ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

(от лат. turbulentus - бурный, беспорядочный), форма течения жидкости или газа, при к-рой их совершают неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями жидкости или газа (см. ТУРБУЛЕНТНОСТЬ). Наиболее детально изучены Т. т. в трубах, каналах, пограничных слоях около обтекаемых жидкостью или газом тв. тел, а также т. н. свободные Т. т.- струи, следы за движущимися относительно жидкости или газа тв. телами и зоны перемешивания между потоками разной скорости, не разделёнными к.-л. тв. стенками. Т. т. в каждом из перечисленных случаев отличается от соответствующего ему ламинарного течения как своей сложной внутр. структурой (рис. 1), так и распределением

Рис. 1. Турбулентное течение.

осреднённой скорости по сечению потока (рис. 2) и интегральными хар-ками - зависимостью средней по сечению или макс. скорости, расхода, а также коэфф. сопротивления от Рейнольдса числа Re, Профиль осреднённой скорости Т. т. в трубах или каналах отличается от параболич. профиля соответствующего ламинарного течения более быстрым возрастанием скорости у стенок и меньшей

Рис. 2. Профиль осреднённой скорости: а - при ламинарном течении; б - при турбулентном течении.

кривизной в центр. части течения. За исключением тонкого слоя около стенки профиль скорости описывается логарифмич. законом (т. е. линейно зависит от логарифма расстояния до стенки). Коэфф. сопротивления l=8tw/rv2cp (где tw - трения на стенке, r - жидкости, vср - средняя по сечению скорость потока) связан с Re соотношением:

l1/2 = (1/c?8) ln (l1/2Re)+B,

где c. и B - числовые постоянные. В отличие от ламинарных пограничных слоев, турбулентный обычно имеет отчётливую границу, беспорядочно колеблющуюся со временем (в пределах 0,4 б - 1,2d, где d - расстояние от стенки, на к-ром осреднённая скорость равна 0,99 v, a v - скорость вне пограничного слоя). Профиль осреднённой скорости в пристенной части турбулентного пограничного слоя описывается логарифмич. законом, а во внеш. части скорость растёт с удалением от стенки быстрее, чем по логарифмич. закону. Зависимость l от Re здесь имеет вид, аналогичный указанному выше.

Струи, следы и зоны перемешивания обладают приблизит. автомодельностью: в каждом сечении c=const любого из этих Т. т. на не слишком малых расстояниях х от нач. сечения можно ввести такие масштабы длины и скорости L(x) и v(x), что безразмерные статистич. хар-ки гидродинамич. полей (в частности, профили осреднённой скорости), полученные при применении этих масштабов, будут одинаковыми во всех сечениях.

В случае свободных Т. т. область пр-ва, занятая завихрённым Т. т., в каждый момент времени имеет чёткую, но очень неправильную форму границ, вне к-рых течение потенциально. Зона перемежающейся турбулентности оказывается здесь значительно более широкой, чем в пограничных слоях.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

Форма течения жидкости или газа, при к-рой вследствие наличия в течении многочисл. вихрей разл. размеров жидкие частицы совершают хаотич. неустановившиеся движения по сложным траекториям (см. Турбулентность), в противоположность ламинарным течениям с гладкими квазипараллельными траекториями частиц. Т. т. наблюдаются при определ. условиях (при достаточно больших Рейнольдса числах )в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.

Т. т. отличаются от ламинарных не только характером движения частиц, но также распределением осреднённой скорости по сечению потока, зависимостью средней или макс. скорости, расхода и коэф. сопротивления от числа Рейнольдса Re, гораздо большей интенсивностью тепло-и массообмена.

Профиль осреднённой скорости Т. т. в трубах и каналах отличается от параболич. профиля ламинарных течений меньшей кривизной у оси и более быстрым возрастанием скорости у стенок, где за исключением тонкого вязкого подслоя (толщиной порядка , где v - вязкость, - "скорость трения", t-турбулентное напряжение трения, r-плотность) профиль скорости описывается универсальным по Re логарифмич. законом:

где y 0 равно при гладкой стенке и пропорционально высоте бугорков при шероховатой.

Турбулентный пограничный слой в отличие от ламинарного обычно имеет отчётливую границу, нерегулярно колеблющуюся во времени в пределах где d- расстояние от стенки, на к-ром скорость достигает 99% от значения вне пограничного слоя; в этой области скорость растёт с удалением от стенки быстрее, чем по логарифмич. закону.

Струи, следы и зоны перемешивания обладают приблизит. автомодельностью: с расстоянием x от нач. сечения масштаб длины L растёт как х т, а масштаб скорости U убывает как х -n , где для объёмной струи т = п = 1, для плоской т =1, n =1/2, для объёмного следа т = 1/3, n = 2/3, для плоского следа т=п=1/2, для зоны перемешивания m= 1, n = 0. Граница турбулентной области здесь также отчётливая, но нерегулярной формы и колеблется шире, чем у пограничных слоев, в плоском следе - в пределах (0,4-3,2) L.

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Таунсенд А. А., Структура турбулентного потока с поперечным сдвигом, пер. с англ., М., 1959; Абрамович Г. Н., Теория турбулентных струй, М., 1960; Монин А. С., Яглом А. М., Статистическая , 2 изд., ч . 1, СПб., 1992. А. С. Монин.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ" в других словарях:

    Течение жидкости или газа, характеризующееся беспорядочным, нерегулярным перемещением его объёмов и их интенсивным перемешиванием (см. Турбулентность), но в целом имеющее плавный, регулярный характер. Образование Т. т. связано с неустойчивостью… … Энциклопедия техники

    - (от лат turbulentus бурный беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают хаотические… … Большой Энциклопедический словарь

    Современная энциклопедия

    ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ, в физике движение текучей среды, при котором происходит беспорядочное перемещение ее частиц. Характерно для жидкости или газа с высоким ЧИСЛОМ РЕЙНОЛЬДСА. см. также ЛАМИНАРНОЕ ТЕЧЕНИЕ … Научно-технический энциклопедический словарь

    турбулентное течение - Течение, в котором частицы газа движутся сложным неупорядоченным образом и процессы переноса происходят на макроскопическом, а не на молекулярном уровне. [ГОСТ 23281 78] Тематики аэродинамика летательных аппаратов Обобщающие термины виды течений… … Справочник технического переводчика

    Турбулентное течение - (от латинского turbulentus бурный, беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают… … Иллюстрированный энциклопедический словарь

    - (от лат. turbulentus бурный, беспорядочный * a. turbulent flow; н. Wirbelstromung; ф. ecoulement turbulent, ecoulement tourbillonnaire; и. flujo turbulento, corriente turbulenta) движение жидкости или газа, при котором образуются и… … Геологическая энциклопедия

    турбулентное течение - Форма течения воды или воздуха, при которой их частицы совершают неупорядоченные движения по сложным траекториям, что приводит к интенсивному перемешиванию. Syn.: турбулентность … Словарь по географии

    ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ - вид течения жидкости (или газа), при котором их малые объёмные элементы совершают неустановившиеся движения по сложным беспорядочным траекториям, что приводит к интенсивному перемешиванию слоёв жидкости (или газа). Т. т. возникает в результате… … Большая политехническая энциклопедия

    Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Изучение свойств потоков жидкостей и газов очень важно для промышленности и коммунального хозяйства. Ламинарное и турбулентное течение сказывается на скорости транспортировки воды, нефти, природного газа по трубопроводам различного назначения, влияет на другие параметры. Этими проблемами занимается наука гидродинамика.

Классификация

В научной среде режимы течения жидкости и газов разделяют на два совершенно разных класса:

  • ламинарные (струйные);
  • турбулентные.

Также различают переходную стадию. Кстати, термин «жидкость» имеет широкое значение: она может быть несжимаемой (это собственно жидкость), сжимаемой (газ), проводящей и т. д.

История вопроса

Еще Менделеевым в 1880 году была высказана идея о существовании двух противоположных режимов течений. Более подробно этот вопрос изучил британский физик и инженер Осборн Рейнольдс, завершив исследования в 1883 году. Сначала практически, а затем с помощью формул он установил, что при невысокой скорости течения перемещение жидкостей приобретает ламинарную форму: слои (потоки частиц) почти не перемешиваются и движутся по параллельным траекториям. Однако после преодоления некоего критического значения (для различных условий оно разное), названного числом Рейнольдса, режимы течения жидкости меняются: струйный поток становится хаотичным, вихревым - то есть, турбулентным. Как оказалось, эти параметры в определенной степени свойственны и газам.

Практические расчеты английского ученого показали, что поведение, например, воды, сильно зависит от формы и размеров резервуара (трубы, русла, капилляра и т.д.), по которому она течет. В трубах, имеющих круглое сечение (такие используют для монтажа напорных трубопроводов), свое число Рейнольдса - формула описывается так: Re = 2300. Для течения по открытому руслу другое: Re = 900. При меньших значениях Re течение будет упорядоченным, при больших - хаотичным.

Ламинарное течение

Отличие ламинарного течения от турбулентного состоит в характере и направлении водных (газовых) потоков. Они перемещаются слоями, не смешиваясь и без пульсаций. Другими словами, движение проходит равномерно, без беспорядочных скачков давления, направления и скорости.

Ламинарное течение жидкости образуется, например, в узких живых существ, капиллярах растений и в сопоставимых условиях, при течении очень вязких жидкостей (мазута по трубопроводу). Чтобы наглядно увидеть струйный поток, достаточно немного приоткрыть водопроводный кран - вода будет течь спокойно, равномерно, не смешиваясь. Если краник отвернуть до конца, давление в системе повысится и течение приобретет хаотичный характер.

Турбулентное течение

В отличие от ламинарного, в котором близлежащие частицы движутся по практически параллельным траекториям, турбулентное течение жидкости носит неупорядоченный характер. Если использовать подход Лагранжа, то траектории частиц могут произвольно пересекаться и вести себя достаточно непредсказуемо. Движения жидкостей и газов в этих условиях всегда нестационарные, причем параметры этих нестационарностей могут иметь весьма широкий диапазон.

Как ламинарный режим течения газа переходит в турбулентный, можно отследить на примере струйки дыма горящей сигареты в неподвижном воздухе. Вначале частицы движутся практически параллельно по неизменяемым во времени траекториям. Дым кажется неподвижным. Потом в каком-то месте вдруг возникают крупные вихри, которые движутся совершенно хаотически. Эти вихри распадаются на более мелкие, те - на еще более мелкие и так далее. В конце концов, дым практически смешивается с окружающим воздухом.

Циклы турбулентности

Вышеописанный пример является хрестоматийным, и из его наблюдения ученые сделали следующие выводы:

  1. Ламинарное и турбулентное течение имеют вероятностный характер: переход от одного режима к другому происходит не в точно заданном месте, а в достаточно произвольном, случайном месте.
  2. Сначала возникают крупные вихри, размер которых больше, чем размер струйки дыма. Движение становится нестационарным и сильно анизотропным. Крупные потоки теряют устойчивость и распадаются на все более мелкие. Таким образом, возникает целая иерархия вихрей. Энергия их движения передается от крупных к мелким, и в конце этого процесса исчезает - происходит диссипация энергии при мелких масштабах.
  3. Турбулентный режим течения носит случайный характер: тот или иной вихрь может оказаться в совершенно произвольном, непредсказуемом месте.
  4. Смешение дыма с окружающим воздухом практически не происходит при ламинарном режиме, а при турбулентном - носит очень интенсивный характер.
  5. Несмотря на то, что граничные условия стационарны, сама турбулентность носит ярко выраженный нестационарный характер - все газодинамические параметры меняются во времени.

Есть и еще одно важное свойство турбулентности: оно всегда трехмерно. Даже если рассматривать одномерное течение в трубе или двумерный пограничный слой, все равно движение турбулентных вихрей происходит в направлениях всех трех координатных осей.

Число Рейнольдса: формула

Переход от ламинарности к турбулентности характеризуется так называемым критическим числом Рейнольдса:

Re cr = (ρuL/µ) cr,

где ρ - плотность потока, u - характерная скорость потока; L - характерный размер потока, µ - коэффициент cr - течение по трубе с круглым сечением.

Например, для течения со скоростью u в трубе в качестве L используется Осборн Рейнольдс показал, что в этом случае 2300

Аналогичный результат получается в пограничном слое на пластине. В качестве характерного размера берется расстояние от передней кромки пластины, и тогда: 3×10 5

Понятие возмущения скорости

Ламинарное и турбулентное течение жидкости, а соответственно, критическое значение числа Рейнольдса (Re) зависят от большего числа факторов: от градиента давления, высоты бугорков шероховатости, интенсивности турбулентности во внешнем потоке, перепада температур и пр. Для удобства эти суммарные факторы еще называют возмущением скорости, так как они оказывают определенное влияние на скорость потока. Если это возмущение невелико, оно может быть погашено вязкими силами, стремящимися выровнять поле скоростей. При больших возмущениях течение может потерять устойчивость, и возникает турбулентность.

Учитывая, что физический смысл числа Рейнольдса - это соотношение сил инерции и сил вязкости, возмущение потоков подпадает под действие формулы:

Re = ρuL/µ = ρu 2 /(µ×(u/L)).

В числителе стоит удвоенный скоростной напор, а в знаменателе - величина, имеющая порядок напряжения трения, если в качестве L берется толщина пограничного слоя. Скоростной напор стремится разрушить равновесие, а противодействуют этому. Впрочем, неясно, почему (или скоростной напор) приводят к изменениям только тогда, когда они в 1000 раз больше сил вязкости.

Расчеты и факты

Вероятно, более удобно было бы использовать в качестве характерной скорости в Re cr не абсолютную скорость потока u, а возмущение скорости. В этом случае критическое число Рейнольдса составит порядка 10, то есть при превышении возмущения скоростного напора над вязкими напряжениями в 5 раз ламинарное течение жидкости перетекает в турбулентное. Данное определение Re по мнению ряда ученых хорошо объясняет следующие экспериментально подтвержденные факты.

Для идеально равномерного профиля скорости на идеально гладкой поверхности традиционно определяемое число Re cr стремится к бесконечности, то есть перехода к турбулентности фактически не наблюдается. А вот число Рейнольдса, определяемое по величине возмущения скорости меньше критического, которое равно 10.

При наличии искусственных турбулизаторов, вызывающих всплеск скорости, сравнимый с основной скоростью, поток становится турбулентным при гораздо более низких значениях числа Рейнольдса, чем Re cr , определенное по абсолютному значению скорости. Это позволяет использовать значение коэффициента Re cr = 10, где в качестве характерной скорости используется абсолютное значение возмущения скорости, вызываемое указанными выше причинами.

Устойчивость режима ламинарного течения в трубопроводе

Ламинарное и турбулентное течение свойственно всем видам жидкостей и газов в разных условиях. В природе ламинарные течения встречаются редко и характерны, например, для узких подземных потоков в равнинных условиях. Гораздо больше этот вопрос волнует ученых в контексте практического применения для транспортировки по трубопроводам воды, нефти, газа и других технических жидкостей.

Вопрос устойчивости ламинарного течения тесно связан с исследованием возмущенного движения основного течения. Установлено, что оно подвергается воздействию так называемых малых возмущений. В зависимости от того, угасают или растут они со временем, основное течение считается устойчивым либо неустойчивым.

Течение сжимаемых и не сжимаемых жидкостей

Одним из факторов, влияющих на ламинарное и турбулентное течение жидкости, является ее сжимаемость. Это свойство жидкости особенно важно при изучении устойчивости нестационарных процессов при быстром изменении основного течения.

Исследования показывают, что ламинарное течение несжимаемой жидкости в трубах цилиндрического сечения устойчиво к относительно малым осесимметричным и неосесимметричным возмущениям во времени и пространстве.

В последнее время проводятся расчеты по влиянию осесимметричных возмущений на устойчивость течения во входной части цилиндрической трубы, где основное течение находится в зависимости от двух координат. При этом координата по оси трубы рассматривается как параметр, от которого зависит профиль скоростей по радиусу трубы основного течения.

Вывод

Несмотря на столетия изучения, нельзя сказать, что и ламинарное, и турбулентное течение досконально изучены. Экспериментальные исследования на микроуровне ставят новые вопросы, требующие аргументированного расчетного обоснования. Характер исследований носит и прикладную пользу: в мире проложены тысячи километров водо-, нефте-, газо-, продуктопроводов. Чем больше будет внедряться технических решений по уменьшению турбулентности при транспортировке, тем более эффективной она будет.

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ (от латинского turbulentus - бурный, беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость , температура, давление и плотность среды испытывают хаотические флуктуации . Отличается от ламинарного течения интенсивным перемешиванием, теплообменом, большими значениями коэффициент трения и пр. В природе и технике большинство течений жидкости и газов - турбулентные течения.

Современная энциклопедия . 2000 .

Смотреть что такое "ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ" в других словарях:

    - (от лат. turbulentus бурный, беспорядочный), форма течения жидкости или газа, при к рой их элементы совершают неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями жидкости или газа (см.… … Физическая энциклопедия

    Течение жидкости или газа, характеризующееся беспорядочным, нерегулярным перемещением его объёмов и их интенсивным перемешиванием (см. Турбулентность), но в целом имеющее плавный, регулярный характер. Образование Т. т. связано с неустойчивостью… … Энциклопедия техники

    - (от лат turbulentus бурный беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают хаотические… … Большой Энциклопедический словарь

    ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ, в физике движение текучей среды, при котором происходит беспорядочное перемещение ее частиц. Характерно для жидкости или газа с высоким ЧИСЛОМ РЕЙНОЛЬДСА. см. также ЛАМИНАРНОЕ ТЕЧЕНИЕ … Научно-технический энциклопедический словарь

    турбулентное течение - Течение, в котором частицы газа движутся сложным неупорядоченным образом и процессы переноса происходят на макроскопическом, а не на молекулярном уровне. [ГОСТ 23281 78] Тематики аэродинамика летательных аппаратов Обобщающие термины виды течений… … Справочник технического переводчика

    Турбулентное течение - (от латинского turbulentus бурный, беспорядочный), течение жидкости или газа, при котором частицы жидкости совершают неупорядоченные, хаотические движения по сложным траекториям, а скорость, температура, давление и плотность среды испытывают… … Иллюстрированный энциклопедический словарь

    - (от лат. turbulentus бурный, беспорядочный * a. turbulent flow; н. Wirbelstromung; ф. ecoulement turbulent, ecoulement tourbillonnaire; и. flujo turbulento, corriente turbulenta) движение жидкости или газа, при котором образуются и… … Геологическая энциклопедия

    турбулентное течение - Форма течения воды или воздуха, при которой их частицы совершают неупорядоченные движения по сложным траекториям, что приводит к интенсивному перемешиванию. Syn.: турбулентность … Словарь по географии

    ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ - вид течения жидкости (или газа), при котором их малые объёмные элементы совершают неустановившиеся движения по сложным беспорядочным траекториям, что приводит к интенсивному перемешиванию слоёв жидкости (или газа). Т. т. возникает в результате… … Большая политехническая энциклопедия

    Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

При достаточно больших числах Рейнольдса движение жидкости перестает быть ламинарным; так в трубах с гладкими стенками ламинарное движение переходит в турбулентное при числах

В этом движении гидродинамические параметры начинают флуктуировать около своих средних значений, возникает перемешивание жидкости и ее течение приобретает случайный характер. Движение воздуха в атмосфере и воды в океане, когда числа Рейнольдса велики (а они могут достигать в определенных условиях ), практически всегда турбулентно. В технических задачах аэро- и гидромеханики чрезвычайно часто приходится встречаться с таким движением; числа и здесь могут достигать значений . По этой причине исследованию турбулентности уделялось всегда большое внимание. Однако хотя турбулентное движение, начиная с работ Рейнольдса, изучается около столетия и к настоящему времени мы уже много знаем об особенностях и закономерностях этого движения, нельзя еще сказать, что есть полное понимание этого сложного физического явления.

Вопрос о возникновении и развитии турбулентного движения еще недостаточно выяснен, хотя несомненно, что он связан с неустойчивостью течения при больших числах из-за нелинейности уравнений гидродинамики; на этом мы кратко остановимся ниже. Для нас, однако, при изучении распространения волн в турбулентной среде большее значение будут иметь сведения об уже развитом, установившемся турбулентном потоке, его внутренней структуре и динамических закономерностях.

Большой успех в современных представлениях об уже развитом турбулентном течении был достигнут в 1941 г. А. Н. Колмогоровым и А. М. Обуховым, которым принадлежит заслуга создания общей схемы механизма такого турбулентного потока при больших числах Рейнольдса, выяснения его внутренней структуры и целого ряда статистических закономерностей . С тех пор развитие статистической теории турбулентности и связанных с ней экспериментов привело к ряду существенных результатов. Подробное изложение современной статистической теории турбулентности и ее экспериментального исследования дано в работах . Эта теория оказалась важной для проблемы «турбулентность и волны» как для распространения акустических волн в атмосфере и море, так и для распространения электромагнитных волн в атмосфере, ионосфере и плазме. Здесь мы ограничимся кратким изложением лишь самых основных сведений об этой теории, необходимых нам в дальнейшем.

В 1920 г. английский гидромеханик и метеоролог Л. Ф. Ричардсон высказал плодотворную гипотезу, которую называют гипотезой «измельчения» турбулентности. Он предположил, что в случае атмосферной турбулентности, при движении больших масс воздуха, по какой-либо причине, например из-за шероховатости поверхности, поток становится неустойчивым, образуются большие пульсации скорости или вихри. Эти вихри черпают свою энергию из энергии всего потока в целом. Характерные размеры этих вихрей

L такого же масштаба, как и масштаб самого потока (внешний масштаб турбулентности). Но при достаточно больших масштабах движения и скоростях потока эти вихри сами становятся неустойчивыми и распадаются на более мелкие вихри масштабов числа Рейнольдса для таких вихрей , где пульсации их скорости, велики и они в свою очередь распадаются на более мелкие. Этот процесс «измельчения» турбулентных неоднородностей продолжается все дальше и дальше: энергия крупных вихрей, поступая из энергии потока, передается все более мелким вихрям, вплоть до самых мелких, имеющих внутренний масштаб I, когда начинает существенную роль играть вязкость жидкости (числа для таких вихрей малы движение их устойчиво). Энергия наименьших возможных вихрей превращается в тепло.

Эта гипотеза Ричардсона получила развитие в работах А. Н. Колмогорова и его школы.

В инерционной области масштабов пульсаций можно считать, что вязкость не играет роли, энергия просто перетекает от больших масштабов к меньшим и диссипация энергии единицы объема жидкости в единицу времени есть некоторая функция только изменения средней скорости на расстояниях порядка I, самого масштаба I и плотности , т. е.

Из трех величин можно составить только одну комбинацию, имеющую размерность :

Из этого соотношения можно оценить порядок изменения средней скорости турбулентного движения на расстоянии порядка I:

Поскольку в рассматриваемом инерционном спектральном интервале вихрей, начиная с внешнего масштаба L и кончая внутренним масштабом 1 (где определяющую роль играет вязкость), величина постоянна, то

где С - постоянная, которая для условий атмосферной турбулентности и турбулентности в аэродинамической трубе (за решеткой) имеет порядок и растет с ростом скорости потока и. Среднее квадратичное разности скоростей в точках 1 и 2 (или так называемая структурная функция ) в турбулентном потоке будет, таким образом,

где - расстояние между точками наблюдения 1 и 2. Это так называемый закон двух третей Колмогорова - Обухова (А. М. Обухов пришел к формулировке такого закона из спектральных представлений).

Следует заметить, что к такому же закону позднее пришли также Л. Онзагер, К. Вайцзэкер и В. Гейзенберг.

В проведенных рассуждениях, основанных на соображениях подобия и размерностей, предполагается, что поток в целом не оказывает ориентирующего влияния на вихри: поэтому движение вихрей в инерционной подобласти спектра пульсаций можно приближенно считать локально однородным и изотропным, о чем будет идти речь также в гл. 7. По этой причине статистическую теорию турбулентности называют теорией локально изотропной турбулентности.

Закон «двух третей» относится к турбулентному полю пульсаций, т. е. к векторному случайному полю, и, вообще говоря, следует уточнить, с какими компонентами v в (7.5) мы имеем дело.

Пульсации температуры, которые также имеются в динамическом турбулентном потоке (температурные неоднородности), перемешиваются пульсациями поля скоростей. Для скалярного температурного поля пульсаций также действует механизм измельчения неоднородностей пульсациями поля скоростей; размер наименьших температурных неоднородностей ограничивается действием теплопроводности, подобно тому как в поле пульсаций скоростей минимальный масштаб вихрей определяется вязкостью.

Для температурного поля пульсаций в динамическом потоке А. М. Обуховым был получен закон «двух третей», имеющий вид, аналогичный (7.5):

где постоянная, зависящая от скорости .

В интервале внутренних масштабов I (этот интервал называют интервалом равновесия) величина будет функцией не только , но и кинематической вязкости

Тогда единственной комбинацией, имеющей размерность будет такое выражение для :

(7.8)

Соответственно

где , т. e. в этом случае имеет место квадратичная зависимость от (закон Тэйлора).

Сам внутренний масштаб турбулентности I можно оценить из соотношения (7.4), считая, что (7.4) справедливо вплоть до и условия

Полная картина поведения структурной функции поля скоростей в зависимости от расстояния между точками наблюдения изображена

на рис. 1.5. При малых масштабах пульсаций скорости, соответствующих внутреннему масштабу структурная функция подчиняется квадратичному закону Тэйлора (интервал равновесия). При увеличении функция подчиняется закону «двух третей» (инерционный интервал; его называют также инерционной подобластью спектра пульсаций); при дальнейшем увеличении , когда исходные положения перестают быть справедливыми.

Рис. 1.5. Структурная функция поля скоростей.

Отметим, что закон «двух третей» имеет место не только для пульсаций поля скоростей и поля пульсаций температуры (рассматриваемой как пассивная примесь), но также для пульсаций влажности , также рассматриваемой как пассивная примесь

для пульсаций давления

Таковы некоторые существенные для нас выводы, которые получены на основании гипотезы Ричардсона и соображений теории подобия и размерности или из спектральных представлений.

В законе «двух третей» следует обратить внимание на то, что в нем берется среднее квадратичное разности скоростей в двух точках потока, или так называемая «структурная функция» поля скоростей. В этом заложен глубокий смысл.

Если производить измерения (запись) пульсаций скорости или температуры в одной точке потока, то крупные неоднородности будут играть большую роль, чем мелкие, и результаты измерений будут существенно зависеть от времени, в течение которого эти измерения производятся. Эта трудность отпадает, если производить измерения разности скоростей в двух относительно близких точках потока, т. е. следить за относительным движением двух близких элементов потока. На эту разность не будут влиять крупные вихри, размер которых гораздо больше, чем расстояние между этими двумя точками.

В отличие от кинетической теории газов, когда можно в первом приближении считать, что движение каждой молекулы не зависит от молекул, находящихся в непосредственной близости от нее, в турбулентном потоке дело обстоит иначе. Соседние элементы жидкости имеют тенденцию принять то же значение скорости, что и рассматриваемый элемент, если только расстояние между ними мало. Если рассматривать турбулентный поток как наложение пульсаций

(вихрей) различных масштабов, то расстояние между двумя, близкими элементами будет сначала изменяться благодаря только наименьшим вихрям. Крупные вихри будут просто переносить рассматриваемую пару точек (элементов) как целое, не стремясь их разделить. Но как только расстояние между элементами жидкости увеличится, в добавление к мелким в игру вступают более крупные вихри. Поэтому в турбулентном потоке жидкости важным является не столько перемещение самого элемента жидкости, сколько изменение его расстояния от соседних элементов.

После того как мы познакомились с основными представлениями о внутренней структуре развитого турбулентного потока, вернемся к вопросу о возникновении турбулентности, т. е. переходу от ламинарного движения к турбулентному (в современной литературе для этого явления употребляют сокращенный термин - «переход»).

Нелинейный процесс обмена энергией между различными степенями свободы, по существу заложенный в модели каскадного процесса преобразования энергии Ричардсона и усовершенствованный А. Н. Колмогоровым, привел Л. Д. Ландау к модели, в которой этот переход связывался с возбуждением в гидродинамической системе все возрастающего числа степеней свободы. В такой интерпретации перехода имеются определенные трудности. Шаг вперед в их преодолении был сделан А. М. Обуховым с сотрудниками 121, 22] и А. С. Мониным на основе теоретического и экспериментального исследования простейшей системы, обладающей общими свойствами уравнений гидродинамики (квадратичная нелинейность и законы сохранения). Такой системой является система с тремя степенями свободы (триплет), уравнения движения которой совпадают в соответствующей системе координат с уравнениями Эйлера в теории гироскопа. Гидродинамической интерпретацией триплета может служить «жидкое вращение» в несжимаемой жидкости внутри трехосного эллипсоида, в котором поле скоростей линейно по координатам.

Элементарный механизм нелинейного преобразования энергии между различными степенями свободы в таком триплете, который проверен экспериментально, можно положить в основу для моделирования более сложных систем (каскад триплетов) для объяснения каскадного процесса преобразования энергии по схеме Ричардсона - Колмогорова - Ландау. Можно надеяться, что на этом пути будут достигнуты определенные успехи в ближайшей перспективе.

Другой путь в объяснении перехода, развиваемый в последнее время, связан с тем, что стохастичность возможна не только в исключительно сложных динамических системах, в которых абсолютно точные начальные условия реально не могут быть заданы, и поэтому возникает потребность в статистическом описании. Стало ясно, что эти сложившиеся представления о природе хаоса не всегда верны. Хаотическое поведение было обнаружено и в гораздо более простых системах, в том числе в системах, описываемых всего тремя обыкновенными дифференциальными уравнениями первого порядка . Несмотря на то, что это открытие сразу же

стимулировало ряд исследований в области математической теории сложного поведения простых динамических систем, лишь с середины семидесятых годов оно привлекло внимание широкого круга физиков, механиков, биологов. Примерно в это же время хаос в простых системах был сопоставлен с проблемой возникновения турбулентности. Далее стохастические автоколебания были обнаружены в самых различных, порой весьма неожиданных областях, а их математический образ - странный аттрактор (strange attractor) - к настоящему времени занял заметное место в качественной теории динамических систем наряду с широко известными аттракторами - состояниями равновесия и предельными циклами. В какой мере это направление будет способствовать развитию теории перехода, пока еще не вполне ясно.

ТУРБУЛЕНТНЫМ называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Нарядус основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости.

Турбулентное течение жидкости наблюдаются при определенных условиях (при достаточно больших числах Рейнольдса ) в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.

Т. т. отличаются от ламинарных не только характером движения частиц, но также распределением осреднённой скорости по сечению потока, зависимостью средней или макс. скорости, расхода и коэф. сопротивления от числа Рейнольдса Re, гораздо большей интенсивностью тепломассообмена. Профиль осреднённой скорости Т. т. в трубах и каналах отличается от параболич. профиля ламинарных течений меньшей кривизной у оси и более быстрым возрастанием скорости у стенок.

Потери напора при турбулентном движении жидкости

Все гидравлические потери энергии делятся на два типа: потери на трение по длине трубопроводов и местные потери, вызванные такими элементами трубопроводов, в которых вследствие изменения размеров или конфигурации русла происходит изменение скорости потока, отрыв потока от стенок русла и возникновение вихреобразования.

Простейшие местные гидравлические сопротивления можно разделить на расширения, сужения и повороты русла, каждое из которых может быть внезапным или постепенным. Более сложные случаи местного сопротивления представляют собой соединения или комбинации перечисленных простейших сопротивлений.

При турбулентном режиме движения жидкости в трубах эпюра распределения скоростей имеет вид, показанный на рис. В тонком пристенном слое толщиной δ жидкость течет в ламинарном режиме, а остальные слои текут в турбулентном режиме, и называются турбулентным ядром . Таким образом, строго говоря, турбулентного движения в чистом виде не существует. Оно сопровождается ламинарным движением у стенок, хотя слой δ с ламинарным режимом весьма мал по сравнению с турбулентным ядром.

Модель турбулентного режима движения жидкости

Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является уже приводившаяся выше эмпирическая формула, называемая формулой Вейсбаха-Дарси и имеющая следующий вид:

Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора - относительной шероховатости Δ/d (или Δ/r 0 , где r 0 - радиус трубы).

Критическое число Рейнольдса

Число Рейнольдса, при котором происходит переход от одного режима движения жидкости в другой режим, называется критическим. При числе Рейнольдса наблюдается ламинарный режим движения, при числе Рейнольдса - турбулентный режим движения жидкости. Чаще критическое значение числа принимают равным, это значение соответствует переходу движения жидкости от турбулентного режима к ламинарного. При переходе от ламинарного режима движения жидкости к турбулентному критическое значение имеет большее значение. Критическое значение числа Рейнольдса увеличивается в трубах, сужаются, и уменьшается в тех, что расширяются. Это объясняется тем, что при сужении поперечного сечения скорость движения частиц увеличивается, поэтому тенденция к поперечного перемещения уменьшается.

Таким образом, критерий подобия Рейнольдса позволяет судить о режиме течения жидкости в трубе. При Re < Re кр течение является ламинарным, а при Re > Re кр течение является турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re примерно равно 4000, а при Re = 2300…4000 имеет место переходная, критическая область.

Как показывает опыт, для труб круглого сечения Re кр примерно равно 2300.

Режим движения жидкости напрямую влияет на степень гидравлического сопротивления трубо-проводов.

Для ламинарного режима

Для турбулентного режима