Tak tak: postęp arytmetyczny- to nie są zabawki dla ciebie :)

Cóż, przyjaciele, jeśli czytacie ten tekst, to wewnętrzne dowody cap mówią mi, że jeszcze nie wiecie, czym jest postęp arytmetyczny, ale naprawdę (nie, w ten sposób: DUŻO!) chcecie się tego dowiedzieć. Dlatego nie będę Was dręczyć długimi wstępami i od razu przejdę do sedna.

Najpierw kilka przykładów. Przyjrzyjmy się kilku zestawom liczb:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Co łączy wszystkie te zestawy? Na pierwszy rzut oka nic. Ale rzeczywiście coś jest. Mianowicie: każdy kolejny element różni się od poprzedniego tą samą liczbą.

Oceńcie sami. Pierwszy zestaw to po prostu kolejne liczby, a każda następna jest o jeden większa od poprzedniej. W drugim przypadku różnica między sąsiednimi liczbami wynosi już pięć, ale różnica ta jest nadal stała. W trzecim przypadku są w ogóle korzenie. Jednak $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ i $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, tj. i w tym przypadku każdy kolejny element po prostu zwiększa się o $\sqrt(2)$ (i nie bój się, że ta liczba jest irracjonalna).

Zatem: wszystkie takie ciągi nazywane są postępami arytmetycznymi. Podajmy ścisłą definicję:

Definicja. Ciąg liczb, w którym każda kolejna różni się od poprzedniej dokładnie o tę samą kwotę, nazywa się postępem arytmetycznym. Sama wielkość różnicy między liczbami nazywana jest różnicą progresji i najczęściej oznaczana jest literą $d$.

Notacja: $\left(((a)_(n)) \right)$ to sama progresja, $d$ to jej różnica.

I tylko kilka ważnych uwag. Po pierwsze, brana jest pod uwagę jedynie progresja zamówione sekwencja liczb: można je czytać ściśle w kolejności, w jakiej zostały zapisane – i nic więcej. Liczb nie można zmieniać ani zamieniać.

Po drugie, sama sekwencja może być skończona lub nieskończona. Na przykład zbiór (1; 2; 3) jest oczywiście skończonym ciągiem arytmetycznym. Ale jeśli napiszesz coś w duchu (1; 2; 3; 4; ...) - to już jest nieskończony postęp. Wielokropek po czwórce wydaje się wskazywać, że przed nami jeszcze kilka liczb. Na przykład nieskończenie wiele. :)

Chciałbym również zauważyć, że progresja może być rosnąca lub malejąca. Widzieliśmy już rosnące - ten sam zbiór (1; 2; 3; 4; ...). Oto przykłady progresji malejącej:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

OK OK: ostatni przykład może wydawać się zbyt skomplikowane. Ale resztę, jak sądzę, rozumiesz. Dlatego wprowadzamy nowe definicje:

Definicja. Postęp arytmetyczny nazywa się:

  1. rosnący, jeśli każdy następny element jest większy od poprzedniego;
  2. zmniejsza się, jeśli wręcz przeciwnie, każdy kolejny element jest mniejszy niż poprzedni.

Ponadto istnieją tak zwane ciągi „stacjonarne” - składają się z tej samej powtarzającej się liczby. Na przykład (3; 3; 3; ...).

Pozostaje tylko jedno pytanie: jak odróżnić progresję rosnącą od malejącej? Na szczęście wszystko tutaj zależy tylko i wyłącznie od znaku liczby $d$, czyli: różnice w progresji:

  1. Jeśli $d \gt 0$, to postęp wzrasta;
  2. Jeśli $d \lt 0$, to postęp oczywiście maleje;
  3. Wreszcie mamy przypadek $d=0$ - w tym przypadku cały postęp sprowadza się do stacjonarnego ciągu identycznych liczb: (1; 1; 1; 1; ...) itd.

Spróbujmy obliczyć różnicę $d$ dla trzech podanych powyżej progresji malejących. Aby to zrobić, wystarczy wziąć dowolne dwa sąsiednie elementy (na przykład pierwszy i drugi) i odjąć liczbę po lewej stronie od liczby po prawej stronie. Będzie to wyglądać tak:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Jak widać, we wszystkich trzech przypadkach różnica faktycznie okazała się ujemna. A teraz, gdy już mniej więcej opracowaliśmy definicje, czas dowiedzieć się, jak opisuje się progresje i jakie mają właściwości.

Warunki progresji i formuła powtarzalności

Ponieważ elementów naszych ciągów nie można zamieniać miejscami, można je ponumerować:

\[\lewy(((a)_(n)) \prawy)=\lewy\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \Prawidłowy\)\]

Poszczególne elementy tego zbioru nazywane są elementami progresji. Są one oznaczone numerem: pierwszy członek, drugi członek itp.

Ponadto, jak już wiemy, sąsiednie wyrazy progresji powiązane są wzorem:

\[((a)_(n))-((a)_(n-1))=d\Strzałka w prawo ((a)_(n))=((a)_(n-1))+d \]

Krótko mówiąc, aby znaleźć $n$-ty wyraz progresji, musisz znać $n-1$-ty wyraz i różnicę $d$. Formuła ta nazywa się rekurencyjną, ponieważ za jej pomocą można znaleźć dowolną liczbę tylko znając poprzednią (a właściwie wszystkie poprzednie). Jest to bardzo niewygodne, dlatego istnieje bardziej przebiegła formuła, która redukuje wszelkie obliczenia do pierwszego członu i różnicy:

\[((a)_(n))=((a)_(1))+\lewo(n-1 \prawo)d\]

Prawdopodobnie spotkałeś się już z tą formułą. Lubią podawać to w różnego rodzaju podręcznikach i książkach z rozwiązaniami. I w każdym rozsądnym podręczniku do matematyki jest to jeden z pierwszych.

Radzę jednak trochę poćwiczyć.

Zadanie nr 1. Zapisz pierwsze trzy wyrazy ciągu arytmetycznego $\left(((a)_(n)) \right)$ jeśli $((a)_(1))=8,d=-5$.

Rozwiązanie. Znamy więc pierwszy wyraz $((a)_(1))=8$ i różnicę progresji $d=-5$. Użyjmy podanego wzoru i zamieńmy $n=1$, $n=2$ i $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Odpowiedź: (8; 3; −2)

To wszystko! Uwaga: nasz postęp maleje.

Oczywiście $n=1$ nie dało się zastąpić - pierwszy wyraz jest nam już znany. Jednak podstawiając jedność, byliśmy przekonani, że nawet dla pierwszego wyrazu nasza formuła działa. W innych przypadkach wszystko sprowadzało się do banalnej arytmetyki.

Zadanie nr 2. Zapisz pierwsze trzy wyrazy postępu arytmetycznego, jeśli jego siódmy wyraz jest równy –40, a siedemnasty wyraz jest równy –50.

Rozwiązanie. Zapiszmy warunek problemu w znany sposób:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\(\begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \Prawidłowy.\]

Umieszczam znak systemowy, ponieważ te wymagania muszą być spełnione jednocześnie. Zauważmy teraz, że jeśli odejmiemy pierwsze od drugiego równania (mamy do tego prawo, ponieważ mamy układ), otrzymamy to:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(align)\]

Tak łatwo jest znaleźć różnicę w progresji! Pozostaje tylko zastąpić znalezioną liczbę dowolnym równaniem układu. Na przykład w pierwszym:

\[\begin(macierz) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(macierz)\]

Teraz, znając pierwszy termin i różnicę, pozostaje znaleźć drugi i trzeci wyraz:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Gotowy! Problem jest rozwiązany.

Odpowiedź: (-34; -35; -36)

Zwróć uwagę na interesującą właściwość progresji, którą odkryliśmy: jeśli weźmiemy wyrazy $n$th i $m$th i odejmiemy je od siebie, otrzymamy różnicę progresji pomnożoną przez liczbę $n-m$:

\[(a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Proste, ale bardzo przydatna właściwość, o czym zdecydowanie musisz wiedzieć – z jego pomocą możesz znacznie przyspieszyć rozwiązanie wielu problemów progresyjnych. Oto wyraźny przykład:

Zadanie nr 3. Piąty wyraz ciągu arytmetycznego wynosi 8,4, a dziesiąty wyraz to 14,4. Znajdź piętnasty wyraz tego ciągu.

Rozwiązanie. Ponieważ $((a)_(5))=8,4$, $((a)_(10))=14,4$ i musimy znaleźć $((a)_(15))$, zauważamy co następuje:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Ale według warunku $((a)_(10))-((a)_(5))=14,4-8,4=6$, zatem $5d=6$, z czego mamy:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(align)\]

Odpowiedź: 20,4

To wszystko! Nie musieliśmy tworzyć żadnych układów równań i obliczać pierwszego wyrazu i różnicy - wszystko zostało rozwiązane w zaledwie kilku linijkach.

Przyjrzyjmy się teraz innemu rodzajowi problemu - poszukiwaniu negatywnych i pozytywnych terminów progresji. Nie jest tajemnicą, że jeśli progresja narasta, a jej pierwszy wyraz jest ujemny, to prędzej czy później pojawią się w niej człony pozytywne. I odwrotnie: warunki progresji malejącej prędzej czy później staną się negatywne.

Jednocześnie nie zawsze można znaleźć ten moment „od razu”, przechodząc kolejno przez elementy. Często zadania są pisane w taki sposób, że bez znajomości wzorów obliczenia zajęłyby kilka kartek papieru – po prostu zasypialibyśmy w trakcie szukania odpowiedzi. Dlatego spróbujmy rozwiązać te problemy szybciej.

Zadanie nr 4. Ile wyrazów ujemnych znajduje się w postępie arytmetycznym -38,5; −35,8; ...?

Rozwiązanie. Zatem $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, skąd natychmiast znajdujemy różnicę:

Należy pamiętać, że różnica jest dodatnia, więc progresja wzrasta. Pierwszy wyraz jest ujemny, więc rzeczywiście w pewnym momencie natkniemy się na liczby dodatnie. Pytanie tylko, kiedy to nastąpi.

Spróbujmy dowiedzieć się: do kiedy (tj. do czego Liczba naturalna$n$) zachowana zostaje negatywność terminów:

\[\begin(align) & ((a)_(n)) \lt 0\Strzałka w prawo ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \prawo. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Strzałka w prawo ((n)_(\max ))=15. \\ \end(align)\]

Ostatnia linijka wymaga wyjaśnienia. Wiemy więc, że $n \lt 15\frac(7)(27)$. Z drugiej strony zadowalają nas tylko całkowite wartości liczby (co więcej: $n\in \mathbb(N)$), zatem największą dopuszczalną liczbą jest właśnie $n=15$, a w żadnym wypadku 16 .

Zadanie nr 5. W postępie arytmetycznym $(()_(5))=-150,(()_(6))=-147$. Znajdź numer pierwszego dodatniego wyrazu tego ciągu.

Byłby to dokładnie ten sam problem, co poprzedni, ale nie znamy $((a)_(1))$. Ale znane są wyrazy sąsiednie: $((a)_(5))$ i $((a)_(6))$, więc łatwo możemy znaleźć różnicę progresji:

Ponadto spróbujmy wyrazić wyraz piąty poprzez pierwszy i różnicę za pomocą standardowego wzoru:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Teraz postępujemy analogicznie do poprzedniego zadania. Przekonajmy się, w którym momencie naszego ciągu pojawią się liczby dodatnie:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Strzałka w prawo ((n)_(\min ))=56. \\ \end(align)\]

Minimalnym rozwiązaniem całkowitym tej nierówności jest liczba 56.

Uwaga: w ostatnim zadaniu wszystko sprowadzało się do ścisłej nierówności, zatem opcja $n=55$ nam nie będzie odpowiadać.

Teraz, gdy nauczyliśmy się rozwiązywać proste problemy, przejdźmy do bardziej złożonych. Ale najpierw przeanalizujmy inną bardzo przydatną właściwość postępów arytmetycznych, która w przyszłości zaoszczędzi nam dużo czasu i nierównych komórek. :)

Średnia arytmetyczna i równe wcięcia

Rozważmy kilka kolejnych wyrazów rosnącego postępu arytmetycznego $\left(((a)_(n)) \right)$. Spróbujmy zaznaczyć je na osi liczbowej:

Warunki ciągu arytmetycznego na osi liczbowej

Specjalnie zaznaczyłem dowolne terminy $((a)_(n-3)),...,((a)_(n+3))$, a nie jakieś $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ itd. Ponieważ zasada, o której teraz opowiem, działa tak samo dla dowolnych „segmentów”.

A zasada jest bardzo prosta. Zapamiętajmy formuła powtarzalności i zapisz to wszystkim zaznaczonym członkom:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Równości te można jednak przepisać inaczej:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

No i co? Oraz fakt, że terminy $((a)_(n-1))$ i $((a)_(n+1))$ leżą w tej samej odległości od $((a)_(n)) $ . A ta odległość jest równa $d$. To samo można powiedzieć o terminach $((a)_(n-2))$ i $((a)_(n+2))$ - są one również usunięte z $((a)_(n) )$ w tej samej odległości równej 2d$. Można tak ciągnąć w nieskończoność, ale znaczenie dobrze ilustruje rysunek


Warunki progresji leżą w tej samej odległości od centrum

Co to oznacza dla nas? Oznacza to, że $((a)_(n))$ można znaleźć, jeśli znane są sąsiednie liczby:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Wyprowadziliśmy doskonałe stwierdzenie: każdy wyraz ciągu arytmetycznego jest równy średniej arytmetycznej wyrazów sąsiednich! Co więcej: możemy cofnąć się od naszego $((a)_(n))$ w lewo i w prawo nie o jeden krok, ale o $k$ kroków - a formuła nadal będzie poprawna:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Te. możemy łatwo znaleźć trochę $((a)_(150))$, jeśli znamy $((a)_(100))$ i $((a)_(200))$, ponieważ $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Na pierwszy rzut oka może się wydawać, że fakt ten nie daje nam niczego przydatnego. Jednak w praktyce wiele problemów jest specjalnie dostosowanych do stosowania średniej arytmetycznej. Spójrz:

Zadanie nr 6. Znajdź wszystkie wartości $x$, dla których liczby $-6((x)^(2))$, $x+1$ i $14+4((x)^(2))$ są kolejnymi wyrazami postęp arytmetyczny (w podanej kolejności).

Rozwiązanie. Ponieważ liczby te należą do ciągu, spełniony jest dla nich warunek średniej arytmetycznej: element centralny $x+1$ można wyrazić w postaci elementów sąsiednich:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

Wyszło klasycznie równanie kwadratowe. Odpowiedzią są jego pierwiastki: $x=2$ i $x=-3$.

Odpowiedź: −3; 2.

Zadanie nr 7. Znajdź wartości $$, dla których liczby $-1;4-3;(()^(2))+1$ tworzą ciąg arytmetyczny (w tej kolejności).

Rozwiązanie. Wyraźmy jeszcze raz wyraz średni za pomocą średniej arytmetycznej sąsiadujących wyrazów:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \prawo.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Znów równanie kwadratowe. I znowu mamy dwa pierwiastki: $x=6$ i $x=1$.

Odpowiedź 1; 6.

Jeśli w trakcie rozwiązywania problemu natkniesz się na jakieś brutalne liczby lub nie jesteś do końca pewien poprawności znalezionych odpowiedzi, istnieje wspaniała technika, która pozwala sprawdzić: czy poprawnie rozwiązaliśmy problem?

Załóżmy, że w zadaniu nr 6 otrzymaliśmy odpowiedzi −3 i 2. Jak możemy sprawdzić, czy te odpowiedzi są poprawne? Po prostu podłączmy je do stanu pierwotnego i zobaczmy, co się stanie. Przypomnę, że mamy trzy liczby ($-6(()^(2))$, $+1$ i $14+4(()^(2))$), które muszą tworzyć postęp arytmetyczny. Podstawmy $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Mamy liczby -54; −2; Liczba 50 różniących się o 52 jest niewątpliwie ciągiem arytmetycznym. To samo dzieje się dla $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Znowu progresja, ale z różnicą 27. Zatem problem został rozwiązany poprawnie. Chętni mogą sami sprawdzić drugi problem, ale od razu powiem: tam też wszystko jest w porządku.

Ogólnie rzecz biorąc, rozwiązując ostatnie problemy, natknęliśmy się na kolejne interesujący fakt, o czym również warto pamiętać:

Jeśli trzy liczby są takie, że druga jest średnią arytmetyczną pierwszej i ostatniej, wówczas liczby te tworzą ciąg arytmetyczny.

W przyszłości zrozumienie tego stwierdzenia pozwoli nam dosłownie „skonstruować” niezbędne postępy w oparciu o warunki problemu. Zanim jednak zajmiemy się taką „konstrukcją”, warto zwrócić uwagę na jeszcze jeden fakt, który bezpośrednio wynika z tego, co zostało już omówione.

Grupowanie i sumowanie elementów

Wróćmy jeszcze raz do osi liczb. Zauważmy tam kilku członków postępu, pomiędzy którymi być może. jest wart wielu innych członków:

Na osi liczbowej zaznaczono 6 elementów

Spróbujmy wyrazić „lewy ogon” poprzez $((a)_(n))$ i $d$, a „prawy ogon” poprzez $((a)_(k))$ i $d$. To jest bardzo proste:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Teraz zauważ, że następujące kwoty są równe:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Mówiąc najprościej, jeśli na początek weźmiemy pod uwagę dwa elementy progresji, które w sumie są równe pewnej liczbie $S$, a następnie zaczniemy od tych elementów schodzić w przeciwnych kierunkach (do siebie lub odwrotnie, aby się oddalić), Następnie sumy elementów, na które się natkniemy, również będą równe$S$. Najłatwiej można to przedstawić graficznie:


Równe wcięcia dają równe kwoty

Zrozumienie ten fakt pozwoli nam rozwiązać problemy w zasadniczo więcej wysoki poziom trudności niż te, które rozważaliśmy powyżej. Na przykład te:

Zadanie nr 8. Wyznacz różnicę ciągu arytmetycznego, w którym pierwszy wyraz wynosi 66, a iloczyn drugiego i dwunastego wyrazu jest najmniejszy z możliwych.

Rozwiązanie. Zapiszmy wszystko, co wiemy:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Nie znamy więc różnicy w progresji $d$. Właściwie całe rozwiązanie zostanie zbudowane wokół różnicy, ponieważ iloczyn $((a)_(2))\cdot ((a)_(12))$ można przepisać w następujący sposób:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Dla tych, którzy są w zbiorniku: wziąłem całkowity mnożnik 11 z drugiego nawiasu. Zatem pożądany iloczyn jest funkcją kwadratową w odniesieniu do zmiennej $d$. Rozważmy zatem funkcję $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - jej wykres będzie parabolą z gałęziami skierowanymi do góry, ponieważ jeśli rozszerzymy nawiasy, otrzymamy:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Jak widać współczynnik najwyższego wyrazu wynosi 11 - jest to liczba dodatnia, więc tak naprawdę mamy do czynienia z parabolą z gałęziami skierowanymi w górę:


harmonogram funkcja kwadratowa- parabola

Uwaga: ta parabola przyjmuje swoją minimalną wartość w wierzchołku z odciętą $((d)_(0))$. Oczywiście tę odciętą możemy obliczyć korzystając ze standardowego schematu (istnieje wzór $((d)_(0))=(-b)/(2a)\;$), ale dużo rozsądniej byłoby to zauważyć że żądany wierzchołek leży na osi symetrii paraboli, zatem punkt $((d)_(0))$ jest w równej odległości od pierwiastków równania $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

Dlatego nie spieszyło mi się szczególnie z otwieraniem zamków: w ich oryginalnej formie korzenie były bardzo, bardzo łatwe do znalezienia. Dlatego odcięta jest równa średniej liczby arytmetyczne−66 i −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Co daje nam odkryta liczba? Dzięki niemu wymagany iloczyn przyjmuje najmniejszą wartość (swoją drogą nigdy nie obliczaliśmy $((y)_(\min ))$ - nie jest to od nas wymagane). Jednocześnie liczba ta jest różnicą pierwotnego postępu, tj. znaleźliśmy odpowiedź. :)

Odpowiedź: −36

Zadanie nr 9. Pomiędzy liczby $-\frac(1)(2)$ i $-\frac(1)(6)$ wstaw trzy liczby tak, aby razem z nimi tworzyły ciąg arytmetyczny.

Rozwiązanie. Zasadniczo musimy utworzyć sekwencję pięciu liczb, przy czym pierwsza i ostatnia liczba są już znane. Oznaczmy brakujące liczby za pomocą zmiennych $x$, $y$ i $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Zauważ, że liczba $y$ jest „środkiem” naszego ciągu - jest w równej odległości od liczb $x$ i $z$ oraz od liczb $-\frac(1)(2)$ i $-\frac (1)(6)$. A jeśli z liczb $x$ i $z$ w którym się znajdujemy ten moment nie uda nam się zdobyć $y$, wtedy sytuacja wygląda inaczej przy końcówkach progresji. Przypomnijmy średnią arytmetyczną:

Teraz, znając $y$, znajdziemy pozostałe liczby. Zauważ, że $x$ leży pomiędzy liczbami $-\frac(1)(2)$ i $y=-\frac(1)(3)$, które właśnie znaleźliśmy. Dlatego

Stosując podobne rozumowanie, znajdujemy pozostałą liczbę:

Gotowy! Znaleźliśmy wszystkie trzy liczby. Zapiszmy je w odpowiedzi w kolejności, w jakiej należy je wstawić pomiędzy oryginalne liczby.

Odpowiedź: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Zadanie nr 10. Pomiędzy liczby 2 i 42 wstaw kilka liczb, które razem z tymi liczbami tworzą ciąg arytmetyczny, jeśli wiesz, że suma pierwszej, drugiej i ostatniej z wstawionych liczb wynosi 56.

Rozwiązanie. Nawet więcej trudne zadanie, który jednak rozwiązuje się według tego samego schematu, co poprzednie - poprzez średnią arytmetyczną. Problem w tym, że nie wiemy dokładnie, ile liczb należy wstawić. Załóżmy więc dla pewności, że po wstawieniu wszystkiego będzie dokładnie $n$ liczb, a pierwsza z nich to 2, a ostatnia to 42. W tym przypadku wymagany postęp arytmetyczny można przedstawić w postaci:

\[\lewo(((a)_(n)) \prawo)=\lewo\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \prawo\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Należy jednak pamiętać, że liczby $((a)_(2))$ i $((a)_(n-1))$ otrzymuje się z liczb 2 i 42 na krawędziach o jeden krok ku sobie, tj. . do środka sekwencji. A to oznacza, że

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ale wtedy wyrażenie zapisane powyżej można przepisać w następujący sposób:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Znając $((a)_(3))$ i $((a)_(1))$, możemy łatwo znaleźć różnicę progresji:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Strzałka w prawo d=5. \\ \end(align)\]

Pozostaje tylko znaleźć pozostałe wyrazy:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Tym samym już w 9. kroku dotrzemy do lewego końca ciągu – liczby 42. W sumie należało wstawić tylko 7 liczb: 7; 12; 17; 22; 27; 32; 37.

Odpowiedź: 7; 12; 17; 22; 27; 32; 37

Zadania tekstowe z progresją

Podsumowując, chciałbym rozważyć kilka stosunkowo proste zadania. No cóż, proste: dla większości uczniów, którzy uczą się matematyki w szkole i nie przeczytali tego, co jest napisane powyżej, te problemy mogą wydawać się trudne. Niemniej jednak tego typu problemy pojawiają się na egzaminie OGE i Unified State Exam z matematyki, dlatego polecam się z nimi zapoznać.

Zadanie nr 11. W styczniu zespół wyprodukował 62 części, a w każdym kolejnym miesiącu wyprodukował o 14 części więcej niż w miesiącu poprzednim. Ile części wyprodukował zespół w listopadzie?

Rozwiązanie. Oczywiście liczba części wymienionych według miesiąca będzie reprezentować rosnący postęp arytmetyczny. Ponadto:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Listopad to 11 miesiąc roku, więc musimy znaleźć $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Tym samym w listopadzie wyprodukowane zostaną 202 części.

Zadanie nr 12. Pracownia introligatorska opatrzyła w styczniu 216 woluminów, a w każdym kolejnym miesiącu oprawiała o 4 woluminy więcej niż w miesiącu poprzednim. Ile książek oprawiono w grudniu na warsztatach?

Rozwiązanie. Wszystkie takie same:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Grudzień jest ostatnim, 12-tym miesiącem roku, więc szukamy $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Oto odpowiedź – w grudniu zostanie oprawionych 260 książek.

Cóż, jeśli doczytałeś tak daleko, spieszę ci pogratulować: pomyślnie ukończyłeś „kurs młodego wojownika” w postępach arytmetycznych. Możesz bezpiecznie przejść do następnej lekcji, gdzie przestudiujemy wzór na sumę progresji, a także ważne i bardzo przydatne konsekwencje z niego wynikające.

W matematyce każdy zbiór liczb następujących po sobie, zorganizowany w jakiś sposób, nazywany jest sekwencją. Spośród wszystkich istniejących ciągów liczb wyróżnia się dwa interesujące przypadki: postęp algebraiczny i geometryczny.

Co to jest postęp arytmetyczny?

Należy od razu powiedzieć, że postęp algebraiczny często nazywany jest arytmetyką, ponieważ jego właściwości bada dział matematyki - arytmetyka.

Postęp ten jest ciągiem liczb, w którym każdy kolejny element różni się od poprzedniego o pewną stałą liczbę. Nazywa się to różnicą postępu algebraicznego. Dla pewności oznaczamy to łacińską literą d.

Przykładem takiej sekwencji może być: 3, 5, 7, 9, 11..., tutaj widać, że jest to liczba 5 więcej numeru 3 to 2, 7 to więcej niż 5 to także 2 i tak dalej. Zatem w przedstawionym przykładzie d = 5-3 = 7-5 = 9-7 = 11-9 = 2.

Jakie są rodzaje postępów arytmetycznych?

Charakter tych uporządkowanych ciągów liczb jest w dużej mierze zdeterminowany znakiem liczby d. Wyróżnia się następujące typy postępów algebraicznych:

  • wzrasta, gdy d jest dodatnie (d>0);
  • stała, gdy d = 0;
  • maleje, gdy d jest ujemne (d<0).

Przykład podany w poprzednim akapicie pokazuje rosnący postęp. Przykładem ciągu malejącego jest następujący ciąg liczb: 10, 5, 0, -5, -10, -15... Postęp stały, jak wynika z definicji, jest zbiorem liczb identycznych.

n-ty okres progresji

Dzięki temu, że każda kolejna liczba w rozpatrywanym ciągu różni się o stałą d od poprzedniej, łatwo jest wyznaczyć jej n-ty wyraz. Aby to zrobić, musisz znać nie tylko d, ale także 1 - pierwszy wyraz progresji. Stosując podejście rekurencyjne, można uzyskać wzór na progresję algebraiczną w celu znalezienia n-tego wyrazu. Wygląda to tak: a n = a 1 + (n-1)*d. Formuła ta jest dość prosta i można ją zrozumieć intuicyjnie.

Korzystanie z niego również nie jest trudne. Przykładowo w podanym powyżej postępie (d=2, a 1=3) definiujemy jego 35-ty wyraz. Według wzoru będzie to równe: a 35 = 3 + (35-1)*2 = 71.

Wzór na kwotę

W przypadku postępu arytmetycznego często spotykanym problemem jest suma jego pierwszych n wyrazów, podobnie jak określenie wartości n-tego wyrazu. Wzór na sumę ciągu algebraicznego zapisuje się w postaci: ∑ n 1 = n*(a 1 +a n)/2, tutaj ikona ∑ n 1 oznacza, że ​​sumuje się je od 1 do n-ty termin.

Powyższe wyrażenie można uzyskać, odwołując się do właściwości tej samej rekurencji, ale istnieje łatwiejszy sposób udowodnienia jego ważności. Zapiszmy 2 pierwsze i 2 ostatnie wyrazy tej sumy, wyrażając je liczbami a 1, a n i d i otrzymamy: a 1, a 1 +d,...,a n -d, a n. Zauważmy teraz, że jeśli dodamy pierwszy wyraz do ostatniego, będzie on dokładnie równy sumie drugiego i przedostatniego wyrazu, czyli a 1 +a n. W podobny sposób można wykazać, że tę samą sumę można otrzymać, dodając trzeci i przedostatni wyraz i tak dalej. W przypadku pary liczb w ciągu otrzymujemy sumy n/2, z których każda jest równa 1 +a n. Oznacza to, że otrzymujemy powyższy wzór na postęp algebraiczny dla sumy: ∑ n 1 = n*(a 1 +a n)/2.

Dla niesparowanej liczby terminów n podobny wzór otrzymuje się, jeśli zastosuje się opisane rozumowanie. Pamiętaj tylko o dodaniu pozostałego terminu, który znajduje się w centrum progresji.

Pokażmy, jak wykorzystać powyższy wzór na przykładzie prostej progresji, która została wprowadzona powyżej (3, 5, 7, 9, 11…). Na przykład konieczne jest określenie sumy pierwszych 15 wyrazów. Najpierw zdefiniujmy 15. Korzystając ze wzoru na n-ty wyraz (patrz poprzedni akapit) otrzymujemy: a 15 = a 1 + (n-1)*d = 3 + (15-1)*2 = 31. Teraz możemy zastosować wzór na suma postępu algebraicznego: ∑ 15 1 = 15*(3+31)/2 = 255.

Warto przytoczyć interesujący fakt historyczny. Wzór na sumę postępu arytmetycznego po raz pierwszy uzyskał Carl Gauss (słynny niemiecki matematyk XVIII wieku). Kiedy miał zaledwie 10 lat, nauczyciel poprosił go, aby obliczył sumę liczb od 1 do 100. Mówią, że mały Gauss rozwiązał to zadanie w kilka sekund, zauważając, że sumując liczby z początku i końca ciągu parami zawsze można uzyskać 101, a że takich sum jest 50, szybko dał odpowiedź: 50*101 = 5050.

Przykład rozwiązania problemu

Aby uzupełnić temat progresji algebraicznej, podamy przykład rozwiązania innego interesującego problemu, wzmacniając w ten sposób zrozumienie rozważanego tematu. Podajmy pewien postęp, dla którego znana jest różnica d = -3 oraz jej 35-ty wyraz a 35 = -114. Należy znaleźć siódmy wyraz progresji a 7 .

Jak widać z warunków zadania, wartość 1 jest nieznana, dlatego nie będzie możliwe bezpośrednie zastosowanie wzoru na n-ty wyraz. Niewygodna jest także metoda rekurencji, którą trudno wdrożyć ręcznie, a ryzyko popełnienia błędu jest duże. Postępujmy następująco: wypiszmy wzory na 7 i 35, mamy: a 7 = a 1 + 6*d i a 35 = a 1 + 34*d. Odejmij drugą część od pierwszego wyrażenia i otrzymaj: a 7 - a 35 = a 1 + 6*d - a 1 - 34*d. Wynika stąd: a 7 = a 35 - 28*d. Pozostaje zastąpić znane dane ze sformułowania problemu i zapisać odpowiedź: a 7 = -114 - 28*(-3) = -30.

Postęp geometryczny

Aby pełniej przybliżyć temat artykułu, podajemy krótki opis innego rodzaju progresji – geometrycznej. W matematyce przez tę nazwę rozumie się ciąg liczb, w którym każdy kolejny wyraz różni się od poprzedniego pewnym czynnikiem. Oznaczmy ten czynnik literą r. Nazywa się to mianownikiem rozważanego rodzaju progresji. Przykładem tej sekwencji liczb może być: 1, 5, 25, 125, ...

Jak widać z powyższej definicji, postępy algebraiczne i geometryczne mają podobną ideę. Różnica między nimi polega na tym, że pierwsza zmienia się wolniej niż druga.

Postęp geometryczny może być również rosnący, stały lub malejący. Jego rodzaj zależy od wartości mianownika r: jeśli r>1, to następuje progresja rosnąca, jeśli r<1 - убывающая, наконец, если r = 1 - постоянная, которая в этом случае может также называться постоянной арифметической прогрессией.

Formuły progresji geometrycznej

Podobnie jak w przypadku algebraiki, wzory ciągu geometrycznego sprowadzają się do określenia jego n-tego wyrazu i sumy n wyrazów. Poniżej znajdują się te wyrażenia:

  • a n = a 1 *r (n-1) - wzór ten wynika z definicji postępu geometrycznego.
  • ∑ n 1 = za 1 *(r n -1)/(r-1). Należy pamiętać, że jeśli r = 1, to powyższy wzór daje niepewność, więc nie można go zastosować. W tym przypadku suma n wyrazów będzie równa iloczynowi prostemu a 1 *n.

Na przykład znajdźmy sumę tylko 10 wyrazów ciągu 1, 5, 25, 125, ... Wiedząc, że a 1 = 1 i r = 5, otrzymamy: ∑ 10 1 = 1*(5 10 -1 )/4 = 2441406. Otrzymana wartość jest wyraźnym przykładem tego, jak szybko rośnie postęp geometryczny.

Być może pierwszą wzmianką o tym postępie w historii jest legenda o szachownicy, kiedy przyjaciel pewnego sułtana, ucząc go gry w szachy, poprosił o zboże za jego służbę. Ponadto ilość ziaren powinna być następująca: na pierwszym polu szachownicy należy położyć jedno ziarno, na drugim dwa razy więcej niż na pierwszym, na trzecim dwa razy więcej niż na drugim i tak dalej . Sułtan chętnie zgodził się spełnić tę prośbę, nie wiedział jednak, że aby dotrzymać słowa, będzie musiał opróżnić wszystkie kosze w swoim kraju.

Lub arytmetyka to rodzaj uporządkowanej sekwencji liczbowej, której właściwości są badane na szkolnym kursie algebry. W artykule szczegółowo omówiono kwestię znalezienia sumy postępu arytmetycznego.

Co to za postęp?

Zanim przejdziemy do pytania (jak znaleźć sumę ciągu arytmetycznego) warto zrozumieć, o czym mówimy.

Dowolny ciąg liczb rzeczywistych uzyskany przez dodanie (odjęcie) pewnej wartości od każdej poprzedniej liczby nazywany jest postępem algebraicznym (arytmetycznym). Definicja ta, przetłumaczona na język matematyczny, przyjmuje postać:

Tutaj ja - numer seryjny element szeregu a i . Zatem znając tylko jeden numer początkowy, możesz łatwo przywrócić całą serię. Parametr d we wzorze nazywany jest różnicą progresji.

Można łatwo wykazać, że dla rozpatrywanego szeregu liczb zachodzi równość:

za n = za 1 + re * (n - 1).

Oznacza to, że aby znaleźć wartość n-tego elementu w kolejności, należy dodać różnicę d do pierwszego elementu a 1 n-1 razy.

Jaka jest suma postępu arytmetycznego: wzór

Przed podaniem wzoru na wskazaną kwotę warto rozważyć prosty przypadek szczególny. Biorąc pod uwagę ciąg liczb naturalnych od 1 do 10, musisz znaleźć ich sumę. Ponieważ w ciągu (10) wyrazów jest niewiele, możliwe jest rozwiązanie problemu od razu, czyli zsumowanie wszystkich elementów po kolei.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Warto zwrócić uwagę na jedną ciekawą rzecz: skoro każdy wyraz różni się od kolejnego tą samą wartością d = 1, to sumowanie parami pierwszego z dziesiątym, drugiego z dziewiątym itd. da ten sam wynik. Naprawdę:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Jak widać tych sum jest tylko 5, czyli dokładnie dwa razy mniej niż liczba elementów szeregu. Następnie mnożąc liczbę sum (5) przez wynik każdej sumy (11), otrzymasz wynik uzyskany w pierwszym przykładzie.

Jeśli uogólnimy te argumenty, możemy zapisać następujące wyrażenie:

S n = n * (za 1 + za n) / 2.

Wyrażenie to pokazuje, że wcale nie jest konieczne sumowanie wszystkich elementów w rzędzie, wystarczy znać wartość pierwszego a 1 i ostatniego a n oraz całkowitą liczbę wyrazów n.

Uważa się, że Gauss po raz pierwszy pomyślał o tej równości, gdy szukał rozwiązania problemu zadanego przez swojego nauczyciela: zsumuj pierwsze 100 liczb całkowitych.

Suma elementów od m do n: wzór

Wzór podany w poprzednim akapicie odpowiada na pytanie, jak znaleźć sumę ciągu arytmetycznego (pierwszych elementów), jednak często w problemach konieczne jest zsumowanie ciągu liczb w środku ciągu. Jak to zrobić?

Najłatwiej odpowiedzieć na to pytanie, rozważając następujący przykład: niech będzie konieczne znalezienie sumy wyrazów od m-tego do n-tego. Aby rozwiązać zadanie należy przedstawić zadany odcinek od m do n postępu w postaci nowego ciągu liczbowego. W tej reprezentacji m-ty wyraz a m będzie pierwszym, a n będzie ponumerowane n-(m-1). W takim przypadku, stosując standardowy wzór na sumę, otrzymamy następujące wyrażenie:

S m n = (n - m + 1) * (za m + za n) / 2.

Przykład użycia formuł

Wiedząc, jak znaleźć sumę ciągu arytmetycznego, warto rozważyć prosty przykład wykorzystania powyższych wzorów.

Poniżej podano sekwencja liczb, powinieneś znaleźć sumę jego wyrazów, zaczynając od 5 i kończąc na 12:

Podane liczby wskazują, że różnica d jest równa 3. Korzystając z wyrażenia na n-ty element, możesz znaleźć wartości 5. i 12. wyrazu progresji. Okazało się:

za 5 = za 1 + re * 4 = -4 + 3 * 4 = 8;

za 12 = za 1 + re * 11 = -4 + 3 * 11 = 29.

Znając wartości liczb na końcach rozważanego ciągu algebraicznego, a także wiedząc, jakie liczby w szeregu zajmują, możesz skorzystać ze wzoru na sumę uzyskaną w poprzednim akapicie. Okaże się:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Warto zauważyć, że wartość tę można uzyskać inaczej: najpierw znajdź sumę pierwszych 12 elementów, korzystając ze standardowego wzoru, następnie oblicz sumę pierwszych 4 elementów, korzystając z tego samego wzoru, a następnie odejmij drugą od pierwszej sumy.


Na przykład sekwencja \(2\); \(5\); \(8\); \(jedenaście\); \(14\)... jest postępem arytmetycznym, gdyż każdy kolejny element różni się od poprzedniego o trzy (można uzyskać z poprzedniego dodając trzy):

W tym postępie różnica \(d\) jest dodatnia (równa \(3\)), a zatem każdy kolejny wyraz jest większy od poprzedniego. Takie postępy nazywane są wzrastający.

Jednak \(d\) może być również liczbą ujemną. Na przykład, w postępie arytmetycznym \(16\); \(10\); \(4\); \(-2\); \(-8\)... różnica progresji \(d\) jest równa minus sześć.

I w tym przypadku każdy kolejny element będzie mniejszy od poprzedniego. Te progresje nazywane są malejące.

Notacja postępu arytmetycznego

Postęp jest oznaczony małą literą łacińską.

Liczby tworzące progresję nazywane są członkowie(lub elementy).

Oznacza się je tą samą literą co ciąg arytmetyczny, ale z indeksem liczbowym równym numerowi elementu w kolejności.

Na przykład ciąg arytmetyczny \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) składa się z elementów \(a_1=2\); \(a_2=5\); \(a_3=8\) i tak dalej.

Innymi słowy, dla progresji \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Rozwiązywanie problemów z postępem arytmetycznym

W zasadzie informacje przedstawione powyżej wystarczą już do rozwiązania prawie każdego problemu postępu arytmetycznego (w tym oferowanych w OGE).

Przykład (OGE). Postęp arytmetyczny jest określony przez warunki \(b_1=7; d=4\). Znajdź \(b_5\).
Rozwiązanie:

Odpowiedź: \(b_5=23\)

Przykład (OGE). Podano trzy pierwsze wyrazy postępu arytmetycznego: \(62; 49; 36…\) Znajdź wartość pierwszego ujemnego wyrazu tego ciągu.
Rozwiązanie:

Mamy dane pierwsze elementy ciągu i wiemy, że jest to ciąg arytmetyczny. Oznacza to, że każdy element różni się od swojego sąsiada tą samą liczbą. Dowiedzmy się który, odejmując poprzedni od następnego elementu: \(d=49-62=-13\).

Teraz możemy przywrócić naszą progresję do (pierwszego negatywnego) elementu, którego potrzebujemy.

Gotowy. Możesz napisać odpowiedź.

Odpowiedź: \(-3\)

Przykład (OGE). Mając kilka kolejnych elementów ciągu arytmetycznego: \(…5; x; 10; 12,5...\) Znajdź wartość elementu oznaczonego literą \(x\).
Rozwiązanie:


Aby znaleźć \(x\), musimy wiedzieć, jak bardzo następny element różni się od poprzedniego, innymi słowy, różnica w progresji. Znajdźmy go na podstawie dwóch znanych sąsiednich elementów: \(d=12,5-10=2,5\).

I teraz możemy łatwo znaleźć to, czego szukamy: \(x=5+2,5=7,5\).


Gotowy. Możesz napisać odpowiedź.

Odpowiedź: \(7,5\).

Przykład (OGE). Postęp arytmetyczny definiują następujące warunki: \(a_1=-11\); \(a_(n+1)=a_n+5\) Znajdź sumę pierwszych sześciu wyrazów tego ciągu.
Rozwiązanie:

Musimy znaleźć sumę pierwszych sześciu wyrazów progresji. Nie znamy jednak ich znaczenia, podany jest nam jedynie pierwszy element. Dlatego najpierw obliczamy wartości jedna po drugiej, korzystając z tego, co nam podano:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Po obliczeniu sześciu potrzebnych nam elementów znajdujemy ich sumę.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Znaleziono wymaganą kwotę.

Odpowiedź: \(S_6=9\).

Przykład (OGE). W postępie arytmetycznym \(a_(12)=23\); \(a_(16)=51\). Znajdź różnicę tego postępu.
Rozwiązanie:

Odpowiedź: \(d=7\).

Ważne wzory na postęp arytmetyczny

Jak widać, wiele problemów z postępem arytmetycznym można rozwiązać po prostu rozumiejąc najważniejszą rzecz - że ciąg arytmetyczny jest ciągiem liczb, a każdy kolejny element w tym łańcuchu uzyskuje się przez dodanie tej samej liczby do poprzedniej (tj. różnica w postępie).

Czasami jednak zdarzają się sytuacje, w których podjęcie decyzji „od razu” jest bardzo niewygodne. Wyobraźmy sobie na przykład, że w pierwszym przykładzie musimy znaleźć nie piąty element \(b_5\), ale trzysta osiemdziesiąty szósty \(b_(386)\). Czy powinniśmy dodać cztery \(385\) razy? Lub wyobraź sobie, że w przedostatnim przykładzie musisz znaleźć sumę pierwszych siedemdziesięciu trzech elementów. Będziesz zmęczony liczeniem...

Dlatego w takich przypadkach nie rozwiązuje się sprawy „od razu”, ale stosuje się specjalne wzory wyprowadzone na postęp arytmetyczny. A najważniejsze to wzór na n-ty wyraz progresji i wzór na sumę \(n\) pierwszych wyrazów.

Wzór \(n\)tego wyrazu: \(a_n=a_1+(n-1)d\), gdzie \(a_1\) jest pierwszym wyrazem ciągu;
\(n\) – numer wymaganego elementu;
\(a_n\) – wyraz ciągu o numerze \(n\).


Formuła ta pozwala nam szybko znaleźć nawet trzysetny lub milionowy element, znając tylko pierwszy i różnicę progresji.

Przykład. Postęp arytmetyczny określony jest przez warunki: \(b_1=-159\); \(d=8,2\). Znajdź \(b_(246)\).
Rozwiązanie:

Odpowiedź: \(b_(246)=1850\).

Wzór na sumę pierwszych n wyrazów: \(S_n=\frac(a_1+a_n)(2) \cdot n\), gdzie



\(a_n\) – ostatni zsumowany wyraz;


Przykład (OGE). Postęp arytmetyczny jest określony przez warunki \(a_n=3,4n-0,6\). Znajdź sumę pierwszych \(25\) wyrazów tego ciągu.
Rozwiązanie:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Aby obliczyć sumę pierwszych dwudziestu pięciu wyrazów, musimy znać wartość pierwszego i dwudziestego piątego wyrazu.
Naszą progresję wyznacza wzór n-tego wyrazu w zależności od jego liczby (więcej szczegółów w artykule). Obliczmy pierwszy element, zastępując jedynką \(n\).

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Teraz znajdźmy dwudziesty piąty wyraz, zastępując dwadzieścia pięć zamiast \(n\).

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Cóż, teraz możemy łatwo obliczyć wymaganą kwotę.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

Odpowiedź jest gotowa.

Odpowiedź: \(S_(25)=1090\).

Na sumę \(n\) pierwszych wyrazów możesz uzyskać inny wzór: wystarczy \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) zamiast \(a_n\) zamień na to wzór \(a_n=a_1+(n-1)d\). Otrzymujemy:

Wzór na sumę pierwszych n wyrazów: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), gdzie

\(S_n\) – wymagana suma \(n\) pierwszych elementów;
\(a_1\) – pierwszy wyraz zsumowany;
\(d\) – różnica progresji;
\(n\) – całkowita liczba elementów.

Przykład. Znajdź sumę pierwszych \(33\)-ex wyrazów ciągu arytmetycznego: \(17\); \(15,5\); \(14\)…
Rozwiązanie:

Odpowiedź: \(S_(33)=-231\).

Bardziej złożone problemy postępu arytmetycznego

Teraz masz wszystkie informacje potrzebne do rozwiązania niemal każdego problemu postępu arytmetycznego. Zakończmy temat rozważeniem problemów, w których trzeba nie tylko zastosować formuły, ale i trochę pomyśleć (w matematyce może się to przydać ☺)

Przykład (OGE). Znajdź sumę wszystkich ujemnych wyrazów progresji: \(-19,3\); \(-19\); \(-18,7\)…
Rozwiązanie:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Zadanie jest bardzo podobne do poprzedniego. Zaczynamy rozwiązywać to samo: najpierw znajdujemy \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Teraz chciałbym podstawić \(d\) do wzoru na sumę... i tu pojawia się mały niuans - nie wiemy \(n\). Innymi słowy, nie wiemy, ile terminów trzeba będzie dodać. Jak się dowiedzieć? Pomyślmy. Przestaniemy dodawać elementy, gdy osiągniemy pierwszy pozytywny element. Oznacza to, że musisz znaleźć numer tego elementu. Jak? Zapiszmy dla naszego przypadku wzór na obliczenie dowolnego elementu ciągu arytmetycznego: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Potrzebujemy \(a_n\), aby stać się większym od zera. Dowiedzmy się, kiedy \(n\) to się stanie.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Obie strony nierówności dzielimy przez \(0,3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

Przenosimy minus jeden, nie zapominając o zmianie znaków

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Obliczmy...

\(n>65 333…\)

...i okazuje się, że pierwszy dodatni element będzie miał liczbę \(66\). Odpowiednio, ostatnia liczba ujemna ma \(n=65\). Na wszelki wypadek sprawdźmy to.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Musimy więc dodać pierwsze \(65\) elementy.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Odpowiedź jest gotowa.

Odpowiedź: \(S_(65)=-630,5\).

Przykład (OGE). Postęp arytmetyczny określony jest przez warunki: \(a_1=-33\); \(a_(n+1)=a_n+4\). Znajdź sumę od \(26\) do \(42\) elementu włącznie.
Rozwiązanie:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

W tym zadaniu również trzeba znaleźć sumę elementów, ale zaczynając nie od pierwszego, ale od \(26\)-tego. Na taki przypadek nie mamy wzoru. Jak zdecydować?
To proste - aby otrzymać sumę od \(26\)-tej do \(42\)-tej, musisz najpierw znaleźć sumę od \(1\)-tej do \(42\)-tej, a następnie odjąć z niego suma od pierwszej do (25) (patrz rysunek).


Dla naszej progresji \(a_1=-33\) i różnicy \(d=4\) (w końcu dodajemy czwórkę do poprzedniego elementu, żeby znaleźć następny). Wiedząc o tym, znajdujemy sumę pierwszych \(42\)-y elementów.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Teraz suma pierwszych \(25\) elementów.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Na koniec obliczamy odpowiedź.

\(S=S_(42)-S_(25)=2058-375=1683\)

Odpowiedź: \(S=1683\).

W przypadku postępu arytmetycznego istnieje jeszcze kilka formuł, których nie rozważaliśmy w tym artykule ze względu na ich niską przydatność praktyczną. Można je jednak łatwo znaleźć.

Niektórzy traktują słowo „postęp” z ostrożnością, jako bardzo złożone pojęcie z dziedzin matematyki wyższej. Tymczasem najprostszym postępem arytmetycznym jest praca taksometru (o ile jeszcze istnieją). A zrozumienie istoty (a w matematyce nie ma nic ważniejszego niż „zrozumienie istoty”) ciągu arytmetycznego nie jest takie trudne, po przeanalizowaniu kilku elementarnych pojęć.

Matematyczny ciąg liczb

Sekwencję liczbową nazywa się zwykle serią liczb, z których każda ma swój własny numer.

a 1 jest pierwszym członkiem sekwencji;

oraz 2 jest drugim wyrazem ciągu;

a 7 jest siódmym elementem ciągu;

oraz n oznacza n-ty element ciągu;

Jednak nie interesuje nas żaden dowolny zestaw liczb i liczb. Skupimy naszą uwagę na ciągu liczbowym, w którym wartość n-tego wyrazu jest powiązana z jego liczbą porządkową za pomocą dającej się jasno sformułować matematycznie zależności. Innymi słowy: wartość liczbowa n-tej liczby jest jakąś funkcją n.

a jest wartością elementu ciągu liczbowego;

n to numer seryjny;

f(n) jest funkcją, gdzie argumentem jest liczba porządkowa w ciągu numerycznym n.

Definicja

Postęp arytmetyczny nazywa się zwykle ciągiem liczbowym, w którym każdy kolejny wyraz jest większy (mniejszy) od poprzedniego o tę samą liczbę. Wzór na n-ty wyraz ciągu arytmetycznego jest następujący:

a n - wartość bieżącego członka ciągu arytmetycznego;

a n+1 - wzór na następną liczbę;

d - różnica (pewna liczba).

Łatwo ustalić, że jeśli różnica będzie dodatnia (d>0), to każdy kolejny element rozpatrywanego szeregu będzie większy od poprzedniego i taki postęp arytmetyczny będzie rosnący.

Na poniższym wykresie łatwo zrozumieć, dlaczego sekwencja liczb nazywa się „rosnącą”.

W przypadkach, gdy różnica jest ujemna (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Określona wartość elementu członkowskiego

Czasami konieczne jest określenie wartości dowolnego dowolnego wyrazu n ciągu arytmetycznego. Można to zrobić, obliczając sekwencyjnie wartości wszystkich członków ciągu arytmetycznego, zaczynając od pierwszego do żądanego. Jednak ta ścieżka nie zawsze jest akceptowalna, jeśli na przykład konieczne jest znalezienie wartości pięciotysięcznego lub ośmiomilionowego wyrazu. Tradycyjne obliczenia zajmą dużo czasu. Jednakże konkretny postęp arytmetyczny można badać za pomocą pewnych wzorów. Istnieje również wzór na n-ty wyraz: wartość dowolnego wyrazu ciągu arytmetycznego można wyznaczyć jako sumę pierwszego wyrazu ciągu z różnicą postępu, pomnożoną przez liczbę żądanego wyrazu, pomniejszoną przez jeden.

Formuła jest uniwersalna dla progresji rosnącej i malejącej.

Przykład obliczenia wartości danego wyrazu

Rozwiążmy następujący problem znalezienia wartości n-tego wyrazu ciągu arytmetycznego.

Warunek: istnieje postęp arytmetyczny z parametrami:

Pierwszy wyraz ciągu to 3;

Różnica w szeregach liczbowych wynosi 1,2.

Zadanie: musisz znaleźć wartość 214 wyrazów

Rozwiązanie: aby określić wartość danego wyrazu, korzystamy ze wzoru:

a(n) = a1 + d(n-1)

Podstawiając dane ze sformułowania problemu do wyrażenia, mamy:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Odpowiedź: 214. wyraz ciągu jest równy 258,6.

Zalety tej metody obliczeń są oczywiste – całe rozwiązanie zajmuje nie więcej niż 2 linie.

Suma danej liczby wyrazów

Bardzo często w danym szeregu arytmetycznym konieczne jest wyznaczenie sumy wartości niektórych jego odcinków. Aby to zrobić, nie ma również potrzeby obliczania wartości każdego terminu, a następnie ich dodawania. Metodę tę można zastosować, jeśli liczba wyrazów, których sumę należy znaleźć, jest niewielka. W innych przypadkach wygodniej jest zastosować następującą formułę.

Suma wyrazów ciągu arytmetycznego od 1 do n jest równa sumie pierwszego i n-tego wyrazu pomnożonej przez liczbę wyrazu n i podzielonej przez dwa. Jeżeli we wzorze wartość n-tego wyrazu zastąpimy wyrażeniem z poprzedniego akapitu artykułu, otrzymamy:

Przykład obliczeń

Na przykład rozwiążmy problem z następującymi warunkami:

Pierwszy wyraz ciągu wynosi zero;

Różnica wynosi 0,5.

Zadanie wymaga wyznaczenia sumy wyrazów szeregu od 56 do 101.

Rozwiązanie. Skorzystajmy ze wzoru na określenie wielkości progresji:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Najpierw wyznaczamy sumę wartości 101 wyrazów progresji, podstawiając podane warunki naszego problemu do wzoru:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2,525

Oczywiście, aby znaleźć sumę warunków progresji od 56. do 101., należy odjąć S 55 od S 101.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Zatem suma postępu arytmetycznego w tym przykładzie wynosi:

s 101 - s 55 = 2525 - 742,5 = 1782,5

Przykład praktycznego zastosowania postępu arytmetycznego

Na koniec artykułu wróćmy do przykładu ciągu arytmetycznego podanego w pierwszym akapicie – taksometru (licznik taksówki). Rozważmy ten przykład.

Wejście na taksówkę (co obejmuje 3 km przejazdu) kosztuje 50 rubli. Każdy kolejny kilometr płatny jest według stawki 22 rubli/km. Odległość do pokonania wynosi 30 km. Oblicz koszt podróży.

1. Odrzućmy pierwsze 3 km, których cena jest wliczona w koszt lądowania.

30 - 3 = 27 km.

2. Dalsze obliczenia to nic innego jak analizowanie szeregu liczb arytmetycznych.

Numer członkowski – liczba przejechanych kilometrów (minus pierwsze trzy).

Wartość elementu jest sumą.

Pierwszy człon tego problemu będzie równy 1 = 50 rubli.

Różnica w progresji d = 22 r.

interesująca nas liczba to wartość (27+1)-tego wyrazu ciągu arytmetycznego - stan licznika na końcu 27. kilometra wynosi 27,999... = 28 km.

za 28 = 50 + 22 ∙ (28 - 1) = 644

Obliczenia danych kalendarzowych dla dowolnie długiego okresu opierają się na wzorach opisujących określone ciągi liczbowe. W astronomii długość orbity jest geometrycznie zależna od odległości ciała niebieskiego od gwiazdy. Ponadto różne szeregi liczbowe są z powodzeniem stosowane w statystyce i innych stosowanych obszarach matematyki.

Innym rodzajem ciągu liczbowego jest ciąg geometryczny

Postęp geometryczny charakteryzuje się większym tempem zmian w porównaniu z postępem arytmetycznym. To nie przypadek, że w polityce, socjologii i medycynie, aby pokazać dużą prędkość rozprzestrzeniania się konkretnego zjawiska, na przykład choroby w czasie epidemii, mówi się, że proces ten rozwija się w postępie geometrycznym.

N-ty wyraz szeregu liczb geometrycznych różni się od poprzedniego tym, że jest mnożony przez jakąś stałą liczbę - mianownik, na przykład, pierwszy wyraz wynosi 1, mianownik jest odpowiednio równy 2, a następnie:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - wartość bieżącego wyrazu postępu geometrycznego;

b n+1 - wzór na kolejny wyraz ciągu geometrycznego;

q jest mianownikiem postępu geometrycznego (liczba stała).

Jeśli wykres postępu arytmetycznego jest linią prostą, to postęp geometryczny przedstawia nieco inny obraz:

Podobnie jak w przypadku arytmetyki, postęp geometryczny ma wzór na wartość dowolnego wyrazu. Dowolny n-ty wyraz postępu geometrycznego jest równy iloczynowi pierwszego wyrazu i mianownika postępu do potęgi n pomniejszonej o jeden:

Przykład. Mamy postęp geometryczny, którego pierwszy wyraz jest równy 3, a mianownik postępu jest równy 1,5. Znajdźmy piąty wyraz progresji

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Sumę danej liczby wyrazów oblicza się również za pomocą specjalnego wzoru. Suma n pierwszych wyrazów postępu geometrycznego jest równa różnicy między iloczynem n-tego wyrazu postępu i jego mianownika a pierwszym wyrazem postępu, podzielonej przez mianownik pomniejszony o jeden:

Jeżeli b n zastąpimy wzorem omówionym powyżej, wartość sumy pierwszych n wyrazów rozpatrywanego szeregu liczbowego będzie miała postać:

Przykład. Postęp geometryczny rozpoczyna się od pierwszego wyrazu równego 1. Mianownik jest ustawiony na 3. Znajdźmy sumę pierwszych ośmiu wyrazów.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280