Формулы суммы и разности синусов и косинусов для двух углов α и β позволяют перейти от суммы указанных углов к произведению углов α + β 2 и α - β 2 . Сразу отметим, что не стоит путать формулы суммы и разности синусов и косинусов с формулами синусов и косинусов суммы и разности. Ниже мы перечислим эти формулы, приведем их вывод и покажем примеры применения для конкретных задач.

Формулы суммы и разности синусов и косинусов

Запишем, как выглядят формулы суммы и разности для синусов и для косинусов

Формулы суммы и разности для синусов

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Формулы суммы и разности для косинусов

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

Данные формулы справедливы для любых углов α и β . Углы α + β 2 и α - β 2 называются соответственно полусуммой и полуразностью углов альфа и бета. Дадим формулировку для каждой формулы.

Определения формул сумм и разности синусов и косинусов

Сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.

Разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус полусуммы.

Сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы и косинуса полуразности этих углов.

Разность косинусов двух углов равна удвоенному произведению синуса полусуммы на косинус полуразности этих углов, взятому с отрицательным знаком.

Вывод формул суммы и разности синусов и косинусов

Для вывода формул суммы и разности синуса и косинуса двух углов используются формулы сложения. Приведем их ниже

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α · sin β cos (α - β) = cos α · cos β + sin α · sin β

Также представим сами углы в виде суммы полусумм и полуразностей.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

Переходим непосредственно к выводу формул суммы и разности для sin и cos.

Вывод формулы суммы синусов

В сумме sin α + sin β заменим α и β на выражения для этих углов, приведенные выше. Получим

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Теперь к первому выражению применяем формулу сложения, а ко второму - формулу синуса разностей углов (см. формулы выше)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Раскроем скобки, приведем подобные слагаемые и получим искомую формулу

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Действия по выводу остальных формул аналогичны.

Вывод формулы разности синусов

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Вывод формулы суммы косинусов

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Вывод формулы разности косинусов

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Примеры решения практических задач

Для начала, сделаем проверку одной из формул, подставив в нее конкретные значения углов. Пусть α = π 2 , β = π 6 . Вычислим значение суммы синусов этих углов. Сначала воспользуемся таблицей основных значений тригонометрических функций, а затем применим формулу для суммы синусов.

Пример 1. Проверка формулы суммы синусов двух углов

α = π 2 , β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 · 3 2 · 3 2 = 3 2

Рассмотрим теперь случай, когда значения углов отличаются от основных значений, представленных в таблице. Пусть α = 165 ° , β = 75 ° . Вычислим значение разности синусов этих углов.

Пример 2. Применение формулы разности синусов

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 · sin 165 ° - 75 ° 2 cos 165 ° + 75 ° 2 = = 2 · sin 45 ° · cos 120 ° = 2 · 2 2 · - 1 2 = 2 2

С помощью формул суммы и разности синусов и косинусов можно перейти от суммы или разности к произведению тригонометрических функций. Часто эти формулы называют формулами перехода от суммы к произведению. Формулы суммы и разности синусов и косинусов широко используются при решении тригонометрических уравнений и при преобразовании тригонометрических выражений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тригонометрия - это один из важнейших разделов, который изучается в курсе алгебры в 10 классе. Ему уделяется достаточно щедрое количество уроков. Ведь для того, чтобы как следует понять тригонометрию и в теории и на практике, необходимо постоянно решать огромное количество примеров, которые укрепят теорию и позволят расширить навыки выполнения той или иной работы: домашней, контрольной, самостоятельной или просто классной.

Видеурок имеет грамотное составление, все последовательно и логично. Структура является четкой, текст составлен грамотно и понятно для школьного уровня. Данный ресурс поможет сделать процесс изучения темы «Формулы понижения степени» намного интереснее и эффективное. Благодаря визуализации, ученики смогут лучше запомнить формулы, а сопровождению спокойным голосом диктора видеозаписи, запоминание ускориться.

Материал, который рассказывается и рассматривается в ресурсе, составлен специалистами таким образом, чтобы полностью раскрыть тему, не упустить ни один важный момент. Это говорит о том, что его можно смело использовать при составлении планов-конспектов к урокам, что делают молодые учителя в обязательном порядке.

Ранее были рассмотрены уже формулы косинуса, синуса, тангенса суммы аргументов, двойного аргумента. Котангенс в отдельности не рассматривался, ведь его всегда можно представить в виде обратной дроби к тангенсу. В этой видеозаписи будут рассматриваться еще одни важные формулы, с помощью которых можно понизить степень.

В первую очередь выводятся формулы понижения квадрата. Мы видим, как просто можно избавиться от второй степени в косинусе и синусе. Для того чтобы школьники могли понять, откуда взялись эти формулы, следующим шагом диктор подробно рассказывает, все шаги. В первую очередь, стоит вспомнить основную формулу в тригонометрии, гласящую о том, что сумма квадрата синуса и косинуса дает нам единицу. Из этого тождества можно вывести в отдельности и квадрат синуса, и косинуса. Вспомнив формулу косинуса и синуса двойного аргумента, можно понять, откуда появились новые правила.

Заметно, что при выполнении любого шага, мы обращаемся к материалу, который ранее был изучен. Это указывает на важность и взаимосвязанность тем в тригонометрии. Ни в коем случае нельзя упускать те или иные темы и приступить к новым. Материал станет непонятным, ведь будет неизвестно, откуда появились те или иные значения и преобразования. Так как тригонометрия содержит большое количество формул, без которых двигаться дальше невозможно, стоит постепенно их запоминать и изучать новые. Также закреплять материал нужно на практике и получать новые навыки, которые пригодятся в дальнейшем при написании контрольных и семестровых работ.

Видеоурок «Формулы понижения степени» после рассмотрения формул переходит к практическому разбору примеров, что, как было уже сказано, очень важно. Примеры будут понятны, при внимательном просмотре самостоятельно либо вместе с учителем.

В первом примере необходимо найти значение некоторого выражения при определенных условиях. При его решении используется формула понижения градуса косинуса. Чтобы она была на виду, в видеозаписи выводится с правой стороны. Таким образом, у учеников будет возможность повторить и пользоваться ею.

После этого диктор предлагает решить похожий пример, в котором используется формула понижения степени синуса. Его школьники могут самостоятельно решить. Если они поняли предыдущий пример, то справятся и с этим.

В итоге приводится еще один более сложный пример. При ее решении используется формула тангенса. Диктор подробно объясняет решение, после чего выводится ответ.

Видеоурок за короткое время расскажет полностью о том, что такое формулы понижения степени и как ими необходимо пользоваться на практике.

ТЕКСТОВАЯ РАСШИФРОВКА:

Формулы понижения степени

называют формулами понижения степени.

Выведем эти формулы:

Из формулы cos 2 х + sin 2 х= 1, из найдем sin 2 х:

sin 2 х= 1-cos 2 х

В формуле cos 2x= cos 2 х - sin 2 х, значение sin 2 х заменим на 1- cos 2 х и получим cos 2 х - (1- cos 2 х)

при раскрытии скобок получаем cos 2 х - 1+ cos 2 х

так как cos 2 х + cos 2 х в сумме 2cos 2 х

получаем, что cos 2x = 2 cos 2 х - 1.

cos 2x = cos 2 х - sin 2 х = cos 2 х - (1-cos 2 х) = 2 cos 2 х - 1.

Отсюда выражаем cos 2 х

cos 2x +1 = 2 cos 2 х

cos 2 х = (квадрат косинуса икс равен полу-сумме единицы и косинуса двойного аргумента).

Мы вывели первую формулу понижения степени для cos 2 х.

Аналогично выведем и вторую формулу понижения степени для sin 2 х:

Из формулы cos 2 х + sin 2 х= 1, из найдем cos 2 х:

cos 2 х = 1 - sin 2 х

В формуле cos 2x= cos 2 х - sin 2 х, значение cos 2 х:

заменим на 1 - sin 2 х

и получим 1 - sin 2 х- sin 2 х

Так как -sin 2 х -sin 2 х в сумме даст -2 sin 2 х,

получаем, что cos 2x = 1 -2 sin 2 х.

Отсюда выражаем sin 2 х:

переносим единицу с противоположным знаком

cos 2x-1 = -2 sin 2 х

меняем знаки на противоположные

1- cos 2x = 2 sin 2 х

делим на 2 обе части равенства:

sin 2 х = (квадрат синуса икс равен полу-разности единицы и косинуса двойного аргумента).

Запомните, формулы, которые мы получили, называют формулами понижения степени.

Такое название было дано из-за того, что в левой части обоих тождеств содержится вторая степень косинуса и синуса, а в правой части - первая степень, т.е наблюдается понижение степени.

Рассмотрим решение примеров с применением формул понижения степени.

ПРИМЕР 1. Зная, что cosx= - и хϵ(π;) (икс принадлежит промежутку от пи до трех пи на два), вычислить cos.

Будем использовать формулу понижения степени

квадрат косинуса икс cos 2 х =, так как, то получим:

по условию cosx= - подставив данные в формулу имеем:

cos 2 = , сделав вычисления в правой части выражения, получим

cos 2 = , извлечем корень квадратный из, получим

По условию π х, следовательно, . Это значит, что аргумент икс, деленное на два принадлежит второй четверти, где косинус отрицательный. Поэтому cos = − .

Ответ: cos = − .

ПРИМЕР 2. Зная, что cosx= - и хϵ (π;)

(икс принадлежит промежутку от пи до трех пи на два), вычислить sin.

Решение. Будем использовать формулу понижения степени sin 2 х =

sin 2 =, так как по условию cosx= -

Имеем: sin 2 = = , извлечем корень квадратный и получим

По условию π х, следовательно, . Это значит, что аргумент икс, деленное на два принадлежит второй четверти, где синус положительный. Поэтому sin = .

Ответ: sin = .

ПРИМЕР 3. Зная, что cosx= - и хϵ(π;) (икс принадлежит промежутку от пи до трех пи на два), вычислить tg.

Решение. Зная, что тангенс икс - это отношение синуса икс к косинусу икс, имеем

в примерах 1 и 2 мы нашли, что sin = и cos = − , поэтому


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Основные формулы тригонометрии - это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

Тригонометрические тождества

sin 2 a + cos 2 a = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , c t g 2 α + 1 = 1 sin 2 α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

Формулы приведения

sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin - α + 2 π z = - sin α , cos - α + 2 π z = cos α t g - α + 2 π z = - t g α , c t g - α + 2 π z = - c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = - sin α t g π 2 + α + 2 π z = - c t g α , c t g π 2 + α + 2 π z = - t g α sin π 2 - α + 2 π z = cos α , cos π 2 - α + 2 π z = sin α t g π 2 - α + 2 π z = c t g α , c t g π 2 - α + 2 π z = t g α sin π + α + 2 π z = - sin α , cos π + α + 2 π z = - cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π - α + 2 π z = sin α , cos π - α + 2 π z = - cos α t g π - α + 2 π z = - t g α , c t g π - α + 2 π z = - c t g α sin 3 π 2 + α + 2 π z = - cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = - c t g α , c t g 3 π 2 + α + 2 π z = - t g α sin 3 π 2 - α + 2 π z = - cos α , cos 3 π 2 - α + 2 π z = - sin α t g 3 π 2 - α + 2 π z = c t g α , c t g 3 π 2 - α + 2 π z = t g α

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sin α ± β = sin α · cos β ± cos α · sin β cos α + β = cos α · cos β - sin α · sin β cos α - β = cos α · cos β + sin α · sin β t g α ± β = t g α ± t g β 1 ± t g α · t g β c t g α ± β = - 1 ± c t g α · c t g β c t g α ± c t g β

На основе формул сложения выводятся тригонометрические формулы кратного угла.

Формулы кратного угла: двойного, тройного и т.д.

Формулы двойного и тройного угла

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α - sin 2 α , cos 2 α = 1 - 2 sin 2 α , cos 2 α = 2 cos 2 α - 1 t g 2 α = 2 · t g α 1 - t g 2 α с t g 2 α = с t g 2 α - 1 2 · с t g α sin 3 α = 3 sin α · cos 2 α - sin 3 α , sin 3 α = 3 sin α - 4 sin 3 α cos 3 α = cos 3 α - 3 sin 2 α · cos α , cos 3 α = - 3 cos α + 4 cos 3 α t g 3 α = 3 t g α - t g 3 α 1 - 3 t g 2 α c t g 3 α = c t g 3 α - 3 c t g α 3 c t g 2 α - 1

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin 2 α 2 = 1 - cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 - cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 - cos α

Формулы понижения степени

Формулы понижения степени

sin 2 α = 1 - cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α - sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 - 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

для четных n

sin n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 (- 1) n 2 - k · C k n · cos ((n - 2 k) α) cos n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 C k n · cos ((n - 2 k) α)

для нечетных n

sin n α = 1 2 n - 1 ∑ k = 0 n - 1 2 (- 1) n - 1 2 - k · C k n · sin ((n - 2 k) α) cos n α = 1 2 n - 1 ∑ k = 0 n - 1 2 C k n · cos ((n - 2 k) α)

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sin α + sin β = 2 sin α + β 2 · cos α - β 2 sin α - sin β = 2 sin α - β 2 · cos α + β 2 cos α + cos β = 2 cos α + β 2 · cos α - β 2 cos α - cos β = - 2 sin α + β 2 · sin α - β 2 , cos α - cos β = 2 sin α + β 2 · sin β - α 2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход - от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sin α · sin β = 1 2 · (cos (α - β) - cos (α + β)) cos α · cos β = 1 2 · (cos (α - β) + cos (α + β)) sin α · cos β = 1 2 · (sin (α - β) + sin (α + β))

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции - синус, косинус, тангенс и котангенс, - могут быть выражены через тангенс половинного угла.

Универсальная тригонометрическая подстановка

sin α = 2 t g α 2 1 + t g 2 α 2 cos α = 1 - t g 2 α 2 1 + t g 2 α 2 t g α = 2 t g α 2 1 - t g 2 α 2 c t g α = 1 - t g 2 α 2 2 t g α 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter