого класса.

Характерной особенностью детерминированных моделей боевых действий (операций) является то, что для данной совокупности входных значений модели всегда получается единственный результат. Каждый выбранный командующим объединения ВВС способ применения войск (сил) приводит к строго определенным последствиям, поскольку в ходе моделирования пренебрегают случайными, заранее непредвиденными воздействиями.

Детерминированные модели можно рассматривать как сознательное упрощение реальной действительности, носящей на самом деле неопределенный характер. До того времени, когда в штабах стали применять мощные вычислительные средства, детерминированные модели были основным инструментом оценки эффективности боевых действий (операций). Вся стохастическая неопределенность «пряталась» в исходные данные, в частности в величины вероятностей поражения воздушных целей, наземных объектов, вследствие чего вероятностная задача становилась детерминированной и решалась обычными математическими методами.

Чтобы не усложнять учет неопределенностей, обусловленных слабо предсказуемыми действиями противника, в детерминированных моделях исследовались наиболее вероятные (как правило, типовые), по мнению военных экспертов, варианты применения противником своих войск (сил). Поэтому детерминированные модели можно считать лишь одним из этапов научного изучения вооруженного противоборства.

Наиболее перспективным классом моделей являются недетерминированные модели, поскольку по сравнению с детерминированными позволяют исследовать большее количество возможных вариантов действий противника в ходе ведения боевых действий (операций) объединения ВВС. Необходимо подчеркнуть, что именно недетерминированные, а не стохастические (вероятностные) модели, как это принято в практике моделирования боевых действий (операций). Данное уточнение является очень важным. Прежняя классификация моделей боевых действий (операций), по сути дела, игнорирует наличие другого типа неопределенностей нестохастических (реальных). К этому типу неопределенности относят неопределенность природы, то есть внешней среды, неопределенность целей (степень соответствия желаемого результата реальным возможностям), неопределенность действий противника.

Нестохастические неопределенности вооруженного противоборства, особенно неопределенности действий противника, играют чуть ли не решающую роль в моделировании боевых действий (операций). Столкновение воюющих сторон, преследующих противоположные цели, оказывает существенное влияние на сценарий развития боевых действий (операций). Для каждого такого сценария командующий и его штаб и выбирают рациональный способ применения своих войск (сил). В какой-то степени нестохастическая неопределенность является первичной по отношению к другому роду неопределенности стохастической, поскольку сторонами могут быть выбраны такие варианты действий, которые снижают количество случайных элементарных событий.

В недетерминированных моделях реалистичнее по сравнению с детерминированными моделями отражается комплексное влияние на ход и исход боевых действий (операций) нестохастических и стохастических неопределенностей. Влияние этих неопределенностей в недетерминированных моделях оценивается с учетом наиболее существенных факторов, обусловливающих проявление этих неопределенностей. Так, для учета нестохастической неопределенности предусматривается, что противник практически не ограничен в выборе вариантов способов применения своих войск (сил). Для исследования стохастических неопределенностей случайные процессы, связанные с поражением (обнаружением, радиоэлектронным подавлением) воздушных целей, наземных объектов, воспроизводятся с учетом конструктивных ошибок средств поражения (обнаружения), дальности до цели и ее ракурса, возможности выполнения воздушной целью противоракетного маневра, маскировки наземных объектов поражения, электромагнитной обстановки и т.д.

По способу учета случайных факторов кроме детерминированных и недетерминированных моделей следует выделить класс комбинированных моделей. В них используются приемы учета неопределенностей, характерные как для детерминированных, так и недетерминированных моделей. Среди комбинированных моделей можно выделить те, в которых наиболее глубоко исследуется влияние на результат моделирования боевых действий (операций) стохастической неопределенности, либо наоборот оцениваются слабо предсказуемые действия противника, а вероятностная природа элементарных событий поражения (обнаружения) воздушных целей, наземных объектов учитывается в исходных данных в соответствующих величинах исходных вероятностей.

С точки зрения учета нестохастических неопределенностей математические модели можно классифицировать на модели, построенные на методах теории игр, и ситуационные (военные игры). Их принципиальное отличие состоит в одном важном ограничении, а именно предположении в моделях теории игр полной («идеальной») разумности противника. Расчет на разумного противника лишь одна из возможных позиций в конфликте, но в теории игр именно она кладется в основу. В реальном конфликте зачастую выбор рационального способа применения войск (сил) состоит в том, чтобы угадать слабые стороны противника и своевременно воспользоваться ими.

Именно поэтому наибольшую популярность приобретают ситуационные модели (военные игры). Как и в реальных боевых действиях (операций), в ситуационных моделях предусматривается, что в их ход в любой момент может вмешаться человеческий фактор. Причем игроки обеих сторон практически не ограничены в выборе стратегии своего поведения. Каждый из них, выбирая свой очередной ход, может в зависимости от сложившейся обстановки и в ответ на предпринятые оппонентом шаги принимать то или другое решение. Затем он приводит в действие математическую модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Последствиями могут быть возможное количество потерь сторон, количество подавленных постановщиками помех средств ПВО, ударных средств, пунктов управления и связи и т.д. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки. В результате рациональное решение выбирается после многократного повторения такой процедуры.

Важной особенностью игровых и ситуационных моделей является стремление глубоко рассмотреть все возможные виды действий и противодействий, выявить и изучить возможные варианты применения войск (сил) под воздействием противника.

В зависимости от количества сторон, участвующих в моделировании боевых действий (операций), нестохастические модели можно подразделить на двусторонние («парные») и многосторонние («множественные»), сочетаний и типов которых существует множество, включая модели, связанные с участием большого количества игроков и многих посредников. Участниками «множественных» моделей могут быть не только непосредственные противники, но и представители войск (сил), взаимодействующих с объединением ВВС, посредники и т.д. В качестве посредников могут выступать независимые военные эксперты, имеющие возможность вмешиваться в необходимых случаях в ход моделирования боевых действий (операций).

С точки зрения учета стохастической (вероятностной) неопределенности математические модели боевых действий (операций) можно подразделить на вероятностные и статистические. Мотивацией такой классификации является различие задач математической статистики и теории вероятностей.

Задачи математической статистики в известной мере являются обратными по отношению к задачам теории вероятностей (несмотря на то что она основана на понятиях и методах теории вероятностей). В теории вероятностей считаются заданными вероятностные характеристики случайных событий поражения (обнаружения, радиоэлектронного подавления) воздушных целей, наземных объектов. По заданным характеристикам рассчитываются эффективности боевых действий (операций), например: математическое ожидание числа сохраненных объектов, математическое ожидание числа пораженных воздушных целей и т.д.

В математической статистике исходят из того, что вероятностная модель не задана (или задана не полностью), а в результате машинного эксперимента стали известны реализации случайных событий. На основе этих данных математическая статистика подбирает подходящую вероятностную модель для получения вывода о рассматриваемых явлениях, связанных с поражением (обнаружением, подавлением) воздушных целей, наземных объектов.

На ранних этапах математического моделирования, в том числе моделирования боевых действий (операций), вероятностный подход являлся наиболее популярным методом учета стохастической неопределенности. Это обусловлено тем, что объем вычислений статистических методов по сравнению с вероятностными методами чрезмерно велик. Для получения обоснованных результатов моделирования с помощью статистических методов требуются быстродействующие ЭВМ.

По мере развития вычислительной техники статистические методы получают все большее применение для учета стохастической неопределенностей боевых действий (операций). Статистика вычислительного эксперимента по поражению (обнаружению) воздушных целей, наземных объектов, полученная в ходе моделирования боевых действий (операций), содержит в себе информацию об условиях проведения эксперимента: конструктивные ошибки средств поражения (обнаружения); дальность до цели и ее ракурс; возможность выполнения воздушной целью противоракетного маневра; маскировка наземных объектов поражения; электромагнитная обстановка. В вероятностных моделях вероятностные характеристики случайных явлений поражения (обнаружения, подавления) воздушных целей, наземных объектов должны быть заданы заранее, что является затруднительным, поскольку невозможно достаточно точно спрогнозировать те условия обстановки, в которых будет осуществляться поражение (обнаружение) воздушных целей, наземных объектов.

Таким образом, можно привести уточненную классификацию математических моделей боевых действий (операций) объединения ВВС**, которая может быть осуществлена по следующим признакам (табл.):

целевой направленности; способу построения оптимизационных моделей; иерархической структуре; способу описания функциональных связей; характеру зависимостей в целевой функции и ограничениях; учету фактора времени; способу учета случайных факторов; учету нестохастических неопределенностей; количеству участвующих в моделировании сторон; учету стохастических неопределенностей. В таблице новые и уточненные классы математических моделей выделены жирным шрифтом.

Основной направленностью уточненной классификации является установление четких границ между моделями боевых действий (операций), а главное выявление тенденций развития математического моделирования таких сложных систем, какими являются модели боевых действий (операций) объединения ВВС. В результате классификации установлено, что основными тенденциями математического моделирования боевых действий (операций) являются: во-первых, разработка субоптимизированных математических моделей, предназначенных для поиска оптимальных вариантов ведения боевых действий (операций) объединения ВВС; во-вторых, разукрупнение крупномасштабной задачи моделирования боевых действий (операций) за счет применения метода детального воспроизведения иерархической сущности принятия решений на боевые действия (операцию); в-третьих, создание класса моделей, в которых корректно учитывается воздействие как стохастических неопределенностей, связанных с поражением (обнаружением) воздушных целей, наземных объектов, так и нестохастических, обусловленных трудно предсказуемыми действиями противника.

Математическое моделирование и оценка эффективности боевых действий Войск ПВО. Тверь: ВА ПВО, 1995. С. 105; Военная мысль. 1989. № 2. С. 38; Военная мысль. 1987. № 7. С. 34.

К числу методов оптимизации относятся аналитические методы (метод Лагранжа, уравнения Ланчестера), итерационные (методы линейного, нелинейного, динамического программирования), неитерационные (методы случайного поиска, многофакторного анализа), а также методы последовательной оптимизации (ситуационный метод, методы покоординатного поиска и наискорейшего спуска).

Военная мысль. 2003. № 10. С. 24.

Военная мысль. 2003. № 10. С. 23-24.

Для комментирования необходимо зарегистрироваться на сайте

Военная историческая библиотека

Главная Энциклопедия Словари Подробнее

Моделирование в военном деле

Метод военно-теоретического или военно-технического исследования объекта (явления, процесса, системы) путем создания и изучения его аналога (модели) способного замещать изучаемый объект в процессе исследования с целью получения информации о реальной системе. По сравнению с реальной системой (прототипом) модель может иметь совершенно иную природу. Между реальной системой и ее моделью должно быть установлено определенное соответствие (аналогия) по тем признакам (факторам, свойствам), которые в той или иной мере должны быть обязательно учтены для достижения цели исследования. Выявленные в процессе М. свойства и особенности поведения модели переносятся с использованием метода аналогий на реальный (моделируемый) объект. Степень соответствия модели тому фрагменту реальной действительности, для изучения которой формируется модель, называется адекватностью модели. Неадекватная модель не способна замещать прототип (оригинал) в процессе исследования, т.к. в этом случае нарушается логическая основа М. - возможность переноса информации об одних объектах на другие, т.е. возможность формирования умозаключения по аналогии. М. - основная методологическая концепция познания и практического овладения реальной действительностью в военном деле и является в определенном смысле обобщением метода аналогий. Различают материальное (предметное) и идеальное М.

При материальном М. в качестве модели предполагается использование некоторого материального предмета. По природе аналогии материальное М. делят на физическое (макетирование, обеспечивающее аналогию физической природы оригинала и модели) и аналоговое (обеспечивающее сходство процессов, протекающих в оригинале и модели). Идеальное М. основывается на мысленной идеализированной аналогии реального объекта и его модели, а по способу отражения реального объекта (или по глубине формализации) делится на знаковое и интуитивное М. По способу представления знаковых моделей различают математическое, логическое (логико-математическое) и графическое М.

Математическое М. предполагает использование математической модели, под которой понимают систему математических соотношений, зависимостей (обычно в форме математических уравнений и ограничивающих условий), описывающую с определенных сторон исследуемый объект и замещающую его в процессе познания. По вычислимости различных показателей, отношений и т.п. методы математического М. делятся на аналитические и алгоритмические.

Интуитивное М. проводится на вербальном (описательном) уровне. При этом методе ограничиваются лишь анализом качественных обобщенных понятий, отражающих общие тенденции развития явлений. Многие из перечисленных форм и способов М. используется в форме имитационного М., при котором в качестве аналога изучаемого фрагмента реальной действительности применяется модель имитационная.

Имитационное М. представляет собой процесс конструирования модели имитационной сложной реальной системы и постановки эксперимента на этой модели с целью либо понять поведение системы, либо оценить (в рамках соответствующих ограничений) различные стратегии (способы действий), обеспечивающие функционирование данной системы. Имитационное М., является методом исследования направленным на описание поведения системы; выдвижение предположений и гипотез, которые могут объяснить наблюдаемое поведение системы; использование этих гипотез для предсказания будущего поведения. Этот метод М. является одним из самых действенных инструментов исследования сложных систем, управление которыми связано с принятием решений в условиях неопределенности. При имитационном М. процессы функционирования системы-оригинала подменяются процессами, имитируемыми другой системой (моделью), но с соблюдением основных правил (режимов, алгоритмов) функционирования оригинала. В процессе имитации фиксируются определенные события и состояния или измеряются выходные воздействия, по которым вычисляются характеристики качества функционирования системы. С помощью моделей, имитирующих реальность, исследователь проводит серии специально организованных вариантных расчетов («прогоны» модели) и получает те знания, без которых выбрать альтернативный вариант своей стратегии он не может. Имитационное М. издавна используются в военном деле. Военные игры (маневры, учения, командно-штабные учения и т.д.), проводятся для проигрывания (имитации) предстоящих операций и относятся к имитационному моделированию. Так в РВСН при проведении командно-штабных военных игр широко используются штабные математические модели и другие, отражающие связь эффективности боевых действий с факторами ее определяющими. В связи с бурным развитием вычислительной техники широкое распространение получили военные игры с использованием ЭВМ. Имитационное исследование, проводимое с использованием имитационных моделей, является основной формой системного анализа эффективности боевых действий. События при имитации разворачиваются во времени, как правило, в том порядке, в каком они следуют в реальной системе, но в измененной временной шкале. Действие случайных факторов учитывается с помощью специальных датчиков случайных чисел (имитаторов). В определенном месте процесс имитации может быть приостановлен для проведения, например, операционной военной игры, экспертного опроса или натурного эксперимента с использованием промежуточных данных, полученных при машинной имитации. Результаты игры, экспертизы или эксперимента могут быть использованы для продолжения имитации процесса на ЭВМ.

К настоящему времени наиболее распространено М. процессов вооруженной борьбы (боя, удара, сражения, операции и т.п.) с целью обоснования принимаемых решений в области управления войсками и оружием при подготовке и ведении боевых действий, строительстве вооруженных сил, разработке программ развития вооружений, оперативной подготовке штабов и т.д. При изучении боевых действий Ракетных войск стратегического назначения метод М. является практически единственным методом познания и выработки военно-технических решений. К настоящему времени создан большой класс моделей одиночных, групповых и массированных ударов группировок РВСН разнообразного состава в различных формах боевого применения (в ответном, ответно-встречном, упреждающем ударах), предназначенных в основном для исследования эффективности боевых действий в широком диапазоне возможных условий обстановки. Эти модели выражают связь эффективности боевых действий с различного рода факторами, её определяющими. Особое значение имеют задачи планирования ракетно-ядерных ударов (в частности, задача целераспределения), решаемые только с использованием метода М. Не менее важную роль играет М. при выборе рационального состава и структурно-функционального облика системы вооружения ВС и, в частности, РВСН. В этом направлении М. является основным методом при обосновании предложений в Государственную программу вооружения, а также при формировании государственного оборонного заказа. При создании ракетно-ядерного вооружения в период научно-исследовательских работ и опытно-конструкторских разработок метод М. можно назвать ведущим, особенно на стадии, так называемого, внешнего проектирования систем, а также в практике военно-экономического анализа ракетного вооружения. Исследование способов преодоления систем ПРО требует использования различных методов и приемов М. Современная теория ядерного сдерживания базируется на широком, всеохватывающем использовании разнообразных методов М.