Одесский национальный политехнический университет

Кафедра философии и методологии науки

Системный подход в науке и технике

(реферат)

Козырев Д.С. аспирант кафедры ТЭС и ЭТ

Тема диссертации: «комбинированные системы энергоснабжения на основе альтернативных энергоресурсов»

Научный руководитель проф. Баласанян Г.А.

Одесса 2011

Введение3

1 Понятие «система» и «системный подход»5

2 Онтологический смысл понятия «система»8

3 Гносеологический смысл понятия «система»10

4 Разработка сущности системы в естественных науках12

5 «Система» и «системный подход» в наше время14

Заключение26

Литература29

Введение

Прошло более полувека системного движения, инициированного Л. фон Берталанфи. За это время идеи системности, понятие системы и системный подход получили всеобщее признание и широкое распространение. Созданы многочисленные системные концепции.

Пристальный анализ показывает, что множество рассматриваемых в системном движении вопросов принадлежит не только науке, типа общей теории систем, но охватывают обширную область научного познания как такового. Системное движение затронуло все аспекты научной деятельности, а в его защиту выдвигается все большее число аргументов.

В основе системного подхода, как методологии научного познания, лежит исследование объектов как систем. Системный подход способствует адекватному и эффективному раскрытию сущности проблем и успешному их решению в различных областях науки и техники.

Системный подход направлен на выявление многообразных типов связи сложного объекта и сведения их в единую теоретическую картину.

В различных областях науки центральное место начинают занимать проблемы организации и функционирования сложных объектов, изучение которых без учета всех аспектов их функционирования и взаимодействия с остальными объектами и системами просто немыслимо. Более того, многие из таких объектов представляют сложное объединение различных подсистем, каждая из которых в свою очередь тоже является сложным объектом.

Системный подход не существует в виде строгих методологических концепций. Он выполняет свои эвристические (творческие) функции, оставаясь совокупностью познавательных принципов, основной смысл которых состоит в соответственном ориентировании конкретных исследований.

Цель данной работы – попытаться показать, как важен системный подход в науке и технике. Преимуществами данного метода, прежде всего, является то, что он расширяет область познания по сравнению с той, что существовала раньше. Системный подход, основываясь на поиске механизмов целостности объекта и выявления технологии его связей, позволяет по-новому объяснить сущность многих вещей. Широта принципов и основных понятий системного подхода ставит их в тесную связь с другими методологическими направлениями современной науки.

Необходимо также попытаться определиться с понятиями «система», «системный подход». Разобраться с утверждением, что системы представляют собой комплексы, которые можно синтезировать и оценивать. Я надеюсь что полученные мной знания, помогут мне в решении научных и практических задач, которые я намерен ставить в своей диссертации. Поскольку связь темы данного реферата с темой моей будущей научной работой очевидна. Мне предстоит спроектировать комбинированную систему энергоснабжения, которая будет основываться на альтернативных энергоресурсах. В свою очередь каждый элемент этой схемы (когенерационная установка, индивидуальный тепловой пункт, тепловой насос, ветроустановка, солнечный коллектор и пр.) также является довольно непростой системой.

1. Понятие «система» и «системный подход»

Как указано выше,  в настоящее время системный подход используется практически во всех областях науки и техники: кибернетике, для анализа различных биологических систем и систем воздействия человека на природу, для построения систем управления транспортом, космическими полетами, различных систем организации и управления производством, теории построения информационных систем, во множестве других, и даже в психологии.

Биология явилась одной из первых наук, в которой объекты исследования начали рассматриваться как системы. Системный подход в биологии предполагает иерархическое построение, где элементы - система (подсистема), которая взаимодействует с другими системами в составе большой системы (надсистемы). При этом последовательность изменений большой системы основывается на закономерностях в иерархически соподчиненной структуре, где «причинно-следственные связи прокатываются сверху вниз, задавая существенные свойства нижестоящим». Иными словами, исследуется все многообразие связей в живой природе, при этом на каждом уровне биологической организации выделяются свои особые ведущие связи. Представление о биологических объектах как о системах позволяет по-новому подойти к некоторым проблемам, таким как развитие некоторых аспектов проблемы взаимоотношения особи с окружающей средой, а также дает толчок неодарвиновской концепции, обозначаемой иногда как макроэволюция.

Если обратиться к социальной философии, то и здесь анализ основных проблем данной области приводит к вопросам об обществе как целостности, а точнее,  об его системности, о критериях членения исторической действительности, об элементах общества как системы.

Популярности системного подхода способствует стремительное увеличение числа разработок во всех областях науки и техники, когда исследователь, используя стандартные методы исследования и анализа физически не способен справиться с таким объемом информации. Отсюда следует вывод, что только используя системный принцип можно разобраться в логических связях между отдельными фактами, и только этот принцип позволит более успешно и качественно проектировать новые исследования.

При этом важность понятия «система» очень велика в современной философии, науке и технике. Наряду с этим в последнее время все больше возрастает потребность в выработке единого подхода к разнообразным системным исследованиям в современном научном познании. Большинство исследователей наверняка осознает, что все же существует некоторая реальная общность в этом многообразии направлений, которая должна вытекать из единого понимания системы. Однако реальность как раз состоит в том, что единого понимания системы до сих пор не выработано.

Если рассмотреть историю разработки определений понятия «система», можно увидеть, что каждое из них вскрывает все новую сторону из его богатого содержания. При этом выделяются две основные группы определений. Одна тяготеет к философскому осмыслению понятия система, другая группа определений основывается на практическом использовании системной методологии и тяготеет к выработке общенаучного понятия системы.

Работы в области теоретических основ системных исследований охватывают такие проблемы как:

  • онтологические основания системных исследований объектов мира, системность как сущность мира;
  • гносеологические основания системных исследований, системные принципы и установки теории познания;
  • методологические установления системного познания.

Смешение этих трех аспектов подчас создает ощущение противоречивости работ разных авторов. Этим же определяется противоречивость и множественность определений самого понятия «система». Одни авторы разрабатывают его в онтологическом смысле, другие - в гносеологическом, причем в разных аспектах гносеологии, третьи - в методологическом.

Вторая характерная черта системной проблематики состоит в том, что на всем протяжении развития философии и науки в разработке и применении понятия «система» явно выделяются три направления: одно связано с использованием термина «система» и нестрогим его толкованием: другое - с разработкой сущности системной концепции, однако, как правило, без использования этого термина: третье - с попыткой синтеза концепции системности с понятием «система» в его строгом определении.

При этом исторически всегда возникала двойственность толкования в зависимости от того с онтологических или гносеологических позиций ведется рассмотрение. Поэтому исходным основанием для выработки единой системной концепции, в том числе и понятия «система», является прежде всего разделение всех вопросов в историческом рассмотрении по принципу их принадлежности к онтологическим, гносеологическим и методологическим основаниям.

1.2. Онтологический смысл понятия «система»

При описании реальности в Древней Греции и фактически до XIX в. в науке не было четкого разделения между самой реальностью и ее идеальным, мысленным, рациональным представлением. Онтологический аспект реальности и гносеологический аспект знания об этой реальности отождествлялись в смысле абсолютного соответствия. Поэтому весьма длительное применение термина «система» имело ярко выраженный онтологический смысл.

В Древней Греции значение этого слова было связано, прежде всего, с социально-бытовой деятельностью и применялось в значении устройство, организация, союз, строй и т.п.. Далее этот же термин переносится на естественные объекты. Вселенную, филологические и музыкальные сочетания и т.д.

Важно то, что формирование понятия «система» из термина «система» идет через осознание целостности и расчлененности как естественных, так и искусственных объектов. Это и получило выражение в толковании системы как «целого, составленного из частей».

Фактически не прерываясь, эта линия осознания систем как целостных и одновременно расчлененных фрагментов реального мира идет через Новое время, философию Р. Декарта и Б. Спинозы, французских материалистов, естествознание XIX в., являясь следствием пространственно-механического видения мира, когда все другие формы реальности (свет, электромагнитные поля) рассматривались лишь как внешнее проявление пространственно-механических свойств этой реальности.

Фактически данный подход предусматривает некую первичную расчлененность целого, составленного в свою очередь из целостностей, разделенных (пространственно) уже самой природой и находящихся во взаимодействии. В этом же смысле широко используется термин «система» и в наши дни. Именно за этим пониманием системы закрепился термин материальная система как целостная совокупность материальных объектов.

Другое направление онтологической линии предусматривает использование термина «система» для обозначения целостности, определяемой некоторой организующей общностью этого целого.

В онтологическом подходе можно выделить два направления: система как совокупность объектов и система как совокупность свойств.

В целом использование термина «система» в онтологическом аспекте малопродуктивно для дальнейшего изучения объекта. Онтологическая линия связала понимание системы с понятием «вещь», будь то «вещь органичная», либо «вещь, составленная из вещей». Главным недостатком в онтологической линии понимания системы является отождествление понятия «система» с объектом или просто с фрагментом действительности. На самом деле использование термина «система» применительно к материальному объекту некорректно, так как всякий фрагмент действительности имеет бесконечное число проявлений и его познание распадается на множество сторон. Поэтому даже для природно расчлененного объекта мы можем дать только общее указание на факт наличия взаимодействий, без их конкретизации, так как не выделено, какие свойства объекта участвуют во взаимодействиях.

Онтологическое понимание системы как объекта не позволяет перейти к процессу познания, так как не дает методологии исследования. В связи с этим, понимание системы исключительно в представленном аспекте ошибочно.

1.3. Гносеологический смысл понятия «система»

У истоков гносеологической линии находится древнегреческая философия и наука. Данное направление дало две ветви в разработке понимания системы. Одна из них связана с трактовкой системности самого знания, сначала философского, затем научного. Другая ветвь была связана с разработкой понятий «закон» и «закономерность» как ядра научного знания.

Принципы системности знания разрабатывались еще в древнегреческой философии и науке. По сути, уже Евклид строил свою геометрию как систему, и именно такое изложение ей придал Платон. Однако применительно к знанию термин «система» античной философией и наукой не использовался.

Хотя термин «система» был упомянут уже в 1600 г., никто из ученых того времени его не использовал. Серьезная разработка проблемы системности знания с осмыслением понятия «система» начинается лишь с XVIII века. В то время были выявлены три важнейших требования к системности знания, а значит, и признака системы:

  • полноту исходных оснований (элементов, из которых выводятся остальные знания);
  • выводимость (определяемость) знаний;
  • целостность построенного знания.

Причем под системой знания это направление имело в виду не знания о свойствах и отношениях реальности (все попытки онтологического понимания системы забыты и исключены из рассмотрения), а как определенную форму организации знаний.

Гегель, при разработке универсальной системы знания и универсальной системы мира с позиций объективного идеализма, преодолел такое разграничение онтологической и гносеологической линий. В целом к концу XIX в. полностью отбрасываются онтологические основания познания, причем система порой рассматривается как результат деятельности субъекта познания.

Однако понятие «система» так и не было сформулировано потому, что знание в целом, как и мир в целом, представляют собой бесконечный объект, принципиально не соотносимый с понятием «система», что являлось способом конечного представления бесконечно сложного объекта.

В результате развития гносеологического направления с понятием «система» оказались прочно связаны такие признаки, как целое, полнота и выводимость. Одновременно был подготовлен отход от понимания системы как глобального охвата мира или знания. Проблема системности знания постепенно сужается и трансформируется в проблему системности теорий, проблему полноты формальных теорий.

4 Разработка сущности системы в естественных науках

Не в философии, а в самой науке существовала гносеологическая линия, которая, разрабатывая сущность понимания системы, долгое время вообще не использовала этого термина.

С момента зарождения цель науки состояла в нахождении зависимостей между явлениями, вещами и их свойствами. Начиная с математики Пифагора, через Г. Галилея и И. Ньютона в науке формируется понимание того, что установление всякой закономерности включает следующие шаги:

  • нахождение той совокупности свойств, которые будут необходимы и достаточны, чтобы образовать некоторую взаимосвязь, закономерность;
  • поиск вида математической зависимости между этими свойствами;
  • установление повторяемости, необходимости этой закономерности.

Поиск того свойства, которое должно войти в закономерность, часто длился веками (если не сказать - тысячелетиями). Одновременно с поиском закономерностей всегда возникал вопрос об основаниях этих закономерностей. Со времен Аристотеля зависимость должна была иметь причинное основание, однако еще теоремы Пифагора содержали другое основание зависимости - взаимоотношение, взаимообусловленность величин, не содержащую причинного смысла.

Эта совокупность вошедших в закономерность свойств образует некоторую единую, целостную группу именно в силу того, что она обладает свойством вести себя детерминировано. Но тогда эта группа свойств обладает признаками системы и является не чем иным, как «системой свойств» - это название ей и будет дано в XX в. Только термин «система уравнений» давно и прочно вошел в научное употребление. Осознание всякой выделенной зависимости как системы свойств наступает при попытках дать определение понятию «система». Дж. Клир определяет систему как совокупность переменных, а в естественных науках традиционным становится определение динамической системы как системы описывающих ее уравнений.

Важно, что в рамках данного направления разработан важнейший признак системы – признак самоопределяемости, самодетерминации входящего в закономерность набора свойств.

Таким образом, в результате развития естественных наук были выработаны такие важнейшие признаки системы как полнота набора свойств и самодетерминированность этого набора.

5. ОДИН ПОДХОД К ОБЩЕЙ ТЕОРИИ СИСТЕМ.

Гносеологическая линия истолкования системности знания, значительно разработав смысл понятия «система» и ряд его важнейших признаков, не вышла на путь понимания системности самого объекта познания. Напротив, укрепляется положение, что система знания в любых дисциплинах образуется путем логического выведения, наподобие математики, что мы имеем дело с системой высказываний, имеющей гипотетико-дедуктивную основу. Это привело с учетом успехов математики к тому, что природа стала заменяться математическими моделями. Возможности математизации определяли как выбор объекта исследования, так и степень идеализации при решении задач.

Выходом из сложившейся ситуации явилась концепция Л. фон Берталанфи, с общей теории систем которого началось обсуждение многообразия свойств «органичных целых». Системное движение стало по сути своей онтологическим осмыслением свойств и качеств на разных уровнях организации и типов обеспечивающих их отношении, а Б.С. Флейшман положил в основу системологии упорядочение принципов усложняющегося поведения: от вещественно-энергетического баланса через гомеостаз к целенаправленности и перспективной активности.

Таким образом, происходит поворот к стремлению рассматривать объект во всей сложности, множественности свойств, качеств и их взаимосвязей. Соответственно образуется ветвь онтологических определений системы, которые трактуют ее как объект реальности, наделенный определенными «системными» свойствами, как целостность, обладающую некоторой организующей общностью этого целого. Постепенно формируется употребление понятия «система» как сложного объекта, организованной сложности. Одновременно с этим «математизируемость» перестает быть тем фильтром, который предельно упрощал задачу. Дж. Клир видит принципиальное отличие между классическими науками и «наукой о системах» в том, что теория систем формирует предмет исследования во всей полноте его естественных проявлений, не приспосабливая к возможностям формального аппарата.

Впервые обсуждение проблем системности явилось саморефлексией системных концепций науки. Начинаются небывалые по размаху попытки осознать сущность общей теории систем, системного подхода, системного анализа и т.д. и прежде всего - выработать само понятие «система». При этом в отличие от многовекового интуитивного использования главной целью становятся методологические установления, которые должны вытекать из понятия «система».

В 1959 г. в Кейсовском технологическом институте (Кливледнд шт.Огайо) был создан центр исследования систем или, точнее, системных исследований, объединивший отделы исследования операций, вычислительной техники и автоматики. Перед этим научным коллективом, который возглавил известный специалист по автоматике проф. Д.Экман (трагически погибший в результате автомобильной катастрофы в 1962 г.), были поставлены весьма широкие и сложные задачи. Центр должен был приступить к разработке качественно новых методов анализа, синтеза и изучения сложных или больших систем, создать методологию системных исследований, способствовать развитию общей теории больших систем.

Очевидно, что только для формирования конкретной программы работы центра нужно было приложить немалые усилия. С этой целью весной 1960 г. был созван первый симпозиум под девизом «Системы – исследование и синтез», на котором известные учёные, представляющие различные дисциплины, выдвинули ряд проблем в области системных исследований. Труды этого симпозиума были изданы в 1961 г.

В 1963 г. состоялся второй симпозиум, проходивший под девизом «Взгляды на общую теорию систем».

Один из докладчиков второго симпозиума был У.Чёрчмен, который выступил со своими аксиомами, отражающие его взгляды на общую теорию систем.

Аксиоматический подход Чёрчмена к общей теории систем показался мне достаточно интересным и я решил его изложить.

Автор убеждён, что все интересующиеся общей теорией систем стремятся рассмотреть все возможные подходы к этому направлению, ибо в противном случае это увлекательное теоретическое начинание породило бы лишь ничтожный замкнутый кружок бесплодных схоластов.

Цель предлагаемых аксиом заключается в постулировании следующих утверждений: 1) системы представляют собой комплексы, которые можно синтезировать и оценивать; 2) прилагательное «общая» в выражении «общая теория систем» относится как - к «теории», так и к самим «системам». Аксиомы формулируются следующим образом.

1.Системы синтезируются и конструируются. Необходимым условием синтеза является способность к оценке. Следовательно, системы можно оценивать и предлагаемые альтернативные варианты можно сравнивать с исходным с точки зрения того, являются ли они лучше или хуже этого варианта. Если выразить эту мысль более точно, то можно задать целевую функцию для оценки качества альтернативных систем на которую наложена система ограничений, представляющих в свою очередь определенные цели, которых стремится достичь конструктор.

«Конструирование» включает практическую реализацию синтезированной системы, а также изменение структуры и параметров на основе накопленного опыта.

При такой интерпретации систем из рассмотрения исключаются астрономические, механические и тому подобные системы. В таком случае системы синтезируются для описания событий и эти системы отвечают первой аксиоме, так как их можно синтезировать и конструировать.

2. Системы синтезируются по частям. Конструктор разбивает общую задачу синтеза на множество частных задач, решение каждой из которых определяет составную часть более крупной системы.

3. Компоненты систем также являются системами. Это означает, что каждый компонент можно оценивать и разрабатывать в указанном выше смысле. Это означает также, что каждый компонент можно рассматривать как состоящий из более мелких компонентов и что процесс такого расчленения логически бесконечен, хотя на практике конструктор останавливается по своему усмотрению на каком-то уровне, считая компоненты, соответствующие этому уровню, «элементарными блоками системы».

4. Система замкнута, если её оценка не зависит от характеристик окружающей её среды, которая относится к определённому классу сред. Смысл этой аксиомы сводится к тому, что конструктор стремится получить некоторую устойчивую систему сохраняющую свои свойства даже при изменении условий окружающей среды. Если конструктор считает, что возможные изменения в окружающей среде способны ухудшить функционирование системы, то в ходе разработки он будет стремится синтезировать такую систему, которая устойчива к этим возмущениям.

Когда можно полагать, что все возможности такого рода в достаточной мере учтены, конструктор считает созданную систему замкнутой. Как правило, он и не пытается учесть все возможные изменения в окружающей среде. Если же он встал бы на эту точку зрения, то в таком случае справедлива аксиома:

5. Обобщенная система есть замкнутая система, остающаяся замкнутой во всех возможных средах. Иными словами, обобщенная система характеризуется абсолютной устойчивостью к изменениям окружающей среды.

Вопросы, возникающие в связи с обобщенными системами, напоминают известные философские проблемы. Прежде всего, сколько элементов содержится в классе обобщенных систем? Если ответить на этот вопрос — «ни одного», мы приходим к философскому анархизму. При ответе—«один» приходим к философскому монизму, соответствующему, например, учению стоиков, Спинозы, Лейбница и некоторых других философов. Если же ответ гласит — «много», то мы сталкиваемся с философским плюрализмом. Далее возникает вопрос, является ли обобщенная система добром или злом. Автор считает, что конструкторы систем должны четко высказаться в том смысле, что системы можно создавать как во имя добра, так и во имя зла . Нет никаких разумных оснований проводить различия между задачами построения систем, отвечающих научным критериям совершенства, и задачами создания систем, несущих в себе добро и зло. При построении систем на их создателя в равной мере возложена ответственность за использование всего арсенала научных знаний и технических средств, а также приемлемых этических критериев при построении системы. Тем не менее могут возникнуть опасения. Я считаю, что если человеку когда-либо удастся создать некоторую подлинно замкнутую обобщенную систему, то в итоге она явится не добром, а злом. Следующие две аксиомы выражают убеждения у. Чёрчмена по этим вопросам.

6. Существует одна и только одна обобщённая система (монизм).

7. Эта обобщенная система оптимальна.

Наиболее общей задачей синтеза систем является приближение к некоторой обобщенной системе. Иными словами:

8. Общая теория систем есть, методология поиска обобщенной системы. И в заключение:

9. Поиск обобщенной системы становится все более затруднительным с течением времени и никогда не завершится (реализм).

ЗАКЛЮЧЕНИЕ

Системное осмысление реальности, системный подход к теоретической и практической деятельности – является одним из принципов диалектики, так же как и категория «система»  это одна из категорий диалектического материализма. Сегодня понятие «система» и принцип системности стали играть важную роль в жизнедеятельности человека. Дело в том, что общее прогрессивное движение науки, знания происходит неравномерно. Всегда выделяются определенные участки, развивающиеся быстрее других, возникают ситуации, требующие более глубокого и детального осмысления, а следовательно, и особого подхода к исследованию нового состояния науки. Поэтому выдвижение и усиленная разработка отдельных моментов диалектического метода, способствующих более глубокому проникновению в объективную реальность, вполне закономерное явление. Метод познания и результаты познания взаимосвязаны, воздействуют друг на друга: метод познания способствует более глубокому проникновению в суть вещей и явлений; в свою очередь, накопленные знания совершенствуют метод.

В соответствии с текущими практическими интересами человечества меняется познавательное значение принципов и категорий. Подобный процесс отчетливо наблюдается когда под влиянием практических потребностей происходит усиленная разработка системных идей.

Системный принцип в настоящее время, выступает в качестве элеме н та диалектического метода как системы и выполняет свою специфическую функцию в познании наряду с другими элементами диалектического метода.

В настоящее время принцип системности – необходимое методологическое условие, требование любого исследования и практики. Одной из его фундаментальных характеристик является понятие системности бытия, а тем самым и единства наиболее общих законов его развития.

В ходе научно-технической революции проблема создания больших систем и управления этими системами стала центральной проблемой как в самой науке, так и в развитии общества. Всё народное хозяйство в целом, отдельные его отрасли и звенья, промышленные предприятия и научно-исследовательские учреждения, технические объекты самой различной природы, программы разработки и осуществления крупных проектов, короче говоря, бесчисленное разнообразие можно и часто просто необходимо рассматривать как большие системы.

Дело в том, что при изучении больших систем приходится анализировать огромное богатство связей элементов и явлений, подвергать их всестороннему исследованию, учитывать взаимодействие частей и целого, неопределённость поведения системы, её связи и взаимодействие с окружающей средой. Системы этого класса выступают, как правило, в виде сложных человеко-машинных систем, для синтеза и управления которыми необходимо привлечение всего арсенала методов и средств самых различных отраслей науки и техники. Увы, этот на первый взгляд неисчерпаемый арсенал часто оказывается недостаточным для решения системных задач на том уровне, которого требуют нужды современного общества.

Проблема осложняется ещё и тем, что в отличие от традиционных постановок задач в точных науках, при изучении больших систем, возникают чрезвычайно сложные задачи научного обоснования и формирования таких критериев, а также согласования критерия функционирования всей системы с критериями для отдельных её частей, которые в свою очередь, как правило, являются достаточно сложными системами.

ЛИТЕРАТУРА

  1. Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. // Вопросы философии, 1998, №4
  2. Заварзин Г.А. Индивидуалистический и системный подход в биологии // Вопросы философии, 1999, №4.
  3. Философия: Учебн. Пособие для студентов вузов. / В.Ф. Берков, П.А. Водопьянов, Е.З. Волчек и др.; под общ. ред. Ю.А. Харина.  Мн., 2000.
  4. Уемов А.И. Системный подход и общая теория систем. – М., 1978.
  5. Садовский В. Н. Основания общей теории систем.  М., 1974
  6. Клир Дж. Системология. Автоматизация решения системных задач.  М., 1990.
  7. Исследование систем. Материалы всесоюзного симпозиума. М.Д. Ахундов - М., 1971.

Одесский национальный политехнический университет

Кафедра философии и методологии науки

Системный подход в науке и технике

(реферат)

Козырев Д.С. аспирант кафедры ТЭС и ЭТ

Тема диссертации: «комбинированные системы энергоснабжения на основе альтернативных энергоресурсов»

Научный руководитель проф. Баласанян Г.А.

Одесса 2011

Введение3

1 Понятие «система» и «системный подход»5

2 Онтологический смысл понятия «система»8

3 Гносеологический смысл понятия «система»10

4 Разработка сущности системы в естественных науках12

5 «Система» и «системный подход» в наше время14

Заключение26

Литература29

Введение

Прошло более полувека системного движения, инициированного Л. фон Берталанфи. За это время идеи системности, понятие системы и системный подход получили всеобщее признание и широкое распространение. Созданы многочисленные системные концепции.

Пристальный анализ показывает, что множество рассматриваемых в системном дви­жении вопросов принадлежит не только науке, типа общей теории систем, но охватывают обширную область научного познания как такового. Системное движение затронуло все аспекты научной деятельности, а в его защиту выдвигается все большее число аргументов.

В основе системного подхода, как методологии научного познания, лежит исследование объектов как систем. Системный подход способствует адекватному и эффективному раскрытию сущности проблем и успешному их решению в различных областях науки и техники.

Системный подход направлен на выявление многообразных типов связи сложного объекта и сведения их в единую теоретическую картину.

В различных областях науки центральное место начинают занимать проблемы организации и функционирования сложных объектов, изучение которых без учета всех аспектов их функционирования и взаимодействия с остальными объектами и системами просто немыслимо. Более того, многие из таких объектов представляют сложное объединение различных подсистем, каждая из которых в свою очередь тоже является сложным объектом.

Системный подход не существует в виде строгих методологических концепций. Он выполняет свои эвристические (творческие) функции, оставаясь совокупностью познавательных принципов, основной смысл которых состоит в соответственном ориентировании конкретных исследований.

Цель данной работы – попытаться показать, как важен системный подход в науке и технике. Преимуществами данного метода, прежде всего, является то, что он расширяет область познания по сравнению с той, что существовала раньше. Системный подход, основываясь на поиске механизмов целостности объекта и выявления технологии его связей, позволяет по-новому объяснить сущность многих вещей. Широта принципов и основных понятий системного подхода ставит их в тесную связь с другими методологическими направлениями современной науки.

Необходимо также попытаться определиться с понятиями «система», «системный подход». Разобраться с утверждением, что системы представляют собой комплексы, которые можно синтезировать и оценивать. Я надеюсь что полученные мной знания, помогут мне в решении научных и практических задач, которые я намерен ставить в своей диссертации. Поскольку связь темы данного реферата с темой моей будущей научной работой очевидна. Мне предстоит спроектировать комбинированную систему энергоснабжения, которая будет основываться на альтернативных энергоресурсах. В свою очередь каждый элемент этой схемы (когенерационная установка, индивидуальный тепловой пункт, тепловой насос, ветроустановка, солнечный коллектор и пр.) также является довольно непростой системой.

1. Понятие «система» и «системный подход»

Как указано выше,  в настоящее время системный подход используется практически во всех областях науки и техники: кибернетике, для анализа различных биологических систем и систем воздействия человека на природу, для построения систем управления транспортом, космическими полетами, различных систем организации и управления производством, теории построения информационных систем, во множестве других, и даже в психологии.

Биология явилась одной из первых наук, в которой объекты исследования начали рассматриваться как системы. Системный подход в биологии предполагает иерархическое построение, где элементы - система (подсистема), которая взаимодействует с другими системами в составе большой системы (надсистемы). При этом последовательность изменений большой системы основывается на закономерностях в иерархически соподчи­ненной структуре, где «причинно-следственные связи прокатываются сверху вниз, задавая существенные свойства нижестоящим». Иными словами, исследуется все многообразие связей в живой природе, при этом на каждом уровне биологической организации выделяются свои особые ведущие связи. Представление о биологических объектах как о системах позволяет по-новому подойти к некоторым проблемам, таким как развитие некоторых аспектов проблемы взаимоотношения особи с окружающей средой, а также дает толчок неодарвиновской концепции, обозначаемой иногда как макроэволюция.

Если обратиться к социальной философии, то и здесь анализ основных проблем данной области приводит к вопросам об обществе как целостности, а точнее,  об его системности, о критериях членения исторической действительности, об элементах общества как системы.

Популярности системного подхода способствует стремительное увеличение числа разработок во всех областях науки и техники, когда исследователь, используя стандартные методы исследования и анализа физически не способен справиться с таким объемом информации. Отсюда следует вывод, что только используя системный принцип можно разобраться в логических связях между отдельными фактами, и только этот принцип позволит более успешно и качественно проектировать новые исследования.

При этом важность понятия «система» очень велика в современной философии, науке и технике. Наряду с этим в последнее время все больше возрастает потребность в выработке единого подхода к разнообразным системным исследованиям в современном научном познании. Большинство исследователей наверняка осознает, что все же существует некоторая реальная общность в этом многообразии направлений, которая должна вытекать из единого по­нимания системы. Однако реальность как раз состоит в том, что единого понимания системы до сих пор не выработано.

Если рассмотреть историю разработки определений понятия «система», можно увидеть, что каждое из них вскрывает все новую сторону из его богатого содержания. При этом выделяются две основные группы определений. Одна тяготеет к философскому осмы­слению понятия система, другая группа определений осно­вывается на практическом использовании системной методологии и тяготеет к выработке общенаучного понятия системы.

Работы в области теоретических основ системных исследований охватывают такие проблемы как:

    онтологические основания системных исследований объектов мира, системность как сущность мира;

    гносеологические основания системных исследований, системные принципы и уста­новки теории познания;

    методологические установления системного познания.

Смешение этих трех аспектов подчас создает ощущение противоречивости работ разных авторов. Этим же определяется противоречивость и множественность определений самого понятия «система». Одни авторы разрабатывают его в онтологическом смысле, другие - в гносеологическом, причем в разных аспектах гносеологии, третьи - в методологическом.

Вторая характерная черта системной проблематики состоит в том, что на всем протя­жении развития философии и науки в разработке и применении понятия «система» явно выделяются три направления: одно связано с использованием термина «система» и нестро­гим его толкованием: другое - с разработкой сущности системной концепции, однако, как правило, без использования этого термина: третье - с попыткой синтеза концепции системности с понятием «система» в его строгом определении.

При этом исторически всегда возникала двойственность толкования в зависимости от того с онтологических или гносеологических позиций ведется рассмотрение. Поэтому исходным основанием для выработки единой системной концепции, в том числе и понятия «система», является прежде всего разделение всех вопросов в историческом рассмотрении по принципу их принадлежности к онтологическим, гносеологическим и методологическим основаниям.

1.2. Онтологический смысл понятия «система»

При описании реальности в Древней Греции и фактически до XIX в. в науке не было четкого разделения между самой реальностью и ее идеальным, мысленным, рациональным представлением. Онтологический аспект реальности и гносеологический аспект знания об этой реальности отождествлялись в смысле абсолютного соответствия. Поэтому весьма длительное применение термина «система» имело ярко выраженный онтологический смысл.

В Древней Греции значение этого слова было связано, прежде всего, с социально-бытовой деятельностью и применялось в значении устройство, организация, союз, строй и т.п.. Далее этот же термин переносится на естественные объекты. Вселенную, филологические и музыкальные сочетания и т.д.

Важно то, что формирование понятия «система» из термина «система» идет через осознание целостности и расчлененности как естественных, так и искусственных объектов. Это и получило выражение в толковании системы как «целого, составленного из частей».

Фактически не прерываясь, эта линия осознания систем как целостных и одновременно расчлененных фрагментов реального мира идет через Новое время, философию Р. Декарта и Б. Спинозы, французских материалистов, естест­вознание XIX в., являясь следствием пространственно-механического видения мира, когда все другие формы реальности (свет, электромагнитные поля) рассматривались лишь как внешнее проявление пространственно-механических свойств этой реальности.

Фактически данный подход предусматривает некую первичную расчлененность целого, составленного в свою очередь из целостностей, разделенных (пространственно) уже самой природой и находящихся во взаимодействии. В этом же смысле широко используется термин «система» и в наши дни. Именно за этим пониманием системы закрепился термин материальная система как целостная совокупность мате­риальных объектов.

Другое направление онтологической линии предусматривает использование термина «система» для обозначения целостности, определяемой некоторой организующей общностью этого целого.

В онтологическом подходе можно выделить два направления: система как совокупность объектов и система как совокупность свойств.

В целом использование термина «система» в онтологическом аспекте малопродуктивно для дальнейшего изучения объекта. Онтологическая линия связала понимание системы с понятием «вещь», будь то «вещь органичная», либо «вещь, составленная из вещей». Главным недостатком в онтологической линии понимания системы является отождествление понятия «система» с объектом или просто с фрагментом действительности. На самом деле использование термина «система» применительно к материальному объекту некорректно, так как всякий фрагмент действительности имеет бесконечное число проявлений и его познание распадается на множество сторон. Поэтому даже для природно расчлененного объекта мы можем дать только общее указание на факт наличия взаимодействий, без их конкретизации, так как не выделено, какие свойства объекта участвуют во взаимодей­ствиях.

Онтологическое понимание системы как объекта не позволяет перейти к процессу познания, так как не дает методологии исследования. В связи с этим, понимание си­стемы исключительно в представленном аспекте ошибочно.

1.3. Гносеологический смысл понятия «система»

У истоков гносеологической линии находится древнегреческая философия и наука. Данное направление дало две ветви в разработке понимания системы. Одна из них связана с трактовкой системности самого знания, сначала философского, затем научного. Другая ветвь была связана с разработкой понятий «закон» и «закономерность» как ядра научного знания.

Принципы системности знания разрабатывались еще в древнегреческой философии и науке. По сути, уже Евклид строил свою геометрию как систему, и именно такое изложение ей придал Платон. Однако применительно к знанию термин «система» античной фи­лософией и наукой не использовался.

Хотя термин «система» был упомянут уже в 1600 г., никто из ученых того времени его не использовал. Серьезная разработка проблемы системности знания с осмыслением понятия «система» начинается лишь с XVIII века. В то время были выявлены три важнейших требования к системности знания, а значит, и признака системы:

    полноту исходных оснований (элементов, из которых выводятся остальные знания);

    выводимость (определяемость) знаний;

    целостность построенного знания.

Причем под системой знания это направление имело в виду не зна­ния о свойствах и отношениях реальности (все попытки онтологического понимания си­стемы забыты и исключены из рассмотрения), а как определенную форму организации знаний.

Гегель, при разработке универсальной системы знания и универсальной системы мира с позиций объективного идеализма, преодолел такое разграничение онтологической и гносеологической линий. В целом к концу XIX в. полностью отбрасываются онтологические основания познания, причем система порой рассматривается как результат деятельности субъекта познания.

Однако понятие «система» так и не было сформулировано потому, что знание в целом, как и мир в целом, представляют собой бесконечный объект, принципиально не соотносимый с по­нятием «система», что являлось способом конечного представления бесконечно сложного объекта.

В результате развития гносеологического направления с понятием «си­стема» оказались прочно связаны такие признаки, как целое, полнота и выводимость. Одновременно был подготовлен отход от понимания системы как глобального охвата мира или знания. Проблема системности знания постепенно сужается и трансформируется в проблему системности теорий, проблему полноты формальных теорий.

4 Разработка сущности системы в естественных науках

Не в философии, а в самой науке существовала гносеологическая линия, которая, разрабатывая сущность понимания системы, долгое время вообще не использовала этого термина.

С момента зарождения цель науки состояла в нахождении зависимостей между явлениями, вещами и их свойствами. Начиная с математики Пифагора, через Г. Галилея и И. Ньютона в науке формируется понимание того, что установление всякой закономерно­сти включает следующие шаги:

    нахождение той совокупности свойств, которые будут необходимы и достаточны, чтобы образовать некоторую взаимосвязь, закономерность;

    поиск вида математической зависимости между этими свойствами;

    установление повторяемости, необходимости этой закономерности.

Поиск того свойства, которое должно войти в закономерность, часто длился веками (если не сказать - тысячелетиями). Одновременно с поиском закономерностей всегда возникал вопрос об основаниях этих закономерностей. Со времен Аристотеля зависимость должна была иметь причинное основание, однако еще теоремы Пифагора содержали другое основание зависимости - взаимоотношение, взаимообусловленность величин, не содержащую причинного смысла.

Эта совокупность вошедших в закономерность свойств образует некоторую единую, целостную группу именно в силу того, что она обладает свойством вести себя детерминировано. Но тогда эта группа свойств обладает признаками системы и является не чем иным, как «системой свойств» - это название ей и будет дано в XX в. Только термин «система уравнений» давно и прочно вошел в научное употребление. Осознание всякой выделенной зависимости как системы свойств наступает при попытках дать определение понятию «система». Дж. Клир определяет систему как совокупность переменных, а в естественных науках традиционным становится определение динамической системы как системы описывающих ее уравнений.

Важно, что в рамках данного направления разработан важнейший признак системы – признак самоопределяемости, самодетерминации входящего в закономерность набора свойств.

Таким образом, в результате развития естественных наук были выработаны такие важнейшие признаки системы как полнота набора свойств и самодетерминированность этого набора.

5. ОДИН ПОДХОД К ОБЩЕЙ ТЕОРИИ СИСТЕМ.

Гносеологическая линия истолкования системности знания, значительно разработав смысл понятия «система» и ряд его важнейших признаков, не вышла на путь понимания си­стемности самого объекта познания. Напротив, укрепляется положение, что система знания в любых дисциплинах образуется путем логического выведения, наподобие математики, что мы имеем дело с системой высказываний, имеющей гипотетико-дедуктивную основу. Это привело с учетом успехов математики к тому, что природа стала заменяться математи­ческими моделями. Возможности математизации определяли как выбор объекта исследо­вания, так и степень идеализации при решении задач.

Выходом из сложившейся ситуации явилась концепция Л. фон Берталанфи, с общей теории систем которого началось обсуждение мно­гообразия свойств «органичных целых». Систем­ное движение стало по сути своей онтологическим осмыслением свойств и качеств на разных уровнях организации и типов обеспечивающих их отношении, а Б.С. Флейшман положил в основу системологии упорядочение принципов усложняющегося поведения: от вещественно-энергетического баланса через гомеостаз к целенаправленности и перспективной активности.

Таким образом, происходит поворот к стремлению рассматривать объект во всей сложности, множественности свойств, качеств и их взаимосвязей. Соответственно образуется ветвь онтологических определений системы, которые трак­туют ее как объект реальности, наделенный определенными «системными» свойствами, как целостность, обладающую некоторой организующей общностью этого целого. Посте­пенно формируется употребление понятия «система» как сложного объекта, органи­зованной сложности. Одновременно с этим «математизируемость» перестает быть тем фильтром, который предельно упрощал задачу. Дж. Клир видит принципиальное отличие между классическими науками и «наукой о системах» в том, что теория систем формирует предмет исследования во всей полноте его естественных проявлений, не приспосабливая к возможностям формального аппарата.

Впервые обсуждение проблем системности явилось саморефлексией системных кон­цепций науки. Начинаются небывалые по размаху попытки осознать сущность общей теории систем, системного подхода, системного анализа и т.д. и прежде всего - выработать само понятие «система». При этом в отличие от многовекового интуитивного использования главной целью становятся методологические установления, которые должны вытекать из понятия «система».

В 1959 г. в Кейсовском технологическом институте (Кливледнд шт.Огайо) был создан центр исследования систем или, точнее, системных исследований, объединивший отделы исследования операций, вычислительной техники и автоматики. Перед этим научным коллективом, который возглавил известный специалист по автоматике проф. Д.Экман (трагически погибший в результате автомобильной катастрофы в 1962 г.), были поставлены весьма широкие и сложные задачи. Центр должен был приступить к разработке качественно новых методов анализа, синтеза и изучения сложных или больших систем, создать методологию системных исследований, способствовать развитию общей теории больших систем.

Очевидно, что только для формирования конкретной программы работы центра нужно было приложить немалые усилия. С этой целью весной 1960 г. был созван первый симпозиум под девизом «Системы – исследование и синтез», на котором известные учёные, представляющие различные дисциплины, выдвинули ряд проблем в области системных исследований. Труды этого симпозиума были изданы в 1961 г.

В 1963 г. состоялся второй симпозиум, проходивший под девизом «Взгляды на общую теорию систем».

Один из докладчиков второго симпозиума был У.Чёрчмен, который выступил со своими аксиомами, отражающие его взгляды на общую теорию систем.

Аксиоматический подход Чёрчмена к об­щей теории систем показался мне достаточно интересным и я решил его изложить.

Автор убеждён, что все интересующиеся общей теорией систем стремятся рассмотреть все возможные подходы к этому направлению, ибо в противном слу­чае это увлекательное теоретическое начинание поро­дило бы лишь ничтожный замкнутый кружок бес­плодных схоластов.

Цель предлагаемых аксиом заключается в посту­лировании следующих утверждений: 1) системы пред­ставляют собой комплексы, которые можно синтези­ровать и оценивать; 2) прилагательное «общая» в выражении «общая теория систем» относится как - к «теории», так и к самим «системам». Аксиомы формулируются следующим образом.

1.Системы синтезируются и конструируются. Не­обходимым условием синтеза является способность к оценке. Следовательно, системы можно оценивать и предлагаемые альтернативные варианты можно срав­нивать с исходным с точки зрения того, являются ли они лучше или хуже этого варианта. Если выразить эту мысль более точно, то можно задать целевую функцию для оценки качества альтернативных систем на которую наложена система ограничений, представляющих в свою очередь определенные цели, которых стремится достичь конструктор.

«Конструирование» включает практическую реализацию синтезированной системы, а также изменение структуры и параметров на основе накопленного опыта.

При такой интерпретации систем из рассмотрения исключаются астрономические, механические и тому подобные системы. В таком случае системы синтезируются для описания событий и эти системы отвечают первой аксиоме, так как их можно синтезировать и конструировать.

2. Системы синтезируются по частям. Конструктор разбивает общую задачу синтеза на множество частных задач, решение каждой из которых определяет составную часть более крупной системы.

3. Компоненты систем также являются системами. Это означает, что каждый компонент можно оценивать и разрабатывать в указанном выше смысле. Это означает также, что каждый компонент можно рассматривать как состоящий из более мелких компонентов и что процесс такого расчленения логически бесконечен, хотя на практике конструктор останавливается по своему усмотрению на каком-то уровне, считая компоненты, соответствующие этому уровню, «элементарными блоками системы».

4. Система замкнута, если её оценка не зависит от характеристик окружающей её среды, которая относится к определённому классу сред. Смысл этой аксиомы сводится к тому, что конструктор стремится получить некоторую устойчивую систему сохраняющую свои свойства даже при изменении условий окружающей среды. Если конструктор считает, что возможные изменения в окружающей среде способны ухудшить функционирование системы, то в ходе разработки он будет стремится синтезировать такую систему, которая устойчива к этим возмущениям.

Когда можно полагать, что все возможности такого рода в достаточной мере учтены, конструктор считает со­зданную систему замкнутой. Как правило, он и не пытается учесть все возможные изменения в окру­жающей среде. Если же он встал бы на эту точку зрения, то в таком случае справедлива аксиома:

5. Обобщенная система есть замкнутая система, остающаяся замкнутой во всех возможных средах. Иными словами, обобщенная система характеризует­ся абсолютной устойчивостью к изменениям окружаю­щей среды.

Вопросы, возникающие в связи с обобщеннымисистемами, напоминают известные философские про­блемы. Прежде всего, сколько элементов содержится в классе обобщенных систем? Если ответить на этот вопрос - «ни одного», мы приходим к философскому анархизму. При ответе-«один» приходим к фило­софскому монизму, соответствующему, например, уче­нию стоиков, Спинозы, Лейбница и некоторых других философов. Если же ответ гласит - «много», то мы сталкиваемся с философским плюрализмом. Далее возникает вопрос, является ли обобщенная система добром или злом. Автор считает, что кон­структоры систем должны четко высказаться в том смысле, что системы можно создавать как во имя добра, так и во имя зла. Нет никаких разумных осно­ваний проводить различия между задачами построе­ния систем, отвечающих научным критериям совер­шенства, и задачами создания систем, несущих в себе добро и зло. При построении систем на их создателя в равной мере возложена ответственность заисполь­зование всего арсенала научных знаний и технических средств, а также приемлемых этических критериев при построении системы. Тем не менее могут возник­нуть опасения. Я считаю, что если человеку когда-либо удастся создать некоторую подлинно замкнутую обобщенную систему, то в итоге она явится не добром, а злом. Следующие две аксиомы выражают убеждения у. Чёрчмена по этим вопросам.

6. Существует одна и только одна обобщённая система (монизм).

7. Эта обобщенная система оптимальна.

Наиболее общей задачей синтеза систем является приближение к некоторой обобщенной системе. Ины­ми словами:

8. Общая теория систем есть, методология поиска обобщенной системы. И в заключение:

9. Поиск обобщенной системы становится все бо­лее затруднительным с течением времени и никогда не завершится (реализм).

ЗАКЛЮЧЕНИЕ

Системное осмысление реальности, системный подход к теоретической и практической деятельности – является одним из прин­ципов диалектики, так же как и категория «система»  это одна из категорий диалектического материализма. Се­годня понятие «система» и принцип системности стали иг­рать важную роль в жизнедеятельности человека. Дело в том, что общее прогрессивное движение науки, знания про­исходит неравномерно. Всегда выделяются определенные участки, развивающиеся быстрее других, возникают ситуа­ции, требующие более глубокого и детального осмысления, а следовательно, и особого подхода к исследованию нового состояния науки. Поэтому выдвижение и усиленная разра­ботка отдельных моментов диалектического метода, способ­ствующих более глубокому проникновению в объективную реальность, вполне закономерное явление. Метод познания и результаты познания взаимосвязаны, воздействуют друг на друга: метод познания способствует более глубокому проникновению в суть вещей и явлений; в свою очередь, на­копленные знания совершенствуют метод.

В соответствии с текущими практическими интересами человечества меняется познавательное значение принципов и категорий. Подобный процесс отчетливо наблюдается когда под влиянием практических потреб­ностей происходит усиленная разработка системных идей.

Системный принцип в настоящее время, выступает в качестве элемента диалек­тического метода как системы и выполняет свою специфи­ческую функцию в познании наряду с другими элементами диалектического метода.

В настоящее время принцип системности – необхо­димое методологическое условие, требование любого иссле­дования и практики. Одной из его фундаментальных харак­теристик является понятие системности бытия, а тем са­мым и единства наиболее общих законов его развития.

В ходе научно-технической революции проблема создания больших систем и управления этими системами стала центральной проблемой как в самой науке, так и в развитии общества. Всё народное хозяйство в целом, отдельные его отрасли и звенья, промышленные предприятия и научно-исследовательские учреждения, технические объекты самой различной природы, программы разработки и осуществления крупных проектов, короче говоря, бесчисленное разнообразие можно и часто просто необходимо рассматривать как большие системы.

Дело в том, что при изучении больших систем приходится анализировать огромное богатство связей элементов и явлений, подвергать их всестороннему исследованию, учитывать взаимодействие частей и целого, неопределённость поведения системы, её связи и взаимодействие с окружающей средой. Системы этого класса выступают, как правило, в виде сложных человеко-машинных систем, для синтеза и управления которыми необходимо привлечение всего арсенала методов и средств самых различных отраслей науки и техники. Увы, этот на первый взгляд неисчерпаемый арсенал часто оказывается недостаточным для решения системных задач на том уровне, которого требуют нужды современного общества.

Проблема осложняется ещё и тем, что в отличие от традиционных постановок задач в точных науках, при изучении больших систем, возникают чрезвычайно сложные задачи научного обоснования и формирования таких критериев, а также согласования критерия функционирования всей системы с критериями для отдельных её частей, которые в свою очередь, как правило, являются достаточно сложными системами.

ЛИТЕРАТУРА

    Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. // Вопросы философии, 1998, №4

    Заварзин Г.А. Индивидуалистический и системный подход в биологии // Вопросы философии, 1999, №4.

    Философия: Учебн. Пособие для студентов вузов. / В.Ф. Берков, П.А. Водопьянов, Е.З. Волчек и др.; под общ. ред. Ю.А. Харина. Мн., 2000.

    Уемов А.И. Системный подход и общая теория систем. – М., 1978.

    Садовский В. Н. Основания общей теории систем. М., 1974

    Клир Дж. Системология. Автоматизация решения системных задач. М., 1990.

    Исследование систем. Материалы всесоюзного симпозиума. М.Д. Ахундов - М., 1971.

Глава 12, Роль системного подхода в науке и практике

12.1. Функции системности в науке

Основные направления системности в науке

Системная методология включает в себя системный подход как принцип познания и практики, метод деятельности, теорию. Обладая исключительно большим потенциалом, она находит широкое применение в современной науке (естественные, технические, общественные науки, науки о человеке).

В настоящее время происходит интенсивная интеграция наук, изучающих объекты различной природы, но использующих общие методологические подходы, методы и даже методические приемы. Это подчеркивает В. П. Кохановский: «Один из важнейших путей взаимодействия наук - это взаимообмен методами и приемами исследования, т.е. применения методов одних наук в других« .

Системный подход - специфическая реакция на бурный и длительный процесс дифференциации в науке, который привел к возникновению огромного количества непохожих одна на другую наук. Это то, что объединяет отдельные науки в единую науку, форма методологической интеграции современной науки. Происходящие в нем открытия в рамках конкретных наук довольно быстро становятся достоянием всей науки. Системный подход - единство методологической интеграции и дифференциации при доминировании тенденции объединения, собирания методологического комплекса.

При этом он выполняет самые многообразные функции в науке. Наиболее важными среди них выступают мировоззренческая, эвристическая, объясняющая, методологическая и прогностическая функции (табл. 40).

Таблица 40 — Функции системной методологии в науке

Ныне невозможно представить ни одного ученого, который не отличался бы системным мировоззрением. Системное мировоззрение обеспечивает интеллектуальные и социально-психологические предпосылки для познания. Удивительно, но уже до познавательного акта ученый благодаря своему мировоззрению изначально обеспечивает себе успех в постижении истинности объекта, ибо он подходит к нему как к системе.

Перечислим наиболее важные проблемы системного мировоззрения современных специалистов:

  • недостаточная глубина системных взглядов, которая выражается в том, что специалист владеет даже не научным, а обыденным детерминистским пониманием природы систем;
  • низкая эрудиция в сфере системных идей, незнание достижений системности в своей отрасли и науке вообще;
  • неметодологичность системного мировоззрения, когда системные знания специалист не может применить в качестве метода познавательной и практической деятельности. В практике научных исследований системный подход ценен не только парадигмальностью, но и методологичностью, т.е. использованием его не столько как способа представления мира, а как метода его познания. В этом и заключается его методологическая функция, когда системность в познавательном процессе работает как принцип, метод и теория;
  • разрыв между философским, общетеоретическим и математико-кибернетическим пониманием систем. Как правило, специалист, знающий философию систем, не владеет по причине своей гуманитарной подготовки кибернетикой и математикой систем, а специалисты технического профиля не поднимаются до уровня общесистемных идей.

Следует подчеркнуть, что в практике научных исследований наблюдается быстрый рост культуры системных исследований, включающий в себя не только знания из общей теории систем, но и инструментальное владение системным подходом, системным анализом. Если еще несколько лет назад упоминание в статье слова «система« и трактовка его в смысле комплексности делало публикацию системной, то ныне довольно широко используются структурный, функциональный, структурно-функциональный, системно-логический и другие подходы, вырабатывается специфика применения системных идей в различных сферах практической деятельности: бизнесе, государственном управлении, социальной защите, культуре и т.д.

Важное предназначение системного подхода заключается в познании, в получении истины, т.е. знания, которое соответствует своему предмету, совпадает с ним. Особенность ее в системном исследовании заключается в представлении целостной, универсальной и многомерной картины действительности.

Эвристика представляет собой сферу научного знания, цель которой - открытие нового в науке, технике и других сферах жизни; облегчает и упрощает решение познавательных, конструкторских, практических задач. Она опирается на методы теории познания, синтеза знания и исследование бессознательного: вдохновения, инсайта, озарения, медитации, «мозгового штурма«, соприкасается с творчеством, исследует его механизмы, побуждения в реальной деятельности.

Рассмотрим эвристическую функцию системного подхода. Прежде всего, отметим, что он выступает межотраслевым эвристическим методом, т.е. широко применяется во всех отраслях науки и практической деятельности. Для метода свойственна высокая гибкость и способность приспосабливаться к накопленному в той или иной науке знанию и исследовательской традиции. К тому же он является рациональным эвристическим методом, который не только способствует озарению, инсайту, но и позволяет построить технологию получения нового знания и представить его в наиболее удобной системной форме. Эвристическая роль системного подхода нередко заключается в том, что он дает возможность усматривать пробелы в знаниях о данном объекте, обнаруживать их неполноту, определять задачи научных исследований, в отдельных случаях (путем интерполяции и экстраполяции) предсказывать свойства отсутствующих частей описания . Так, если исследователь определил системные характеристики какого-то объекта, то далее системный подход от него требует анализа структуры и функций системы. Стоит только исследователю взять на вооружение системный подход и применить какую-либо его составляющую, как неизбежно начинает развертываться его целостная и разнообразная логика, возникают вопросы к объекту как к системе, которые нельзя оставить без ответа.

Системное мышление выступает мощным источником гипотез - предположений о тех или иных сторонах, свойствах, связях объектов. Само гипотетическое знание о системах является очень многообразным. Исследователь может выдвинуть относительно простые гипотезы о границах, составе, структуре, организации, функциях, особенностях развития системы. Уместны и более сложные составные гипотезы, предполагающие наличие связи между структурой и функциями, организацией и свойствами и т.п. Поток системных гипотез создает благоприятные возможности для объяснения объектов и процессов.

Объясняющая функция системной методологии заключается в том, что она позволяет обнаруживать устойчивые, сущностные и неслучайные зависимости, т. е. закономерности. Нередко объяснение сводят к выявлению причин. Системное объяснение, на наш взгляд, представляет собой особый вид объяснения, который строится не на причинно-следственных связях, а на системных закономерностях. При этом оно может реализовываться как по индуктивной, так и по дедуктивной моделям. При этом гипотетико-дедуктивное объяснение строится на выдвижении научно обоснованных гипотез и их эмпирической проверке. А индуктивное объяснение сводится к сбору эмпирической информации о системе и ее обобщению. Каждая из этих моделей характеризуется тем, что имеет совокупность феноменов, подлежащих объяснению, - объясняемое, и совокупность предложений теории, т.е. законов и гипотез, служащих основанием объяснения. В той и другой модели объяснение опирается на системные представления и закономерности.

Прогностическая функция системности отличается от функции объяснения тем, что здесь нет знания-результата, которое при прогнозировании надо получить. Она реализуется несколькими путями. Во-первых, благодаря теории эволюции систем, проходящих общие этапы развития, удается собрать информацию о феноменах, которые не существуют в данный момент, но возникнут благодаря пространственно-временному развитию системы. Во-вторых, системные идеи довольно широко применяют для предсказания будущего систем, их воздействий на окружающую среду на основе модели волновой и циклической динамики. Например, довольно эффективной для прогнозирования экономической конъюнктуры является теория волн выдающегося русского экономиста Н. Д. Кондратьева (1892-1938), создавшего в начале 20-х годов теорию длинных волн с периодом 45-55 лет, которые обусловлены внедрением технических изобретений, развитием новых отраслей промышленности. Волновые и циклические процессы свойственны для всех разновидностей систем. Поиск, обоснование и расчет длины волны или длительности цикла позволяет предвидеть будущее системы.

Системные законы и их роль в познании

Роль системной ментальности, системной методологии будет, несомненно, возрастать в жизнедеятельности человека ХХІ ст. Процесс обусловлен быстрым ростом потенциала системности, накоплением значительных объемов знания о системах, оттачивание тонкого и эффективного инструментария исследований. Конечно, каждая эпоха будет приводить к актуализации тех или иных положений теории систем, обеспечивать ревизию и интеграцию системного знания, как это происходит ныне, когда обновляются системные идеи в свете постклассической и постнеклассической методологий.

Роль системности в методологии науки трудно переоценить. Практически все значительные достижения наук со второй половины ХХ ст. в большей или меньшей степени связаны с системной методологией. Системный подход ценен прежде всего тем, что он формулирует общесистемные законы, которые улавливают зависимости между отдельными сторонами и свойствами систем. Подчеркнем, что системные законы носят общесистемный характер, т.е. они свойственны для систем любой природы. Среди них выделяются:

  • Закон соотношения целого и части - система как целое больше суммы составляющих ее частей. Этот закон восходит к утверждению древних мыслителей о том, что целое больше его частей.
  • Закон совокупных свойств системы, или закон эмерджентности - свойства системы не сводятся к свойствам ее элементов, а являются результатом их интеграции.
  • Закон зависимости свойств системы не только от свойств составляющих элементов, но и взаимосвязей между ними. Другая трактовка этого закона такова: две системы, содержащие тождественные элементы, могут быть несхожими по свойствам благодаря различию в характере и архитектонике связей.
  • Закон взаимосвязи структуры и функции, заключающийся в констатации взаимообусловленности структуры и функций системы.
  • Закон функциональной целостности системы, констатирующий функциональную интеграцию элементов в функции системы.
  • Закон простоты и сложности системы, согласно которому, чем проще система, чем из меньшего числа элементов и связей она состоит, тем меньше проявляет она системное качество и чем сложнее система, тем более непохожим является ее системный эффект по сравнению со свойствами каждого элемента.
  • Закон ограничения разнообразия системы У. Р. Эшби, который говорит о том, что организованные системы отличаются ограничением разнообразия.
  • Закон закрытых систем - закрытые системы подчиняются второму закону термодинамики и стремятся к максимальной неупорядоченности.
  • Закон открытых систем - открытые системы благодаря вводу негоэнтропии могут сохранять высокий уровень организованности и развиваться в направлении увеличения порядка и сложности.
  • Закон взаимосвязи сложности системы и ее устойчивости, который говорит о том, что усложнение систем ведет к обретению системой дополнительной устойчивости. Чем сложнее система, тем менее она устойчива. Но для того чтобы не разрушиться, система вынуждена находить дополнительные источники устойчивости.
  • Закон равновесия системы, констатирующий, что только тогда система находится в равновесии, когда каждый ее элемент находится в состоянии равновесия, определяемом другими элементами.
  • Закон многообразия (плюрализма) системных представлений, согласно которому целостность системы никогда не может быть сведена только к одной ее модели. При дополнительных поисках обязательно найдется такая модель системы, которая будет непохожей на предыдущую.
  • Закон адаптации систем, утверждающий, что чем выше адаптивность системы, тем она имеет большую вероятность потерять свою идентичность.
  • Закон развития системы, согласно которому развитие системы осуществляется не благодаря укреплению элементов и связей, а посредством возникновения зон неупорядоченности, хаоса, которые формируют точки бифуркации, переход через которые выводит систему на новый уровень упорядоченности.
  • Закон продуктивности хаоса, полагающий, что любая объективная неупорядоченность, любой реальный хаос содержат в себе элементы и даже очаги самоорганизации.

Названный список законов нельзя считать исчерпывающим. По всей видимости, обоснование системных законов представляет собой процесс, который только набирает силу в современной науке и будет идти по нескольким направлениям: обоснование общесистемных законов, объясняющих системы независимо от их природы; формулирование законов систем определенной природы и осмысление в свете системности имеющихся; поиск закономерностей системного мышления, анализа, познания.

Системный подход

Системный подход - направление методологии научного познания, в основе которого лежит рассмотрение объекта как системы: целостного комплекса взаимосвязанных элементов (И. В. Блауберг, В. Н. Садовский, Э. Г. Юдин); совокупности взаимодействующих объектов (Л. фон Берталанфи); совокупности сущностей и отношений (Холл А. Д., Фейджин Р. И., поздний Берталанфи).

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, «Правильно заданный вопрос - половина ответа». Это качественно более высокий, нежели просто предметный, способ познания.

Основные принципы системного подхода

  • Целостность , позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.
  • Иерархичность строения , то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.
  • Структуризация , позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.
  • Множественность , позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.
  • Системность , свойство объекта обладать всеми признаками системы.

Основные определения системного подхода

Основоположниками системного подхода являются: Л. фон Берталанфи , А. А. Богданов , Г.Саймон , П.Друкер , А.Чандлер.

  • Система - совокупность взаимосвязанных элементов, образующих целостность или единство.
  • Структура - способ взаимодействия элементов системы посредством определенных связей (картина связей и их стабильностей).
  • Процесс - динамическое изменение системы во времени.
  • Функция - работа элемента в системе.
  • Состояние - положение системы относительно других её положений.
  • Системный эффект - такой результат специальной переорганизации элементов системы, когда целое становится больше простой суммы частей.
  • Структурная оптимизация - целенаправленный итерационный процесс получения серии системных эффектов с целью оптимизации прикладной цели в рамках заданных ограничений. Структурная оптимизация практически достигается с помощью специального алгоритма структурной переорганизации элементов системы. Разработана серия имитационных моделей для демонстрации феномена структурной оптимизации и для обучения.

Основные допущения системного подхода

  1. В мире существуют системы
  2. Системное описание истинно
  3. Системы взаимодействуют друг с другом, а, следовательно, всё в этом мире взаимосвязано
  4. Следовательно мир - это тоже система

Аспекты системного подхода

Системный подход - это подход, при котором любая система (объект) рассматривается как совокупность взаимосвязанных элементов (компонентов), имеющая выход (цель), вход (ресурсы), связь с внешней средой, обратную связь. Это наиболее сложный подход. Системный подход представляет собой форму приложения теории познания и диалектики к исследованию процессов, происходящих в природе, обществе, мышлении. Его сущность состоит в реализации требований общей теории систем, согласно которой каждый объект в процессе его исследования должен рассматриваться как большая и сложная система и, одновременно, как элемент более общей системы.

Развернутое определение системного подхода включает также обязательность изучения и практического использования следующих восьми его аспектов:

  1. системно-элементного или системно-комплексного, состоящего в выявлении элементов, составляющих данную систему. Во всех социальных системах можно обнаружить вещные компоненты (средства производства и предметы потребления), процессы (экономические, социальные, политические, духовные и т. д.) и идеи, научно-осознанные интересы людей и их общностей;
  2. системно-структурного, заключающегося в выяснении внутренних связей и зависимостей между элементами данной системы и позволяющего получить представление о внутренней организации (строении) исследуемой системы;
  3. системно-функционального, предполагающего выявление функций, для выполнения которых созданы и существуют соответствующие системы;
  4. системно-целевого, означающего необходимость научного определения целей и подцелей системы, их взаимной увязки между собой;
  5. системно-ресурсного, заключающегося в тщательном выявлении ресурсов, требующихся для функционирования системы, для решения системой той или иной проблемы;
  6. системно-интеграционного, состоящего в определении совокупности качественных свойств системы, обеспечивающих её целостность и особенность;
  7. системно-коммуникационного, означающего необходимость выявления внешних связей данной системы с другими, то есть, её связей с окружающей средой;
  8. системно-исторического, позволяющего выяснить условия во времени возникновения исследуемой системы, пройденные ею этапы, современное состояние, а также возможные перспективы развития.

Практически все современные науки построены по системному принципу. Важным аспектом системного подхода является выработка нового принципа его использования - создание нового, единого и более оптимального подхода (общей методологии) к познанию, для применения его к любому познаваемому материалу, с гарантированной целью получить наиполное и целостное представление об этом материале.

См. также

Литература

  • А. И. Ракитов «Философские проблемы науки: Системный подход» Москва: Мысль, 1977 г. 270с.
  • В. Н. Садовский «Системный подход и общая теория систем: статус, основные проблемы и перспективы развития» Москва: Наука, 1980 г.
  • Системные исследования. Ежегодник. Москва: Наука, 1969-1983.
  • Философско-методологические исследования технических наук.- Вопросы философии, 1981, № 10, с. 172-180.
  • И. В. Блауберг , В. Н. Садовский, Э. Г. Юдин «Системный подход в современной науке»- В кн.: Проблемы методологии системных исследований. М.: Мысль, 1970, с. 7-48.
  • И. В. Блауберг , В. Н. Садовский, Э. Г. Юдин «Философский принцип системности и системный подход» -Вопр. философии, 1978, № 8, с. 39-52.
  • Г. П. Щедровицкий «Принципы и общая схема методологической организации системно-структурных исследований и разработок» - М.: Наука, 1981, с. 193-227.
  • В. А. Лекторский, В. Н. Садовский «О принципах исследования систем

(в связи с „общей теорией систем“ Л. Берталанфи)» - Вопр. философии, 1960, № 8, с. 67-79.

  • Савельев А. В. Онтологическое расширение теории функциональных систем // Журнал проблем эволюции открытых систем, Казахстан, Алматы, 2005, № 1(7), c. 86-94.
  • Савельева Т. С., Савельев А. В. Трудности и ограничения системного подхода в науке о мозге // в сб. материалов XI Междунар. конференции по нейрокибернетике «Проблемы нейрокибернетики». Ростов-на-Дону, 1995, с. 208-209.

Ссылки

  • Агошкова Е.Б., Ахлибининский Б.В. Эволюция понятия системы // Вопросы философии . - 1998. - № 7. - С. 170-179.
  • Сидоров С. В. Правила реализации системного подхода в управлении развивающейся школой // Электронный журнал «Знание. Понимание. Умение » . - 2010. - № 2 - Педагогика . Психология .
  • Системный подход // Большая Советская Энкциклопедия .
  • Джозеф О"Коннор Искусство системного мышления . - 2008.
  • Джозеф О`Коннор, Иан Макдермотт Искусство системного мышления: Необходимые знания о системах и творческом подходе к решению проблем = The Art of Systems Thinking: Essential Skills for Creativity and Problem Solving // «Альпина Паблишер» . - М ., 2011. - № 978-5-9614-1589-6.

Wikimedia Foundation . 2010 .

Смотреть что такое "Системный подход" в других словарях:

    Направление методологии специально науч. познания и социальной практики, в основе которого лежит исследование объектов как систем. С. п. способствует адекватной постановке проблем в конкретных науках и выработке эффективной стратегии их… … Философская энциклопедия

    системный подход - СИСТЕМНЫЙ ПОДХОД направление философии и методологии науки, специально научного познания и социальной практики, в основе которого лежит исследование объектов как систем. С. п. ориентирует исследование на раскрытие целостности объекта и… … Энциклопедия эпистемологии и философии науки

    Направление методологии научного познания и социальной практики, в основе которого лежит исследование объекта как системы. Системный подход способствует адекватной постановке проблем в конкретных науках и выработке эффективной стратегии их… … Экологический словарь

    В культурологии методол. основа культурологии как науки. Направлен на интеграцию исследоват. материала, накопленного разл. областями гуманитарного знания, занимающимися изучением культуры (философия культуры, теория культуры,… … Энциклопедия культурологии

    СИСТЕМНЫЙ ПОДХОД - совокупность способов рассмотрения связей и целостности сложных систем. С. п. является предметом специальной научной дисциплины общей теории систем. Управление может быть определено как упорядочение системы. С. п. (или системный анализ) появился… … Российская энциклопедия по охране труда

    системный подход - Исследование функциональных и структурных взаимосвязей природных явлений, рассматриваемых в качестве системы, в которой определяются границы, возможности использования, а также положение и роль в следующей по рангу природной системе. Syn.:… … Словарь по географии

    Направление методологии научного познания и социальной практики, в основе которого лежит рассмотрение объектов как систем; ориентирует исследование на раскрытие целостности объекта, на выявление многообразных типов связей в нем и сведение их в… … Большой Энциклопедический словарь

    Англ. Systemanalyse; нем. Systemmethode. Направление методологии научного исследования, в основе к рого лежит рассмотрение сложного объекта как целостного множества элементов в совокупности отношений и связей между ними. Antinazi. Энциклопедия… … Энциклопедия социологии

    СИСТЕМНЫЙ ПОДХОД - СИСТЕМНЫЙ ПОДХОД. Метод научного познания, в основе которого лежит рассмотрение объектов как систем; предполагает анализ явлений как сложного единства, не сводимого к простой сумме элементов. С. п. пришел на смену широко распространенной в… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    Направление методологии научного исследования, в основе которого лежит рассмотрение сложного объекта как целостного множества элементов в совокупности отношений и связей между ними Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

Одно из важнейших примет естественнонаучного прогресса в нашем веке-интеграция научного знания. Проявление этой интеграции многообразно. Это и возникновение междисциплинарных отраслей, подобных биофизике, и рождение наук, изучающих совокупность объектов, которые ранее изучались различными дисциплинами, и синтез специальных теорий на единой аксио­матической основе, и перенос теоретических представлений, разработанных в одной области явлений, на другую, нередко весьма далекую от первой, и многое другое.

Все эти тенденции-многоликое выражение стиля мышле­ния в науке XX века, в преддверии нового тысячелетия. Осознание этого факта послужило толчком к анализу методологических приоритетов, определяющих такой стиль, который привел к разработке познавательной стратегии, ко­торая получила название системного подхода .

Понятие системы появилось в науке сравнительно недавно. Оно имеет много различных определений. Приведем одно из наиболее простых. Система - это комплекс взаимосвязанных и взаимодействующих эле­ментов; в результате их взаимодействия достигается определенный полезный результат.

Таким образом, система состоит из дробных частей - элементов, причем эти элементы представляют со­бой не случайную совокупность, а каким-то образом взаимодействуют. Следовательно, между ними сущест­вуют определенные связи.

Очень важно отметить следующую особенность. Существуют системы разных порядков. При этом сис­тема более низкого порядка выступает как элемент си­стемы более высокого порядка. Получается нечто по­добное матрешкам.

Так, например, если мы рассмот­рим систему «человечество», то отдельный человек является элементом этой системы. В свою очередь, че­ловеческий организм - это тоже система, в которой такой орган, как скажем сердце, представляет собой элемент. Идя дальше, можно рассматривать систему «сердце», одним из элементов которой является синус­ный узел, а клетки, из которых он состоит - это эле­менты системы «синусный узел» и т. д.

Классификации систем

Классификация систем может производиться по са­мым разным основаниям деления. Прежде всего все системы можно разделить на материальные и идеаль­ные, или концептуальные. К материальным системам относится подавляющее большинство систем неоргани­ческого, органического и социального характера. Все материальные системы в свою очередь могут быть раз­делены на основные классы соответственно той форме движения материи, которую они представляют. В связи с этим обычно различают гравитационные, физические, химические, биологические, геологические, экологиче­ские и социальные системы. Среди материальных сис­тем выделяют также искусственные, специально создан­ные обществом, технические и технологические систе­мы, служащие для производства материальных благ.

Все эти системы называются материальными пото­му, что их содержание и свойства не зависят от по­знающего субъекта, который может все глубже, полнее и точнее познавать их свойства и закономерности в соз­даваемых им концептуальных системах. Последние на­зываются идеальными потому, что представляют собой отражение материальных, объективно существующих в природе и обществе систем.

Наиболее типичным примером концептуальной сис­темы является научная теория, которая выражает с по­мощью своих понятий, обобщений и законов объектив­ные, реальные связи и отношения, существующие в конкретных природных и социальных системах.

Другие классификации в качестве основания деле­ния рассматривают признаки, характеризующие состоя­ние системы, ее поведение, взаимодействие с окружени­ем, целенаправленность и предсказуемость поведения и другие свойства.

Наиболее простой классификацией систем является деление их на статические и динамические, которое в известной мере условно, так как все в мире находится в постоянном изменении и движении. Поскольку, однако, во многих явлениях мы различаем статику и динамику, то кажется целесообразным рассматривать специально также статические системы.

Среди динамических систем обычно выделяют де­терминистские и стохастические (вероятностные) сис­темы. Такая классификация основывается на характере предсказания динамики поведения систем. Как отмеча­лось в предыдущих главах, предсказания, основанные на изучении поведения детерминистских систем, имеют вполне однозначный и достоверный характер. Именно такими системами являются динамические системы, исследуемые в механике и астрономии. В отличие от них стохастические системы, которые чаще всего назы­вают вероятностно-статистическими, имеют дело с мас­совыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не дос­товерный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают, как отмечалось выше, системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация но­сит в основном условный характер, ибо представление о закрытых системах возникло в классической термоди­намике как определенная абстракция, которая оказалась не соответствующей объективной действительности, в которой подавляющее большинство, если не все систе­мы, являются открытыми.

Многие сложноорганизованные системы, встречаю­щиеся в социальном мире, являются целенаправленными, т. е. ориентированными на достижение одной или не­скольких целей, причем в разных подсистемах и на раз­ных уровнях организации эти цели могут быть различ­ными и даже придти в конфликт друг с другом.

Классификация систем дает возможность рассмотреть множество существующих в науке систем ретроспективно и поэтому представляет для исследователя большой ин­терес.

При изучении любой науки и при решении ее задач ча­сто бывает необходимо определить, на уровне какой системы следует вести рассмотрение.

Специфика мировосприятия математика, физика, химика, биоло­га на этом уровне представляется лишь частными случаями ди­алектики познания, а предметное содержание этих наук рас­сматривается как иллюстрация диалектики природы. Поэтому для представителей каждой из этих дисциплин, заинтересованных в конструктивных методологических приемах решения сво­их специфических проблем, необходим менее абстрактный, но более предметно содержательный арсенал методологических средств, ориентированный на конкретную область науки и, главное, способствующий выбору рациональной стратегии науч­ного поиска. Этим требованиям отвечает системный подход.

Для творческого восприятия данной методологической кон­цепции необходимо проследить за ее становлением в процессе развития естествознания.

Внимание иссле­дователей к системному подходу было привлечено работами Л. Берталанфи по общей теории систем. После этого системный анализ все чаще стал привлекаться в различных областях науки.

В настоящее время системный подход представляет собой на­иболее рациональный стиль мышления при изучении объектов живой природы. Системные воззрения синтезируют в себе весь методологический опыт естествознания в прошлом. Вскрывая односторонность ранее существовавших познавательных страте­гий, системный подход определяет их место и роль в процессе познания окружающего мира на современном этапе.

Возникновение системного подхода, несомненно, центрально­го методологического направления современной науки, нередко связывают с преодолением кризиса научного познания на рубеже XIX-XX вв. Именно в это время возникли серьезные противоречия между уровнем накопленных знаний и методоло­гией научного познания. В различных областях науки появи­лись новые идеи, концепции, представления, коренным образом отличавшиеся от господствовавшего образа мышления. Про­грессивный характер этой тенденции заключался в том, что выразители этих новых взглядов ориентировались на вызревав­шие в рамках существующей парадигмы элементы того направ­ления в прогрессе познания, которое широко развернулось в на­шем веке. Основной чертой этого направления в содержатель­ном плане следует назвать интеграцию научного знания.

Человек в процессе своего развития исследует и изучает огромное множество объектов, явлений и процессов окружающего мира. Наиболее простой и естественный путь получить представление о незнакомом объекте-выяснить, из ка­ких элементов он состоит. Если речь идет о процессе, полезно узнать, из каких стадий он складывается и можно ли его пред­ставить совокупностью более простых движений. На практике это привело к нахождению общего элементарного основа­ния у объектов разнообразной природы.

В химии этим общим основанием оказались химические элементы, организованные за­тем в периодическую таблицу Менделеева (открытие периоди­ческого закона ознаменовало начало нового этапа развития хи­мических представлений-синтетического).

В физике такими элементарными сущностями стали типы силового взаимодейст­вия и элементарные частицы, образующие атомы.

Становление биологии нового времени началось с изучения разнообразия биологических форм животного и растительного происхожде­ния, а затем поиска признаков, по которым можно было бы си­стематизировать это разнообразие.

Возникновению физиологии предшествовало анатомическое изу­чение строения организма человека и животных. Существенную роль в последующем развитии биологии сыграла клеточная те­ория строения организмов. Именно целостный подход был методологической основой идеи единства органического мира в его эволюционном развитии.

Еще задолго до появления системного подхода начало формироваться пони­мание того, что для познания недостаточно ориентироваться только на этот метод.

Первый существенный шаг в данном направлении сделал И. Кант, указав на зависимость процесса познания не только от объекта изучения, но и от познающего субъекта, способа его мышления . По Канту, познание-это не простое отражение действительности, а творческое осмысливание, требующее конструктивной мыслительной деятельности.

Следующий шаг был сделан Г. Гегелем. Гегелевская диалектика являла по сущест­ву новый способ мышления, ориентирующий на поиски внутрен­них источников существования и развития объектов, предпола­гающий диалектическое единство целого и его частей.

Новые методологические подходы наметились в это же вре­мя и в физике. Они были связаны с углублением представле­ний о причинности. Господствовавший ранее лапласовский детерминизм - убеждение в том, что в конечном счете любые процессы предопределены однозначными причинными взаимоот­ношениями,-уступил место вероятностному принципу объясне­ния.

Наконец, в математике XIX века произошло крупнейшее собы­тие, провозгласившее концепцию симметрии, ставшую одной из методологических основ теоретико-физического мышления на­шего века.

В 1872 г. была опубликована «Эрлангенская про­грамма» Ф. Клейна. «Программа» выдвинула синтетический принцип, объединявший на единой концептуальной основе раз­личные геометрии (евклидову, неевклидову, проективную, конформную и др.), ранее изучавшиеся изолированно. Разрозненные математические направления (элементы) были охвачены взаимосвязями и образовали структурное целое, ко­торое уже в начале XX века обрело онтологическое (от греч. ontos - су­щее. и logos-учение, слово) содержание.

Итак к началу ХХ века все предпосылки для интенсивного развития общей теории систем были налицо.

Теория системного подхода

Системное движение, получившее широкое распро­странение в науке после Второй мировой войны, ставит своей целью обеспечить целостный взгляд на мир, по­кончить с узким дисциплинарным подходом к его по­знанию и содействовать развертыванию множества программ по междисциплинарному исследованию ком­плексных проблем. Именно в рамках этого движения сформировались такие важнейшие направления меж­дисциплинарных исследований, как кибернетика и си­нергетика.

Теория систем в том виде, как она представлена ав­стрийским биологом-теоретиком Людвигом фон Берталанфи (1901-1972) и его последователями, ориентиру­ется в целом на поддержание и сохранение стабильно­сти и устойчивости динамических систем. Известно, что кибернетическая самоорганиза­ция технических систем регулирования нацелена на со­хранение их динамической устойчивости посредством отрицательной обратной связи. Новая, более общая ди­намическая теория систем, должна, очевидно, опираться на те фундаментальные результаты, которые были дос­тигнуты в науке и прежде всего в теории диссипативных структур. Без этого нельзя понять механизма возникновения нового поряд­ка и структур, а следовательно, и подлинной эволюции систем, связанной с возникновением нового в развитии. Вот почему современные авторы обратились к теории диссипативных структур и синергетике для объяснения значения системного подхода в процессе познания.

В самом общем и широком смысле слова под системным исследованием предметов и явлений окружающего нас мира понимают такой метод, при котором они рассматриваются как части или элементы опре­деленного целостного образования. Эти части или элементы, взаимодействуя друг с другом, определяют новые, целостные свойства системы, которые отсутствуют у отдельных ее эле­ментов. С таким пониманием системы мы постоянно встреча­лись в ходе изложения всего предыдущего материала. Однако оно применимо лишь для характеристики систем, состоящих из однородных частей и имеющих вполне определенную структу­ру. Тем не менее на практике нередко к системам относят со­вокупности разнородных объектов, объединенных в одно целое для достижения определенной цели.

Главное, что определяет систему, - это взаимосвязь и взаимодействие частей в рамках целого. Если такое взаимо­действие существует, то допустимо говорить о системе, хотя степень взаимодействия ее частей может быть различной. Следует также обратить внимание на то, что каждый отдельный объект, предмет или явление можно рассматривать как опре­деленную целостность, состоящую из частей, и исследовать как систему.

В неявной форме системный подход в простейшем виде применялся в науке с самого начала ее возникно­вения. Даже тогда, когда она занималась накоплением и обобщением первоначального фактического материала, идея систематизации и единства лежала в основе ее по­исков и построения научного знания.