) А = ||a ik || n 1 вычитанием величины λ из диагональных элементов. Этот определитель представляет собой многочлен относительно Х - характеристический многочлен. В раскрытом виде Х. у. записывается так:

где S 1 = a 11 + a 22 +... a nn - т. н. след матрицы, S 2 - сумма всех главных миноров 2-го порядка, т. е. миноров вида i k) и т.д., а S n - определитель матрицы А . Корни Х. у. λ 1 , λ 2 ,..., λ n называются собственными значениями матрицы А . У действительной симметричной матрицы, а также у эрмитовой матрицы все λ k действительны, у действительной кососимметричной матрицы все λ k чисто мнимые числа; в случае действительной ортогональной матрицы, а также унитарной матрицы все |λ k | = 1.

Х. у. встречаются в самых разнообразных областях математики, механики, физики, техники. В астрономии при определении вековых возмущений планет также приходят к Х. у.; отсюда и второе название для Х. у. - вековое уравнение.

2) Х. у. линейного дифференциального уравнения с постоянными коэффициентами

a 0 λy (n ) + a 1 y (n-1 ) +... + a n-1 y" + a n y = 0

Алгебраическое уравнение, которое получается из данного дифференциального уравнения после замены функции у и её производных соответствующими степенями величины λ, т. е. уравнение

a 0 λ n + a 1 λ n-1 + ... + a n-1 y" + a n y = 0.

К этому уравнению приходят при отыскании частного решения вида у = се λх для данного дифференциального уравнения. Для системы линейных дифференциальных уравнений

Х. у. записывается при помощи определителя

Х. у. матрицы A =

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Характеристическое уравнение" в других словарях:

    Во многих случаях физические процессы, происходящие в системах, описываются системой обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами, которая в достаточно общем случае может быть сведена к дифференциальному уравнению … Энциклопедия техники

    Алгебраическое уравнение видаОпределитель в этой формуле получается из определителя матрицы вычитанием величины x из диагональных элементов; он представляет собой многочлен относительно x и называется характеристическим многочленом … Большой Энциклопедический словарь

    характеристическое уравнение - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN characteristic equation … Справочник технического переводчика

    Алгебраическое уравнение вида. Определитель в этой формуле получается из определителя матрицы х из диагональных элементов; он представляет собой многочлен относительно х и называется характеристическим многочленом. * * * ХАРАКТЕРИСТИЧЕСКОЕ… … Энциклопедический словарь

    характеристическое уравнение - būdingoji lygtis statusas T sritis automatika atitikmenys: angl. characteristic equation; performance equation vok. charakteristische Gleichung, f; Stammgleichung, f rus. характеристическое уравнение, n pranc. équation caractéristique, f … Automatikos terminų žodynas

    характеристическое уравнение - būdingoji lygtis statusas T sritis fizika atitikmenys: angl. characteristic equation; performance equation vok. charakteristische Gleichung, f rus. характеристическое уравнение, n pranc. équation caractéristique, f … Fizikos terminų žodynas

    характеристическое уравнение Энциклопедия «Авиация»

    характеристическое уравнение - характеристическое уравнение. Во многих случаях физические процессы, происходящие в системах, описываются системой обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами, которая в достаточно общем случае может быть сведена … Энциклопедия «Авиация»

    Вековое уравнение, см. в ст. Характеристический многочлен … Математическая энциклопедия

    Характеристический многочлен это многочлен, определяющий собственные значения матрицы. Другое значение: Характеристический многочлен линейной рекурренты это многочлен. Содержание 1 Определение … Википедия

Книги

  • Характеристические кольца Ли и нелинейные интегрируемые уравнения , Жибер А.В.. Книга посвящена систематическому изложению алгебраического подхода к исследованию нелинейных интегрируемых уравнений в частных производных и их дискретных аналогов, основанного на понятии…

Свободный режим схемы не зависит от источников энергии, определяется только структурой схемы и параметрами ее элементов. Из этого следует, что корни характеристического уравнения p1, p2,…, pn будут одинаковыми для всех переменных функций (токов и напряжений).

Характеристическое уравнение можно составить различными методами. Первый метод – классический, когда характеристическое уравнение составляется строго в соответствии с дифференциальным по классической схеме. При расчете переходных процессов в сложной схеме составляется система из “m” дифференциальных уравнений по законам Кирхгофа для схемы цепи после коммутации. Так как корни характеристического уравнения являются общими для всех переменных, то решение системы дифференциальных уравнений выполняется относительно любой переменной (по выбору). В результате решения получают неоднородное дифференциальное уравнение с одной переменной. Составляют характеристическое уравнение в соответствии с полученным дифференциальным и определяют его корни.

Пример. Составить характеристическое уравнение и определить его корни для переменных в схеме рис. 59.1. Параметры элементов заданы в общем виде.

Система дифференциальных уравнений по законам Кирхгофа:

Решим систему уравнений относительно переменной i3, в результате получим неоднородное дифференциальное уравнение:

Второй способ составления характеристического уравнения заключается в приравнивании нулю главного определителя системы уравнений Кирхгофа для свободных составляющих переменных.

Пусть свободная составляющая произвольного тока имеет вид iксв=Аkept, тогда:

Система уравнений для свободных составляющих получается из системы дифференциальных уравнений Кирхгофа путем замены производных от переменных на множитель р, а интегралов – на 1/р. Для рассматриваемого примера система уравнений для свободных составляющих имеет вид:

Характеристическое уравнение и его корень:


Третий способ составления характеристического уравнения (инженерный) заключается в приравнивании нулю входного операторного сопротивления схемы относительно любой ее ветви.

Операторное сопротивление элемента получается из его комплексного сопротивления путем простой замены множителя jω на р, следовательно

Для рассматриваемого примера:


Третий способ является наиболее простым и экономичным, поэтому он чаще других применяется при расчете переходных процессов в электрических цепях.

Корни характеристического уравнения характеризуют свободный переходной процесс в схеме без источников энергии. Такой процесс протекает с потерями энергии и поэтому затухает во времени. Из этого следует, что корни характеристического уравнения должны быть отрицательными или иметь отрицательную вещественную часть.

В общем случае порядок дифференциального уравнения, которым описывается переходный процесс в схеме, и, следовательно, степень характеристического уравнения и число его корней равны числу независимых начальных условий, или числу независимых накопителей энергии (катушек L и конденсаторов C). Если в схеме цепи содержатся параллельно включенные конденсаторы С1, С2,… или последовательно включенные катушки L1, L2,…, то при расчете переходных процессов они должны быть заменены одним эквивалентным элемен¬том СЭ =С1 +С2+… или LЭ =L1 +L2+…

Таким образом, общий вид решения для любой переменной при расчете переходного процесса может быть составлен только из анализа схемы цепи, без составления и решения системы дифференциальных уравнений.

Для рассматриваемого выше примера.

Характеристическое уравнение составляется для цепи после коммутации. Оно может быть получено следующими способами:

  • непосредственно на основе дифференциального уравнения вида (2) (см. лекцию №24), т.е. путем исключения из системы уравнений, описывающих электромагнитное состояние цепи на основании первого и второго законов Кирхгофа, всех неизвестных величин, кроме одной, относительно которой и записывается уравнение (2);
  • путем использования выражения для входного сопротивления цепи на синусоидальном токе;
  • на основе выражения главного определителя.

Согласно первому способу в предыдущей лекции было получено дифференциальное уравнение относительно напряжения на конденсаторе для последовательной R-L-C-цепи, на базе которого записывается характеристическое уравнение.

Следует отметить, что, поскольку линейная цепь охвачена единым переходным процессом, корни характеристического уравнения являются общими для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение. Поэтому по первому способу составления характеристического уравнения в качестве переменной, относительно которой оно записывается, может быть выбрана любая.

Применение второго и третьего способов составления характеристического уравнения рассмотрим на примере цепи рис. 1.

Составление характеристического уравнения по методу входного сопротивления заключается в следующем:

записывается входное сопротивление цепи на переменном токе;

jw заменяется на оператор р;

полученное выражение приравнивается к нулю.

Уравнение

совпадает с характеристическим.

Следует подчеркнуть, что входное сопротивление может быть записано относительно места разрыва любой ветви схемы. При этом активный двухполюсник заменяется пассивным по аналогии с методом эквивалентного генератора. Данный способ составления характеристического уравнения предполагает отсутствие в схеме магнитосвязанных ветвей; при наличии таковых необходимо осуществить их предварительное развязывание.

Для цепи на рис. 1 относительно зажимов источника

.

Заменив jw на р и приравняв полученное выражение к нулю, запишем

. (1)

При составлении характеристического уравнения на основе выражения главного определителя число алгебраических уравнений, на базе которых он записывается, равно числу неизвестных свободных составляющих токов. Алгебраизация исходной системы интегро-дифференциальных уравнений, составленных, например, на основании законов Кирхгофа или по методу контурных токов, осуществляется заменой символов дифференцирования и интегрирования соответственно на умножение и деление на оператор р. Характеристическое уравнение получается путем приравнивания записанного определителя к нулю. Поскольку выражение для главного определителя не зависит от правых частей системы неоднородных уравнений, его составление можно производить на основе системы уравнений, записанных для полных токов.

Для цепи на рис. 1 алгебраизованная система уравнений на основе метода контурных токов имеет вид

Отсюда выражение для главного определителя этой системы

Приравняв D к нулю, получим результат, аналогичный (1).

Общая методика расчета переходных процессов классическим методом

В общем случае методика расчета переходных процессов классическим методом включает следующие этапы:

Примеры расчета переходных процессов классическим методом

1. Переходные процессы в R-L цепи при ее подключении к источнику напряжения

Такие процессы имеют место, например, при подключении к источнику питания электромагнитов, трансформаторов, электрических двигателей и т.п.

Рассмотрим два случая:

Согласно рассмотренной методике для тока в цепи на рис. 2 можно записать

Характеристическое уравнение

откуда и постоянная времени .

Таким образом,

. (5)

Подставляя (4) и (5) в соотношение (3), запишем

.

В соответствии с первым законом коммутации . Тогда

,

Таким образом, ток в цепи в переходном процессе описывается уравнением

,

а напряжение на катушке индуктивности – выражением

.

Качественный вид кривых и , соответствующих полученным решениям, представлен на рис. 3.

При втором типе источника принужденная составляющая рассчитывается с использованием символического метода:

,

Выражение свободной составляющей не зависит от типа источника напряжения. Следовательно,

.

Поскольку , то

Таким образом, окончательно получаем

. (6)

Анализ полученного выражения (6) показывает:

Если значительна по величине, то за полпериода свободная составляющая существенно не уменьшается. В этом случае максимальная величина тока переходного процесса может существенно превышать амплитуду тока установившегося режима. Как видно из рис. 4, где

, максимум тока имеет место примерно через . В пределе при .

Таким образом, для линейной цепи максимальное значение тока переходного режима не может превышать удвоенной амплитуды принужденного тока: .

Аналогично для линейной цепи с конденсатором: если в момент коммутации принужденное напряжение равно своему амплитудному значению и постоянная времени цепи достаточно велика, то примерно через половину периода напряжение на конденсаторе достигает своего максимального значения , которое не может превышать удвоенной амплитуды принужденного напряжения: .

2. Переходные процессы при отключении катушки индуктивности от источника питания

При размыкании ключа в цепи на рис. 5 принужденная составляющая тока через катушку индуктивности .

Характеристическое уравнение

,

откуда и .

В соответствии с первым законом коммутации

.

Таким образом, выражение для тока в переходном режиме

и напряжение на катушке индуктивности

. (7)

Анализ (7) показывает, что при размыкании цепей, содержащих индуктивные элементы, могут возникать большие перенапряжения, которые без принятия специальных мер могут вывести аппаратуру из строя. Действительно, при модуль напряжения на катушке индуктивности в момент коммутации будет во много раз превышать напряжение источника: . При отсутствии гасящего резистора R указанное напряжение прикладывается к размыкающимся контактам ключа, в результате чего между ними возникает дуга.

3. Заряд и разряд конденсатора

При переводе ключа в положение 1 (см. рис. 6) начинается процесс заряда конденсатора:

.

Принужденная составляющая напряжения на конденсаторе .

Из характеристического уравнения

определяется корень . Отсюда постоянная времени .

Характеристическое уравнение имеет вид:

Для определения вида свободной составляющей необходимо составить и решить характеристическое уравнение: z(p)=0.Для записи характеристического уравнения необходимо нарисовать схему,в которой все источники ЭДС и тока следует заменить на их же внутреннее сопротивление,а сопротивление индуктивности и емкости принять соответственно равным Pl и ,далее необходимо разорвать любую ветвь данной схемы,записать ее исходное сопротивление относительно точек разрыва,прировнять его нулю,решить и определить корни p,если корни получились действительными отрицательными,то своб.составляющая искомой функции:

,где m-количество корней уравнения;

Корни; -постоянные интегрируемые.

Если корни характер.уравнения получились комплексно сопряженными,то своб.сост.будет иметь вид:

где -частота свободных колебаний;

Начальная фаза свободных колебаний.

8.Время переходного процесса. Определение практически t пп. Расчет времени переходного процесса.

Время переходного процесса зависит от коэфициента затухания .Величина,обратная ,называется постоянной времени и представляет собой время,в течении которого значение свободной составляющей переходного процесса уменьшится в e=2,72 раза. Величина зависит от схемы и параметров.Так для цепи с последовательным соединением r и L = ,а при последовательном соединениии

95% окончания переходного процесс 3 .

Кривые свободных составляющих переходного процесса проще всего построить, задавая времени t значения 0, ,2 …..Если вещественных корней несколько,то результирующая кривая получается путем суммирования ординат отдельных слагаемых (рис.1.)

Рисунок 1:

9.10,Переходный процесс в r, С – цепи при включении на источник постоянного напряжения. Анализ произвести классическим методом; привести аналитические выражения для U C (t); i C (t); графики. (Классический метод).

Уравнение состояния rC-цепи после коммутации следующее:

(1) ,или rC (2)

Его решение:

Емкость С после замыкания ключа при t зарядится до установившегося значения .Свободная составляющая

Поскольку начальные условия нулевые,согласно закону коммутации при t=0,или 0=A ,откуда A=-E.

Решение уравнения (2) примет вид:

Ток в цепи i(t)=C

Рисунок 1.

Рисунок 2.

Графики изменения напряжения и тока i(t) приведены на рисунке 1 и 2. Из рисунков видно,что напряжение на конденсаторе возростает по экспоненциальному закону от 0 до E,сила тока же в момент коммутации скачком достигает значения E/r, а затем убывает до нуля.

11.12.Переходный процесс в r, C – цепи при подключении к источнику синусоидального напряжения. Анализ произвести классическим методом; привести аналитические выражения для U C (t); i C (t); графики. (Классический метод).

Уравнение состояния rC-цепи в переходном режиме следующее

rC .

Решение этого уравнения:

Свободная составляющая

где =rC

Так цепь линейна,то при синусоидальном воздействиии в установившемся режиме напряжение на емкости также будет изменяться по синусоидальному закону с частотой входного воздействия,Поэтому для определения = воспользуемся методом комплексных амплитуд:

;

Учитывая, что j= ,получаем:

Постоянную интегрирования А свободной составляющей

Найдем из начальных условий в цепи с учетом закона коммутации:

.При t=0 последнее выражение имеет вид

Откуда A=-

Cложив составляющие и ,получим окончательное выражение для напряжения на емкости в переходном режиме:

= + = - (1)

Анализ выражения (1) показывает, что переходный процесс в rC-цепи при синусоидальном воздействии зависит от начальной фазы ЭДС источника в момент коммутации и от постоянной времени rC-цепи.

Если ,то =0 и в цепи сразу после коммутации наступит установившийся режим,т.е.

При напряжение =- , т.е. напряжение на емкости сразу после коммутации может достигать почти удвоенного значения положительного знака,а затем постепенно приближаться к = .

Разность фаз приведет уравнение (1) к виду:

Отличие данного режима от предыдущего состоит в том,что напряжение на емкости сразу после коммутации может достичь почти удвоенного значения отрицательного знака.

Для расмотренной Rc-цепи с источником синусоидального тока в установившемся режиме начальная фаза входного напряжения никакой роли не играет, но в переходном процессе ее влияние существенно.

13.Переходный процесс в r, L, C – цепи при подключении к источнику постоянного напряжения. Периодический процесс. Аналитические выражения для i(t), графики. (Классический метод).

Корни действительные, отрицательные, разные.

I(t)=I уст +A1e p 1 t +A2e p 2 t

Процесс периодический:

t=0 {i(0)=A1+A2; A1=-A2

{

t=0 i l (0)*r+L +Uc(0)=E A1=-A2= ()

i l (t)= ()

14.Переходный процесс в r, L, C – цепи при подключении к источнику постоянного напряжения. Критический процесс. Аналитические выражения для i(t), графики. (Классический метод).

i l (t)=i уст +(B1+B2*t)*

t=0: i l (0)=β1=0

Если корни получились действительные, отрицательные, равные, значит процесс критический.

15.Переходный процесс в r, L, C – цепи при подключении к источнику постоянного напряжения. Колебательный процесс. Аналитическое выражение для i(t), графики. (Классический метод).

P t = -δ±j*ω св ω св=

Корни отрицательные действительные, частью комплексносопряженные.

i l (t)=i уст A1e - δt *sin(ω св t+ψ)

i l (t)=i уст +(M*cos ω св t+N*sin ω св t)*

i l (t)= * = *

16. Переходный процесс в r, L, C – цепи при подключении к источнику синусоидального напряжения. Апериодический процесс. Аналитическое выражение для i(t), графики. (Классический метод).

R(t)=E max *sin(ωt+ψ)

2.

В классическом Число уравнений в этом случае равно числу ветвей схемы

методе находится решение в виде суммы общего и частного решения. Расчета переходный процесс описывается системой обыкновенных дифф.уравнений, составленных одним из методов расчета для мгновенных значений функций времени. Решение для каждой переменной этой системы находится в виде суммы общего и частного решения. Для составления уравнения могут быть использованы: метод, основанный на применении законов Кирхгофа, метод узловых потенциалов, метод контурных токов и т.д. Например, система дифференциальных уравнений, составленная после коммутации согласно первому и второму законам Кирхгофа, имеет вид:

Например,

Число уравнений в этом случае равно числу ветвей схемы. Пусть требуется найти ток i k в ветви с номером К.Исключая последовательно токи ветвей, в результате получим ток i k и его производные до порядка n:

Порядок дифф.уравнения n определяется количеством независимых реактивных элементов схемы (m). Обычно n=m, но в зависимости от способа соединения может быть и так, что n

Последовательно включенные емкостные элементы можно заменить одним элементом, так же как и парал включенные индуктивные элементы можно заменить одним эквивалентным. На рисунке 9.5 показана замена 2х последовательно включенных емкостей одной эквивалентной.

В общем случае порядок диф.уравнения n равен: n=n lc -n ce -n lj , где n lc -количество реактивных элементов(L и C) в схеме, n ce - количество емкостных контуров, n lj -количество индуктивных узлов или сечений.

Под ёмкостным понимается контур, состоящих из емкостных элементов или емкостных элементов и идеальных источников ЭДС, рис 9.6.а.Под индуктивным понимается узел, в который сходятся индуктивные ветви или индуктивные ветви и источники тока(рис. 9.6.б), либо сечения, которые пересекают только индуктивные ветви или индуктивные ветви и источники тока.

Отметим, что этап составления диф.уравнения не явл-ся обязательным и переходный ток или напряжение могут быть найдены без составления ур-ния. Как было указано, в классическом методе расчета переходных процессов решения уравнений представляется виде суммы общего и частного решения.

Частное решение описывает режим, который называется принужденным. Решение однородного уравнения(правая часть равна нулю) описывает процесс при отсутствии внешних ЭДС и источников тока и называется свободным. Соответственно рассматриваются свободные и принужденные токи, напряжения, заряды.

Таким образом, ток в ветви с номером К представляется в виде суммы .

Характеристическое уравнение составляется для цепи после коммутации. Оно может быть получено следующими способами:

Непосредственно на основе дифференциального уравнения вида (1.2), т.е. путем исключения из системы уравнений, описывающих электромагнитное состояние цепи на основании законов Кирхгофа, всех неизвестных величин, кроме одной, относительно которой и записывается уравнение;

Путем использования выражения для входного сопротивления цепи на синусоидальном токе;

На основе выражения главного определителя.

Согласно первому способу в 1.4.1 было получено дифференциальное уравнение относительно напряжения u C на конденсаторе для последовательной r-L-C -цепи (см. рис.1.6):

на базе которого записывается характеристическое уравнение

.

Следует отметить, что, поскольку линейная цепь охвачена единым переходным процессом, корни характеристического уравнения являются общими для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение. Поэтому по первому способу составления характеристического уравнения в качестве величины, относительно которой оно записывается, может быть выбрана любая.

Составление характеристического уравнения по методу входного сопротивления заключается в следующем:

1. Записывается выражение для входного сопротивления цепи на переменном токе в комплексной форме ;

2. В полученном выражении заменяется на оператор р ;

3. Полученное выражение приравнивается к нулю.

Уравнение совпадает с характеристическим.

Следует подчеркнуть, что входное сопротивление может быть записано относительно места разрыва любой ветви схемы. При этом источники энергии исключаются из схемы, а на их месте остаются их внутренние сопротивления.

Данный способ составления характеристического уравнения предполагает отсутствие в электрической схеме магнитосвязанных ветвей. При наличии таковых необходимо осуществить магнитную развязку.

Для рассматриваемой схемы (см. рис.1.6) по методу входного сопротивления имеем:

;

;

.

При составлении характеристического уравнения на основе выражения главного определителя число алгебраических уравнений, на базе которых оно записывается, равно числу неизвестных свободных составляющих токов.

Алгебраизация исходной системы интегро-дифференциальных уравнений, составленных, например, на основании законов Кирхгофа или по методу контурных токов, осуществляется заменой операций дифференцирования и интегрирования соответственно умножением и делением на оператор р . Характеристическое уравнение получается путем приравнивания записанного определителя к нулю.

Поскольку выражение для главного определителя не зависит от правых частей системы неоднородных уравнений, его составление можно производить на основе системы уравнений, записанных для полных токов.

Для рассматриваемой схемы (см. рис.1.6) для свободного режима имеем:

.

Заменив в уравнении производную и интеграл, как сказано выше, получим алгебраическое уравнение

или .

Откуда получаем

или .