PAGE_BREAK--Полное излучение Солнца определяется по освещённости, создаваемой им на поверхности Земли, – около 100 тыс. лк, когда Солнце находится в зените. Вне атмосферы на среднем расстоянии Земли от Солнца освещённость равна 127 тысяч лк. Сила света Солнца составляет 2,84 10527 свечей. Количество энергии, приходящее в одну минуту на площадку в 1 см, поставленную перпендикулярно солнечным лучам за пределами атмосферы на среднем расстоянии Земли от Солнца, называют солнечной постоянной. Мощность общего излучения Солнца – 3,83 10526 ватт, из которых на Землю попадает около 2 10 517 ватт, средняя яркость поверхности Солнца (при наблюдении вне атмосферы Земли) составляет 1,98 1059 нт, яркость центра диска Солнца – 2,48 1059 нт. Яркость диска Солнца уменьшается от центра к краю, причём это уменьшение зависит от длины волны, так что яркость на краю диска Солнца для света с длиной волна 3600 А составляет 0,2 яркости его центра, а для 5000 А – около 0,3 яркости центра диска Солнца. На самом краю диска Солнца яркость падает в 100 раз на протяжении менее одной секунды дуги, поэтому граница диска Солнца выглядит очень резкой.
Спектральный состав света, излучаемого Солнцем, то есть распределение энергии в центре Солнца (после учёта влияния поглощения в земной атмосфере и влияния фраунгоферовых линий), в общих чертах соответствует распределению энергии в излучении абсолютно чёрного тела с температурой около 6000 К. Однако в отдельных участках спектра имеются заметные отклонения. Максимум энергии в спектре Солнца соответствует длине волны 4600 А. Спектр Солнца – это непрерывный спектр, ни который наложено более 20 тысяч линий поглощения (фраунгоферовых линий). Более 60% из них отождествлено со спектральными линиями известных химических элементов путём сравнения длин волн и относительной интенсивности линии поглощения в солнечном спектре с лабораторными спектрами. Изучение фраунгоферовых линий даёт сведения не только о химическом составе атмосферы Солнца, но и о физических условиях в тех слоях, в которых образуются те или иные поглощения. Преобладающим элементом на Солнце является водород. Количество атомов гелия в 4–5 раз меньше, чем водорода. Число атомов всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше числа атомов водорода. Среди них наиболее обильны кислород, углерод, азот, магний, железо и другие. В спектре Солнца можно отождествить также линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH, CH, CO и другим.
Магнитные поля на Солнце измеряются главным образом по зеемановскому расщеплению линий поглощения в спектре Солнца. Различают несколько типов магнитных полей на Солнце. Общее магнитное поле Солнца невелико и достигает напряжённости в 1 этой или иной полярности и меняется со временем. Это поле тесно связано с межпланетным магнитным полем и его секторной структурой.
Магнитные поля, связанные с солнечной активностью, могут достигать в солнечных пятнах напряжённости в несколько тысяч. Структура магнитных полей в активных областях очень запутана, чередуются магнитные полюсы различной полярности. Встречаются также локальные магнитные области с напряжённостью поля в сотни вне солнечных пятен. Магнитные поля проникают и в хромосферу, и в солнечную корону.
Большую роль на Солнце играют магнитогазодинамические и плазменные процессы.
При температуре 5000-10000 К газ достаточно ионизирован, проводимость его велика и благодаря огромным масштабам солнечных явлений значение электромеханических и магнитомеханических взаимодействий весьма велико.
Атмосфера солнца
Атмосферу Солнца образуют внешние, доступные наблюдениям слои. Почти всё излучение Солнца исходит из нижней части его атмосферы, называемой фотосферой. На основании уравнений лучистого переноса энергии, лучистого и локального термодинамического равновесия и наблюдаемого потока излучения можно теоретически построить модель распределения температуры и плотности с глубиной в фотосфере. Толщина фотосферы около трёхсот километров, её средняя плотность 3 104–5 кг/м. Температура в фотосфере падает по мере перехода к более внешним слоям, среднее её значение порядка 6000 К, на границе фотосферы около 4200 К. Давление меняется от 2 1054 до 1052 н/м.
Существование конвекции в подфотосферной зоне Солнца проявляется в неравномерной яркости фотосферы, видимой её зернистости – так называемой грануляционной структуре. Гранулы представляют собой яркие пятнышки более или менее круглой формы. Размер гранул 150 – 1000 км, время жизни 5 – 10 минут, отдельные гранулы удаётся наблюдать в течении 20 минут. Иногда гранулы образуют скопления размером до 30 тысяч километров. Гранулы ярче межгранульных промежутков на 20 – 30%, что соответствует разнице в температуре в среднем на 300 К. В отличие от других образований, на поверхности Солнца грануляция одинакова на всех гелиографических широтах и не зависит от солнечной активности. Скорости хаотических движений (турбулентные скорости) в фотосфере составляют по различным определениям 1–3 км/сек. В фотосфере обнаружены квазипериодические колебательные движения в радиальном направлении. Они происходят на площадках размерами 2–3 тысячи километров с периодом около пяти минут и амплитудой скорости порядка 500 м/сек. После нескольких периодов колебания в данном месте затухают, затем могут возникнуть снова. Наблюдения показали также существование ячеек, в которых движение происходит в горизонтальном направлении от центра ячейки к её границам. Скорости таких движений около 500 м/сек. Размеры ячеек – супергранул составляют 30 – 40 тысяч километров. По положению супергранулы совпадают с ячейками хромосферной сетки. На границах супергранул магнитное поле усилено.
Предполагают, что супергранулы отражают на глубине нескольких тысяч километров под поверхностью конвективных ячеек такого же размера. Первоначально предполагалось, что фотосфера даёт только непрерывное излучение, а линии поглощения образуются в расположенном над ней обращающем слое. Позже было установлено, что в фотосфере образуются и спектральные линии, и непрерывный спектр. Однако для упрощения математических выкладок при расчете спектральных линий понятие обращающего слоя иногда применяется.
Часто в фотосфере наблюдаются солнечные пятна и факелы.
Солнечные пятна
Солнечный пятна – это тёмные образования, состоящие, как правило, из более тёмного дра (тени) и окружающей его полутени. Диаметры пятен достигают двухсот тысяч километров. Иногда пятно бывает окружено светлой каёмкой.
Совсем аленькие пятна называют порами. Время жизни пятен от нескольких часов до нескольких месяцев. В спектре пятен ещё больше линий и полос поглощения, чем в спектре фотосферы, он напоминает спектр звезды спектрального класса КО. Смещения линий в спектре пятен из-за эффекта Доплера указывает на движение вещества в пятнах – вытекание на более низких уровнях и втекание на более высоких, скорости движения достигают 3 тысячи м/сек. Из сравнений интенсивности линий и непрерывного спектра пятен и фотосферы следует, что пятна холоднее фотосферы на 1–2 тысячи градусов (4500 К и ниже). Вследствие этого на фоне фотосферы пятна кажутся тёмными, яркость ядра составляет 0,2 – 0,5 яркости фотосферы, яркость полутени около 80% фотосферной. Все солнечные пятна обладают сильным магнитным полем, достигающим для крупных пятен напряжённости 5 тысяч эстердов. Обычно пятна образуют группы, которые по своему магнитному полю могут быть униполярными, биполярными и мультиполярными, то есть содержащими много пятен различной полярности, часто объединённых общей полутенью. Группы пятен всегда окружены факелами и флоккулами, протуберанцами, вблизи них иногда происходят солнечные вспышки, и в солнечной короне над ними наблюдаются образования в виде лучей шлемов, опахал – всё это вместе образует активную область на Солнце. Среднегодовое число наблюдаемых пятен и активных областей, а также средняя площадь, занимаемая ими, меняется с периодом около 11 лет.
Это – средняя величина, продолжительность же отдельных циклов солнечной активности колеблется от 7,5 до 16 лет. Наибольшее число пятен, одновременно видимых на поверхности Солнца, меняется для различных циклов более чем в два раза. В основном пятна встречаются в так называемых королевских зонах, простирающихся от 5 до 30° гелиографической широты по обе сторона солнечного экватора. В начале цикла солнечной активности широта места расположения пятен выше, а в конце цикла – ниже, а на более высоких широтах появляются пятна нового цикла. Чаще наблюдаются биполярные группы пятен, состоящие из двух крупных пятен – головного и последующего, имеющих противоположную магнитную полярность, и несколько более мелких. Головные пятна имеют одну и ту же полярность в течение всего цикла солнечной активности, эти полярности противоположны в северной и южной полусферах Солнца. По-видимому, пятна представляют собой углубления в фотосфере, а плотность вещества в них меньше плотности вещества в фотосфере на том же уровне.
Факелы
В активных областях Солнца наблюдаются факелы – яркие фотосферные образования, видимые в белом свете преимущественно вблизи края диска Солнца. Обычно факелы появляются раньше пятен и существуют некоторое время после их исчезновения. Площадь факельных площадок в несколько раз превышает площадь соответствующей группы пятен. Количество факелов на диске Солнца зависит от фазы цикла солнечной активности. Максимальный контраст (18%) факелы имеют вблизи края диска Солнца, но не на самом краю. В центре диска Солнца факелы практически не видны, контраст их очень мал. Факелы имеют сложную волокнистую структуру, контраст их зависит от длины волны, на которой проводятся наблюдения. Температура факелов на несколько сот градусов превышает температуру фотосферы, общее излучение с одного квадратного сантиметра превышает фотосферное на 3 – 5%. По-видимому, факелы несколько возвышаются над фотосферой. Средняя продолжительность их существования – 15 суток, но может достигать почти трёх месяцев.
Хромосфера
Выше фотосферы расположен слой атмосферы Солнца, называемый хромосферой. Без специальных телескопов хромосфера видна только во время полных солнечных затмений как розовое кольцо, окружающее тёмный диск в те минуты, когда Луна полностью закрывает фотосферу. Тогда можно наблюдать и спектр хромосферы. На краю диска Солнца хромосфера представляется наблюдателю как неровная полоска, из которой выступают отдельные зубчики – хромосферные спикулы. Диаметр спикул 200–2000 километров, высота порядка 10000 километров, скорость подъёма плазмы в спикулах до 30 км/сек. Одновременно на Солнце существует до 250 тысяч спикул. При наблюдении в монохроматическом свете на диске Солнца видна яркая хромосферная сетка, состоящая из отдельных узелков – мелких диаметром до 1000 км и крупных диаметром от 2000 до 8000 км. Крупные узелки представляют собой скопления мелких. Размеры ячеек сетки 30 – 40 тысяч километров.
Полагают, что спикулы образуются на границах ячеек хромосферной сетки. Плотность в хромосфере падает с увеличением расстояния от центра Солнца. Число атомов в одном куб. сантиметре изменяется от 10515 0 вблизи фотосферы до 1059 в верхней части хромосферы. Исследование спектров хромосферы привело к выводу, что в слое, где происходит переход от фотосферы к хромосфере, температура переходит через минимум и по мере увеличения высоты над основанием хромосферы становится равной 8 -10 тысяч Кельвинов, а на высоте в несколько тысяч километров достигает 15 – 20 тысяч Кельвинов.
Установлено, что в хромосфере имеет место хаотическое движение газовых масс со скоростями до 15 1053 м/сек. В хромосфере факелы в активных областях видны как светлые образования, называемые обычно флоккулами. В красной линии спектра водорода хорошо видны тёмные образования, называемые волокнами. На краю диска Солнца волокна выступают за диск и наблюдаются на фоне неба как яркие протуберанцы. Наиболее часто волокна и протуберанцы встречаются в четырёх расположенных симметрично относительно солнечного экватора зонах: полярных зонах севернее +40° и южнее -40° гелиографической широты и низкоширотных зонах около √(30°) в начале цикла солнечной активности и √(17°) в конце цикла. Волокна и протуберанцы низкоширотных зон показывают хорошо выраженный 11-летний цикл, их максимум совпадает с максимумом пятен.
У высокоширотных протуберанцев зависимость от фаз цикла солнечной активности выражена меньше, максимум наступает через два года после максимума пятен.
Волокна, являющиеся спокойными протуберанцами, могут достигать длины солнечного радиуса и существовать в течении нескольких оборотов Солнца. Средняя высота протуберанцев над поверхностью Солнца составляет 30 – 50 тысяч километров, средняя длина – 200 тысяч километров, ширина – 5 тысяч километров. Согласно исследованиям А.Б. Северного, все протуберанцы по характеру движения можно разбить на 3 группы: электромагнитные, в которых движения происходят по упорядоченным искривлённым траекториям – силовым линиям магнитного поля; хаотические, в которых преобладают неупорядоченные турбулентные движения (скорости порядка 10 км/сек); эруптивные, в которых вещество первоначального спокойного протуберанца с хаотическими движениями внезапно выбрасывается с возрастающей скоростью (достигающей 700 км/сек) прочь от Солнца. Температура в протуберанцах (волокнах) 5 – 10 тысяч Кельвинов, плотность близка к средней плотности хромосферы. Волокна, представляющие собой активные, быстро меняющиеся протуберанцы, обычно сильно изменяются за несколько часов или даже минут. Форма и характер движений в протуберанцах тесно связаны с магнитным полем в хромосфере и солнечной короне.
Солнечная корона – самая внешняя и наиболее разрежённая часть солнечной атмосферы, простирающаяся на несколько (более 10) солнечных радиусов. До 1931 года корону можно было наблюдать только во время полных солнечных затмений в виде серебристо-жемчужного сияния вокруг закрытого Луной диска Солнца. В короне хорошо выделяются детали её структуры: шлемы, опахала, корональные лучи и полярные щёточки. После изобретения коронографа солнечную корону стали наблюдать и вне затмений. Общая форма короны меняется с фазой цикла солнечной активности: в годы минимума корона сильно вытянута вдоль экватора, в годы максимума она почти сферична. В белом свете поверхностная яркость солнечной короны в миллион раз меньше яркости центра диска Солнца. Ее свечение образуется в основном в результате рассеяния фотосферного излучения свободными электронами. Практически все атомы в короне ионизированы. Концентрация ионов и свободных электронов у основания короны составляет 1059 частиц в 1 см. Нагрев короны осуществляется аналогично нагреву хромосферы. Наибольшее выделение энергии происходит в нижней части короны, но благодаря высокой теплопроводности корона почти изотермична – температура понижается наружу очень медленно. Отток энергии в короне происходит несколькими путями.
В нижней части короны основную роль играет перенос энергии вниз благодаря теплопроводности. К потере энергии приводит уход из короны наиболее быстрых частиц. Во внешних частях короны большую часть энергии уносит солнечный ветер – поток коронального газа, скорость которого растёт с удалением от Солнца от нескольких км/сек у его поверхности до 450 км/сек на расстоянии Земли. Температура в короне превышает 1056 К. В активных слоях короны температура выше – до 1057 К. Над активными областями могут образовываться так называемые корональные конденсации, в которых концентрация частиц возрастает в десятки раз. Часть излучения внутри короны – это линии излучения многократно ионизированных атомов железа, кальция, магния, углерода, кислорода, серы и других химических элементов. Они наблюдаются и в видимой части спектра и в ультрафиолетовой области. В солнечной короне генерируется радиоизлучение Солнца в метровом диапазоне и рентгеновское излучение, усиливающееся во много раз в активных областях. Как показали расчёты, солнечная корона не находится в равновесии с межпланетной средой.
Из короны в межпланетное пространство распространяются потоки частиц, образующие солнечный ветер. Между хромосферой и короной имеется сравнительно тонкий переходной слой, в котором происходит резкий рост температуры до значений, характерных для короны. Условия в нём определяются потоком энергии из короны в результате теплопроводности. Переходный слой является источником большей части ультрафиалетового излучения Солнца.
Хромосфера, переходной слой и корона дают всё наблюдаемое радиоизлучение Солнца. В активных областях структура хромосферы, короны и переходного слоя меняется. Это изменение, однако, ещё недостаточно изучено.
продолжение
--PAGE_BREAK--В активных областях хромосферы наблюдаются внезапные и сравнительно кратковременные увеличения яркости, видимые сразу во многих спектральных линиях. Эти яркие образования существуют от нескольких минут до нескольких часов. Они называются солнечными вспышками (прежнее название – хромосферные вспышки). Вспышки лучше всего видны в свете водородной линии, но наиболее яркие видны иногда и в белом свете. В спектре солнечной вспышки насчитывается несколько сотен эмиссионных линий различных элементов, нейтральных и ионизированных. Температура тех слоёв солнечной атмосферы, которые дают свечение в хромосферных линиях (1–2) х1054 К, в более высоких слоях – до 1057 К. Плотность частиц во вспышке достигает 10513 -10514 в одном кубическом сантиметре. Площадь солнечных вспышек может достигать 10515 м. Обычно солнечные вспышки происходят вблизи быстро развивающихся групп солнечных пятен с магнитным полем сложной конфигурации. Они сопровождаются активизацией волокон и флоккулов, а также выбросами вещества. При вспышке выделяется большоеколичество энергии (до 10521 – 10525 джоулей).
Предполагается, что энергия солнечной вспышки первоначально запасается в магнитном поле, а затем быстро высвобождается, что приводит к локальному нагреву и ускорению протонов и электронов, вызывающих дальнейший разогрев газа, его свечение в различных участках спектра электромагнитного излучения, образование ударной волны. Солнечные вспышки дают значительное увеличение ультрафиалетового излучения Солнца, сопровождаются всплесками рентгеновского излучения (иногда весьма мощными), всплесками радиоизлучения, выбросом карпускул высоких энергий вплоть до 10510 эв. Иногда наблюдаются всплески рентгеновского излучения и без усиления свечения в хромосфере.
Некоторые вспышки (они называются протонными) сопровождаются особенно сильными потоками энергичных частиц – космическими лучами солнечного происхождения.
Протонные вспышки создают опасность для находящихся в полёте космонавтов, сталкиваясь с атомами оболочки корабля так как энергичные частицы, порождают рентгеновское и гамма-излучение, причём иногда в опасных дозах.
Уровень солнечной активности (число активных областей и солнечных пятен, количество и мощность солнечных вспышек и т.д.) изменяется с периодом около 11 лет. Существуют также слабые колебания величины максимумов 11-летнего цикла с периодом около 90 лет. На Земле 11-летний цикл прослеживается на целом ряде явлений органической и неорганической природы (возмущения магнитного поля, полярные сияния, возмущения ионосферы, изменение скорости роста деревьев с периодом около 11 лет, установленным по чередованиям толщины годовых колец, и т.д.). На земные процессы оказывают также воздействие отдельные активные области на Солнце и происходящие в них кратковременные, но иногда очень мощные вспышки. Время существования отдельной магнитной области на Солнце может достигать одного года. Вызываемые этой областью возмущения в магнитосфере и верхней атмосфере Земли повторяются через 27 суток (с наблюдаемым с Земли периодом вращения Солнца). Наиболее мощные проявления солнечной активности – солнечные (хромосферные) вспышки происходят нерегулярно (чаще вблизи периодов максимальной активности), длительность их составляет 5–40 минут, редко несколько часов. Энергия хромосферной вспышки может достигать 10525 джоулей, из выделяющейся при вспышке энергии лишь 1–10% приходится на электромагнитное излучение в оптическом диапазоне. По сравнению с полным излучением Солнца в оптическом диапазоне энергия вспышки не велика, но коротковолновое излучение вспышки и генерируемые при вспышек электроны, а иногда солнечные космические лучи могут дать заметный вклад в рентгеновское и карпускулярное излучение Солнца. В периоды повышения солнечной активности его рентгеновское излучение увеличивается в диапазоне 30 -10 нм в два раза, в диапазоне 10 -1 нм в 3–5 раз, в диапазоне 1–0,2 нм более чем в сто раз. По мере уменьшения длины волны излучения вклад активных областей в полное излучение Солнца увеличивается, и в последнем из указанных диапазонов практически всё излучение обусловлено активными областями. Жёсткое рентгеновское излучение с длиной волны меньше 0,2 нм появляется в спектре Солнца всего лишь на короткое время после вспышек. В ультрафиолетовом диапазоне (длина волны 180–350 нм) излучение Солнца за 11-летний цикл меняется всего на 1–10%, а в диапазоне 290–2400 нм остаётся практически постоянным и составляет 3,6 10526 ватт.
Постоянство энергии, получаемой Землёй от Солнца, обеспечивает стационарность теплового баланса Земли. Солнечная активность существенно не сказывается не энергетике Земли как планеты, но отдельные компоненты излучения хромосферных вспышек могут оказывать значительное влияние на многие физические, биофизические и биохимические процессы на Земле.
Активные области являются мощным источником корпускулярного излучения. Частицы с энергиями около 1 кэв (в основном протоны), распространяющиеся вдоль силовых линий межпланетного магнитного поля из активных областей усиливают солнечный ветер. Эти усиления (порывы) солнечного ветра повторяются через 27 дней и называются рекуррентными. Аналогичные потоки, но ещё большей энергии и плотности, возникают при вспышках. Они вызывают так называемые спорадические возмущения солнечного ветра и достигают Земли за интервалы времени от 8 часов до двух суток. Протоны высокой энергии (от 100 Мэв до 1 Гэв) от очень сильных «протонных» вспышек и электроны с энергией 10–500 кэв, входящие в состав солнечных космических лучей, приходят к Земле через десятки минут после вспышек; несколько позже приходят те из них, которые попали в «ловушки» межпланетного магнитного поля и двигались вместе с солнечным ветром. Коротковолновое излучение и солнечные космические лучи (в высоких широтах) ионизируют земную атмосферу, что приводит к колебаниям её прозрачности в ультрафиолетовом и инфракрасном диапазонах, а также к изменениям условий распространения коротких радиоволн (в ряде случаев наблюдаются нарушения коротковолновой радиосвязи).
Усиление солнечного ветра, вызванное вспышкой, приводит к сжатию магнитосферы Земли с солнечной стороны, усилению токов на её внешней границе, частичному проникновению частиц солнечного ветра в глубь магнитосферы, пополнению частицами высоких энергий радиационных поясов Земли и т.д. Эти процессы сопровождаются колебаниями напряжённости геомагнитного поля (магнитной бурей), полярными сияниями и другими геофизическими явлениями, отражающими общее возмущение магнитного поля Земли. Воздействие активных процессов на Солнце (солнечных бурь) на геофизические явления осуществляется как коротковолновой радиацией, так и через посредство магнитного поля Земли. По-видимому, эти факторы являются главными и для физико-химических и
биологических процессов. Проследить всю цепь связей, приводящих к 11-летней периодичности многих процессов на Земле пока не удаётся, но накопленный обширный фактический материал не оставляет сомнений в существовании таких связей. Так, была установлена корреляция между 11-летним циклом солнечной активности и землетрясениями, урожаями сельхозкультур, числом сердечнососудистых заболеваний и т.д. Эти данные указывают на постоянное действие солнечно-земных связей.
Наблюдения Солнца ведутся с помощью рефракторов небольшого или среднего размера и больших зеркальных телескопов, у которых большая часть оптики неподвижна, а солнечные лучи направляются внутрь горизонтальной или башенной установки телескопа при помощи одного или двух движущихся зеркал. Создан специальный тип солнечного телескопа – внезатменный коронограф. Внутри коронографа осуществляется затемнение Солнца специальным непрозрачным экраном. В коронографе во много раз уменьшается количество рассеянного света, поэтому можно наблюдать вне затмения самые внешние слои атмосферы Солнца. Солнечные телескопы часто снабжаются узкополосными светофильтрами, позволяющими вести наблюдения в свете одной спектральной линии. Созданы также нейтральные светофильтры с переменной прозрачностью по радиусу, позволяющие наблюдать солнечную корону на расстоянии нескольких радиусов Солнца. Обычно крупные солнечные телескопы снабжаются мощными спектрографами с фотографической или фотоэлектрической фиксацией спектров. Спектрограф может иметь также магнитограф – прибор для исследования зеемановского расщепления и поляризации спектральных линий и определения величины и направления магнитного поля на Солнце. Необходимость устранить замывающее действие земной атмосферы, а также исследования излучения Солнца в ультрафиолетовой, инфракрасной и некоторых других областях спектра, которые поглощаются в атмосфере Земли, привели к созданию орбитальных обсерваторий за пределами атмосферы, позволяющих получать спектры Солнца и отдельных образований на его поверхности вне земной атмосферы.

Путь Солнца среди звезд
Каждый день, поднимаясь из-за горизонта в восточной стороне неба, Солнце проходит по небу и вновь скрывается на западе. Для жителей Северного полушария это движение происходит слева направо, для южан справа налево. В полдень Солнце достигает наибольшей высоты, или, как говорят астрономы, кульминирует. Полдень – это верхняя кульминация, а бывает еще и нижняя – в полночь. В наших средних широтах нижняя кульминация Солнца не видна, так как она происходит под горизонтом. А вот за Полярным кругом, где Солнце летом иногда не заходит, можно наблюдать и верхнюю, и нижнюю кульминации.
На географическом полюсе суточный путь Солнца практически параллелен горизонту. Появившись в день весеннего равноденствия, Солнце четверть года поднимается все выше и выше, описывая круги над горизонтом. В день летнего солнцестояния оно достигает максимальной высоты (23,5˚). Следующие четверть года, до осеннего равноденствия, Солнце спускается. Это полярный день. Затем на полгода наступает полярная ночь. В средних широтах на протяжении года видимый суточный путь Солнца то сокращается, то увеличивается. Наименьшим он оказывается в день зимнего солнцестояния, наибольшим – в день летнего солнцестояния. В дни равноденствий
Солнце находится на небесном экваторе. В это же время оно восходит в точке востока и заходит в точке запада.
В период от весеннего равноденствия до летнего солнцестояния место восхода Солнца немного смещается от точки восхода влево, к северу. А место захода удаляется от точки запада вправо, хотя тоже к северу. В день летнего солнцестояния Солнце появляется на северо-востоке, а в полдень оно кульминирует на максимальной за год высоте. Заходит Солнце на северо-западе.
Затем места восхода и захода смещаются обратно к югу. В день зимнего солнцестояния Солнце восходит на юго-востоке, пересекает небесный меридиан на минимальной высоте и заходит на юго-западе. Следует учитывать, что вследствие рефракции (то есть преломления световых лучей в земной атмосфере) видимая высота светила всегда больше истинной.
Поэтому восход Солнца происходит раньше, а заход – позже, чем это было бы при отсутствии атмосферы.
Итак, суточный путь Солнца представляет собой малый круг небесной сферы, параллельный небесному экватору. В то же время в течении года Солнце перемещается относительно небесного экватора то к северу, то к югу. Дневная и ночная части его пути неодинаковы. Они равны только в дни равноденствий, когда Солнце находится на небесном экваторе.
Выражение «путь Солнца среди звезд» кому-то покажется странным. Ведь днем звезд не видно. Поэтому нелегко заметить, что Солнце медленно, примерно на 1˚ за сутки, перемещается среди звезд справа налево. Зато можно проследить, как в течение года меняется вид звездного неба. Все это – следствие обращения Земли вокруг Солнца.
Путь видимого годичного перемещения Солнца на фоне звезд именуется эклиптикой (от греческого «эклипсис» – «затмение»), а период оборота по эклиптике – звездным годом. Он равен 265 суткам 6 часам 9 минутам 10 секундам, или 365, 2564 средних солнечных суток.
Эклиптика и небесный экватор пересекаются под углом 23˚26" в точках весеннего и осеннего равноденствия. В первой из этих точек Солнце обычно бывает 21 марта, когда оно переходит из южного полушария неба в северное. Во второй – 23 сентября, при переходе их северного полушария в южное. В наиболее удаленной к северу точке эклиптике Солнце бывает 22 июня (летнее солнцестояние), а к югу – 22 декабря (зимнее солнцестояние). В високосный год эти даты сдвинуты на один день.
Из четырех точек эклиптики главной является точка весеннего равноденствия. Именно от нее отсчитывается одна из небесных координат – прямое восхождение. Она же служит для отсчета звездного времени и тропического года – промежутка времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия. Тропический год определяет смену времен года на нашей планете.
Так как точка весеннего равноденствия медленно перемещается среди звезд вследствие прецессии земной оси, продолжительность тропического года меньше продолжительности звездного. Она составляет 365,2422 средних солнечных суток. Около 2 тысяч лет назад, когда Гиппарх составил свой звездный каталог (первый дошедший до нас целиком), точка весеннего равноденствия находилась в созвездии Овна. К нашему времени она переместилась почти на 30˚, в созвездие Рыб, а точка осеннего равноденствия – из созвездия Весов в созвездие Девы. Но по традиции точки равноденствий обозначаются прежними знаками прежних «равноденственных» созвездий – Овна и Весов. То же случилось и с точками солнцестояния: летнее в созвездии Тельца отмечается знаком Рака, а зимнее в созвездие Стрельца – знаком Козерога.
И наконец, последнее, что связано с видимым годичным движением Солнца. Половину эклиптики от весеннего равноденствия до осеннего (с 21 марта по 23 сентября) Солнце проходит за 186 суток. Вторую половину, от осеннего равноденствия да весеннего, – за 179 суток (180 в високосный год). Но ведь половинки эклиптики равны: каждая по 180˚. Следовательно, Солнце движется по эклиптике неравномерно. Эта неравномерность объясняется изменением скорости движения Земли по эллиптической орбите вокруг Солнца. Неравномерность движения Солнца по эклиптике приводит к разной длительности времен года. Для жителей северного полушария, например, весна и лето на шесть суток продолжительнее осени и зимы. Земля 2–4 июня расположена от Солнца на 5 миллионов километров дольше, чем 2–3 января, и движется по своей орбите медленнее в соответствии со вторым законом Кеплера. Летом Земля получает от
Солнца меньше тепла, но зато лето в Северном полушарии продолжительнее зимы. Поэтому в Северном полушарии Земли теплее, чем в Южном.
Солнечные затмения
В момент лунного новолуния может произойти солнечное затмение – ведь именно в новолуние Луна проходит между Солнцем и Землей. Астрономы заранее знают, когда и где будет наблюдаться солнечное затмение, и сообщают об этом в астрономических календарях.
Земле достался один-единственный спутник, но зато какой! Луна в 400 раз меньше Солнца и как раз в 400 раз ближе его к Земле, поэтому на небе Солнце и Луна кажутся дисками одинаковых размеров. Так что при полном солнечном затмении Луна целиком заслоняет яркую поверхность Солнца, оставляя при этом открытой всю солнечную атмосферу.
Точно в назначенный час и минуту сквозь темное стекло видно, как на яркий диск Солнца наползает с правого края что-то черное, как появляется на нем черная лунка. Она постепенно разрастается, пока наконец солнечный круг не примет вид узкого серпа. При этом быстро ослабевает дневной свет. Вот Солнце полностью прячется за темной заслонкой, гаснет последний дневной луч, и тьма, кажущаяся тем глубже, чем она внезапнее, расстилается вокруг, повергая человека и всю природу в безмолвное удивление.
О затмении Солнца 8 июля 1842 года в городе Павии (Италия) рассказывает английский астроном Фрэнсис Бейли: «Когда наступило полное затмение и солнечный свет мгновенно потух, вокруг темного тела Луны внезапно возникло какое-то яркое сияние, похожее на корону ил на ореол вокруг головы святого.
Ни в каких отчетах о прошлых затмения не было написано о чем-то подобном, и я вовсе не ожидал увидеть великолепие, находившееся теперь у меня перед глазами. Ширина короны, считая от окружности диска Луна, была равна примерно половине лунного диаметра. Она казалась составленной из ярких лучей. Ее свет был плотнее около самого края Луны, а по мере удаления лучи короны становились все слабее, тоньше. Ослабление света шло совершенно плавно вместе с увеличение расстояния. Корона представлялась в виде пучков прямых слабых лучей; их внешние концы расходились веером; лучи были неравной длины. Корона была не красноватая, не жемчужная, она была совершенно белого цвета. Ее лучи переливались или мерцали, как газовое пламя. Как не блестяще было это явление, какие бы восторги оно не вызывало у зрителей, но все же в этом странном, дивном зрелище было точно что-то зловещее, и я вполне понимаю, насколько могли быть потрясены и испуганы люди во времена, когда эти явления происходили совершенно неожиданно.
продолжение
--PAGE_BREAK--

Звезды – это, пожалуй, самое интересное, что есть в астрономии. Кроме того, их внутреннее строение и эволюцию мы понимаем лучше, чем что-либо в космосе (во всяком случае, нам так кажется). С планетами дело обстоит не очень хорошо, потому что их внутренности очень трудно исследовать – мы видим только то, что на поверхности. А что касается звезд, то большинство из нас уверено, что они устроены просто.

В начале прошлого века один молодой астрофизик высказался на семинаре у Эддингтона в том духе, что проще звезд ничего нет. На что более опытный астрофизик ответил: «Ну да, если Вас рассматривать с расстояния в миллиарды километров, то Вы тоже покажетесь простым».

На самом деле звезды не так просты, как кажутся. Но все-таки их свойства исследованы наиболее полно. Тому есть две причины. Во-первых, мы умеем численно моделировать звезды, потому что, как нам кажется, они сделаны из идеального газа. Точнее, из плазмы, которая ведет себя как идеальный газ, уравнение состояния которого довольно простое. С планетами так не получится. Во-вторых, иногда нам удается заглянуть в недра звезд, хотя пока это касается в основном Солнца.

К счастью, у нас в стране было и остается много хороших астрофизиков, специалистов по звездам. Связано это в основном с тем, что были хорошие физики, которые делали ядерное оружие, а звезды представляют собой природные ядерные реакторы. И когда оружие было сделано, многие физики, в том числе и сибирские, переключились на исследование звезд, потому что объекты в чем-то подобные. И они написали хорошие книги на эту тему.

Посоветую вам две книжки, которые до сих пор, на мой взгляд, остаются лучшими из тех, что на русском языке. «Физика звезд», автор которой – известный физик и талантливый преподаватель Самуил Аронович Каплан, написана почти сорок лет назад, но основы с тех пор не изменились. А современные сведения о физике звезд – в книге «Звезды» из серии «Астрономия и астрофизика», которую мы с коллегами сделали. Она пользуется таким интересом у читателей, что уже тремя изданиями вышла. Есть и другие книги, но в этих двух содержится практически исчерпывающая информация для тех, кто знакомится с предметом.

Такие разные звезды


Если мы посмотрим на звездное небо, то заметим, что звезды имеют разную яркость (видимый блеск) и разный цве. Понятно, что блеск может быть делом случая, поскольку одна звезда ближе, другая – дальше, по нему трудно сказать, какова звезда на самом деле. А вот цвет нам о многом рассказывает, потому что чем выше температура тела, тем дальше в голубую область сдвигается максимум в спектре излучения. Казалось бы, мы можем просто на глаз оценить температуру звезды: красная – холодная, голубая – горячая. Как правило, это действительно так и есть. Но иногда возникают и ошибки, связанные с тем, что между звездой и нами есть какая-то среда. Иногда она очень прозрачная, а иногда не очень. Всем известен пример с Солнцем: высоко над горизонтом оно белое (мы его называем желтым, но для глаза оно почти белое, потому что его свет нас ослепляет), но Солнце краснеет, когда восходит или заходит за горизонт. Очевидно, что не у самого Солнца меняется температура поверхности, а среда изменяет видимый цвет, и об этом надо помнить. К сожалению, для астрономов это большая проблема – угадать, насколько изменился цвет, т.е. видимая (цветовая) температура звезды, за счет того, что ее свет прошел сквозь межзвездный газ, атмосферу нашей планеты и прочие поглощающие среды.


Спектр звездного света – характеристика намного более надежная, потому что его трудно сильно исказить. Все, что мы знаем сегодня о звездах, мы прочитали в их спектрах. Исследование звездного спектра – это огромная, тщательно отработанная область астрофизики.

Интересно, что менее двухсот лет назад один известный философ, Огюст Конт, сказал: «мы уже многое узнали о природе, но есть такое, что мы не узнаем никогда – это химический состав звезд, потому как их вещество никогда не попадет к нам в руки». Действительно, в руки к нам вряд ли оно когда-нибудь попадет, но прошло буквально 15-20 лет и люди изобрели спектральный анализ, благодаря которому о химическом составе, как минимум, поверхности звезд мы узнали практически все. Так что никогда не говори «никогда». Напротив, всегда найдется способ сделать то, во что ты поначалу не веришь.


Но прежде чем говорить о спектре, посмотрим еще раз на цвет звезды. Мы уже знаем, что максимум интенсивности в спектре с увеличением температуры смещается в голубую область, и это надо использовать. И астрономы научились это использовать, потому что снять полный спектр – дело очень затратное. Нужен большой телескоп, длительное время наблюдения, чтобы накопить достаточно света на разных длинах волн – и при этом получить результат лишь для одной исследуемой звезды. А цвет можно очень просто измерять, причем делать это для многих звезд одновременно. И для массового статистического анализа мы просто фотографируем их два-три раза через разные светофильтры с широким окном пропускания.


Обычно двух фильтров – Blue (B) и Visual (V) – уже достаточно, чтобы в первом приближении определить температуру поверхности звезды. Например, есть у нас три звезды, у которых разные температуры поверхности, цвет у всех разный. Если одна из них будет типа Солнца (температура около 6 тыс. градусов), то на обоих снимках она будет примерно одинаковой яркости. Однако свет более холодной звезды будет сильнее гаситься B-фильтром, сквозь него будет мало длинноволнового света проходить, поэтому она будет казаться нам «слабенькой» звездочкой. А с более горячей звездой дело будет обстоять прямо противоположным образом.

Но бывает мало двух фильтров. Всегда можно ошибиться, как с Солнцем на горизонте. Астрономы обычно 3 окна пропускания используют: Visual, Blue, и третье – Ultraviolet, на границе прозрачности атмосферы. Три снимка уже вполне точно говорят нам о том, в какой мере межзвездная среда ослабляет свет каждой звезды, и какова собственная температура поверхности звезды. Для массовой классификации звезд такая 3-х полосная фотометрия – пока единственный способ, позволивший изучить более миллиарда звезд.

Вселенская паспортизация звезд


Но спектр, конечно, гораздо полнее характеризует звезду. Спектр представляет собой «паспорт» звезды, потому что спектральные линии говорят нам об очень многом. К словам «спектральные линии» мы все привыкли, представляем, что это такое (слайд 08 – спектры химических элементов в видимой области). По горизонтальной оси – длина волны, связанная с тем, на какой частоте излучается свет. Но каково происхождение формы линий, почему они выглядят как прямые вертикальные черточки, а не кружочки, треугольники или какие-нибудь загогулинки?

Спектральная линия – это монохроматическое изображение входной щели спектрографа. Если бы я сделал щель в виде крестика, то получился бы набор крестиков разного цвета. О таких простых вещах физик на третьем курсе, по-моему, должен задумываться. Или, как в армии, сказали «линия» – значит линия? Отнюдь не всегда это линия, потому что в спектрографе не обязательно используется входная щель, хотя, как правило, входное отверстие – это вертикальная прямоугольная щель, так удобнее.

В схеме любого спектрографа всегда есть диспергирующий элемент; в этом качестве может выступать призма или дифракционная решетка. Звезда – облачко горячего газа – испускает характерный набор квантов разных частот. Мы пропускаем их через входную щель и диспергирующий элемент и получаем изображения щели в разных цветах, упорядоченно расположенные по длине волны.




Если излучают свободные атомы химических элементов, то спектр получается линейчатый. А если взять в качестве источника излучения горячую спираль лампы накаливания, тогда получится спектр непрерывный. Почему так? В металлическом проводнике нет характерных уровней энергии, там электроны, бешено двигаясь, излучают на всех частотах. Поэтому спектральных линий так много, что они перекрываются друг с другом и получается континуум – непрерывный спектр.

А вот теперь берем источник непрерывного спектра и пропускаем его свет через облачко газа, но более холодного, чем спиралька. В этом случае облачко выхватывает из непрерывного спектра те фотоны, энергия которых соответствует переходам между энергетическими уровнями в атомах этого газа. И на этих частотах мы получаем в сплошном спектре вырезанные линии, «дырочки» – получается спектр поглощения. Но атомы, которые поглотили световые кванты, стали менее устойчивыми и рано или поздно их излучают. Почему же спектр продолжает оставаться «дырявым»?

Потому что атому все равно куда выбрасывать «лишнюю» энергию. Происходит спонтанное излучение в разных направлениях. Некоторая доля фотонов летит, конечно же, и вперед, но, в отличие от вынужденного излучения лазера, она мизерная.


Спектральные линии обычно весьма широкие и распределение яркости внутри них неравномерное. На это явление тоже надо обратить внимание и исследовать, с чем оно связано.

Есть много физических факторов, делающих спектральную линию широкой. На графике распределения яркости (или поглощения) можно, как правило, выделить два параметра: центральный максимум и характерную ширину. Ширину спектральной линии принято измерять на уровне половины интенсивности максимума. И ширина, и форма линии могут рассказать нам о каких-то физических особенностях источника света. Но о каких?

Предположим, мы подвесили одиночный атом в вакууме и никак не трогаем его, не мешаем ему излучать. Но даже в этом случае в спектре будет ненулевая ширина линий, ее называют естественной. Она возникает из-за того, что процесс излучения ограничен во времени, у разных атомов от 10⁻⁸ до 10⁻¹⁰ с. Если вы синусоиду электромагнитной волны «обрежете» на концах, то это уже будет не синусоида, а кривая, раскладывающаяся в набор синусоид с непрерывным спектром частот. И чем короче время излучения, тем шире спектральная линия.


В природных источниках света есть и другие эффекты, которые уширяют спектральную линию. Например, тепловое движение атомов. Поскольку излучающий объект имеет ненулевую абсолютную температуру, его атомы хаотически движутся: половина – к нам, половина – от нас, если смотреть лучевую проекцию скорости. В результате доплеровского эффекта излучение первых сдвигается в голубую сторону, других – в красную сторону. Это явление называется доплеровским тепловым уширением спектральной линии.

Доплеровское уширение может быть и по другим причинам. Например, в результате макроскопического движения вещества. Поверхность любой звезды кипит: конвективные потоки горячего газа поднимаются из глубин, остывшего – опускаются. Одни потоки в момент снятия спектра движутся к нам, другие - от нас. Конвективный эффект Доплера иногда бывает более сильным, чем тепловой.

Когда мы смотрим на фотографию звездного неба, нам трудно понять, какова величина звезд на самом деле. Например, есть красная и голубая. Если бы я ничего не знал о них, я бы мог подумать так: у красной звезды не очень высокая температура поверхности, но, если я вижу ее довольно яркой, следовательно, она близко ко мне расположена. Но тогда с определением относительной дальности до голубой звезды, которая светит слабее, у меня возникнет проблема. Я размышляю: так, голубая – значит горячая, но мне не понять, близко или далеко она от меня. Ведь она может быть большого размера и излучать большую мощность, но находиться столь далеко, что света оттуда приходит мало. Или же, напротив, она может светиться так слабо, потому что очень маленькая, хотя и близкая. Как же отличить звезду большую от звезды маленькой? Можно ли по спектру звезды определить ее линейный размер?


Казалось бы, нет. Но, тем не менее это возможно! Дело в том, что маленькие звезды плотные, а у больших атмосфера разрежена, поэтому газ в их атмосферах находится в разных условиях. Когда мы получаем спектры так называемых звезд-карликов и звезд-гигантов, то сразу же видим различия в характере спектральных линий (слайд 16 – Спектры звезд карликов и гигантов различаются шириной спектральных линий). В разреженной атмосфере гиганта каждый атом летает свободно, редко встречая соседей. Излучают все они практически одинаково, поскольку не мешают друг другу, так что спектральные линии гигантов имеют близкую к естественной ширину. А вот карлик – звезда массивная, но очень маленькая и, значит, с очень высокой плотностью газа. В ее атмосфере атомы постоянно взаимодействуют друг с другом, мешая излучать соседу на строго определенной частоте: потому что у каждого есть свое электрическое поле, которое влияет на поле соседа. Из-за того, что атомы находятся в разных условиях окружения, происходит так называемое штарковское уширение линии. Т.е. по форме, как говорят, «крыльев» спектральных линий мы сразу угадываем плотность газа на поверхности звезды и ее типичный размер.


Доплеровский эффект может проявляться и из-за вращения звезды в целом. Мы не можем различить края удаленной звезды, она для нас выглядит как точка. Но от приближающегося к нам края все линии спектра испытывают голубое смещение, от удаляющегося от нас – красное (слайд 18 – Вращение звезды приводит к уширению спектральных линий). Складываясь, это приводит к уширению спектральной линии. Оно выглядит не так, как эффект Штарка, по-другому меняет форму спектральной линии, поэтому можно угадать, в каком случае на ширину линии повлияло вращение звезды, а в каком – плотность газа в атмосфере звезды. Фактически это единственный способ измерения скорости вращения звезды, потому что звезд в виде шариков мы не видим, все они для нас – точки.


Движение звезды в пространстве тоже влияет на спектр из-за эффекта Доплера. Если две звезды движутся вокруг друг друга, оба спектра от этой пары смешиваются и ходят один на фоне другого. Т.е. периодическое смещение линий туда-сюда – признак орбитального движения звезд.

А что мы из серии меняющихся во времени спектров можем получить? Мы измеряем скорость (по амплитуде смещения), орбитальный период, а по этим двум параметрам, пользуясь третьим законом Кеплера, рассчитываем суммарную массу звезд. Иногда по косвенным признакам удается разделить эту массу между компонентами двойной системы. В большинстве случаев это единственный способ измерить массу звезд.

Кстати, диапазон масс звезд, которые мы изучили на сегодняшний день, не очень велик: разница составляет немногим больше 3 порядков величины. Наименее массивные звезды – порядка десятой доли массы Солнца. Еще меньшая масса не позволяет им запускать термоядерные реакции. Наиболее массивные звезды, которые мы недавно обнаружили – массой в 150 солнечных. Это уникумы, таких пока только 2 штуки известно из нескольких миллиардов.



Наблюдая редкие двойные системы, в орбитальной плоскости которых мы находимся, мы тоже можем многое узнать об этой паре звезд, используя только наблюдательные характеристики, т.е. которые мы можем непосредственно увидеть, а не рассчитать на основе каких-то законов. Поскольку мы не различаем их поодиночке, мы видим просто источник света, блеск которого время от времени меняется: происходят затмения, пока одна звезда проходит на фоне другой. Более глубокое затмение означает, что холодная звезда закрыла собой горячую, а менее глубокое – наоборот, горячая закрыла собой холодную (закрытые площади одинаковы, поэтому глубина затмения зависит только от их температуры). Помимо орбитального периода мы измеряем светимость звезд, из которой определяем их относительную температуру, а по длительности затмения рассчитываем размер.




Размер звезд, как мы знаем, огромен. По сравнению с планетами они просто гигантские. Солнце – самое типичное по размеру среди звезд, наравне с такими давно известными, как Альфа Кентавра и Сириус. Но размеры звезд (в отличие от их масс) укладываются в огромный диапазон – 7 порядков величины. Есть звезды заметно меньше них, одна из самых мелких (и одновременно одна из самых близких к нам) – Проксима, она чуть больше Юпитера. А есть звезды намного крупнее, причем на некоторых стадиях эволюции они раздуваются до невероятных размеров и становятся заметно больше всей нашей планетной системы.

Пожалуй, единственная звезда, диаметр которой мы измерили напрямую (благодаря тому, что она недалеко от нас), – это сверхгигант Бетельгейзе в созвездии Орион, на снимках телескопа «Хаббл» она не точка, а кружок (слайд 26 – Размер звезды Бетельгейзе в сравнении с диаметрами орбиты Земли и Юпитера. Фото космического телескопа "Хаббл"). Если эту звезду поставить на место Солнца, она «съест» не только Землю, но и Юпитер, полностью накроет его орбиту.

Но что мы вообще называем размером звезды? Между какими точками мы звезду измеряем? На оптических снимках звезда четко ограничена в пространстве, и кажется, что вокруг ничего нет. Значит, сфотографировали Бетельгейзе в видимом свете, приложили линейку к изображению – и готово? Но это, оказывается, еще не все. В дальнем инфракрасном диапазоне излучения видно, что атмосфера звезды тянется гораздо дальше, испускает из себя потоки. Надо полагать, что это и есть граница звезды? Но переходим в микроволновый диапазон – и видим, что атмосфера звезды протянулась почти на тысячу астрономических единиц, в несколько раз крупнее всей нашей Солнечной системы.


Звезда в общем случае – это газовое образование, которое не замкнуто в жестких стенках (в космосе их нет) и поэтому не имеющее границ. Формально, любая звезда простирается бесконечно (точнее, пока не достигнет соседней звезды), интенсивно испуская газ, который называют звездным ветром (по аналогии с солнечным ветром). Поэтому, говоря о размере звезды, всегда нужно уточнять, в каком диапазоне излучения мы его определяем, тогда будет более понятно, о чем речь.

Гарвардская классификация спектров


Настоящие спектры звезд, несомненно, очень сложны. Они совсем не похожи на спектры отдельных химических элементов, которые мы привыкли видеть в справочниках. Например, даже в узком в оптическом диапазоне солнечного спектра – от фиолетовой области до красной, который наш глаз как раз и видит, – линий очень много, и разобраться в них совсем не просто. Узнать даже на основе детального, высокодисперсного спектра, какие химические элементы и в каком количестве присутствуют в атмосфере звезды – большая проблема, которую астрономы до конца не могут решить.

Глядя на спектр, мы сразу увидим выделяющиеся бальмеровские линии водорода (Hα, Hβ, Hγ, Hδ) и очень много линий железа. Иногда попадается гелий, кальций. Логично сделать вывод, что звезда состоит в основном из железа (Fe) и отчасти из водорода (H). В начале XX века была открыта радиоактивность, и когда люди задумались об источниках энергии звезд, они вспомнили, что в спектре Солнца много линий металлов, и предположили, что распад урана или радия греет внутренности нашего Солнца. Однако оказалось, что это не так.

Первая классификация звездных спектров была создана в Гарвардской обсерватории (США) руками примерно дюжины женщин. Кстати, почему именно женщин – вопрос интересный. Обработка спектров – это очень тонкая и кропотливая работа, для выполнения которой директору обсерватории Э. Пикерингу надо было взять помощников. Женский труд в науке тогда не очень приветствовался и оплачивался намного хуже мужского: на те деньги, которые были у этой небольшой обсерватории, можно было нанять либо двух мужчин, либо дюжину женщин. И тогда впервые в астрономию было призвано большое количество женщин, которые сформировали так называемый «гарем Пикеринга». Созданная ими спектральная классификация была первым вкладом в науку женского коллектива, который оказался гораздо более эффективным, чем ожидалось.


В то время люди вообще не представляли, на основе каких физических явлений формируется спектр, его просто фотографировали. Пытаясь построить классификацию, астрономы рассуждали так: в спектре любой звезды есть линии водорода, по убыванию их интенсивности можно упорядочить все спектры и сгруппировать их. Разложили, обозначив группы спектров латинскими буквами по алфавиту: с самыми сильными линиями – класс A, слабее – класс B и т.д.

Вроде бы все было сделано правильно. Но через несколько лет родилась квантовая механика, и мы поняли, что вовсе не обязательно обильный элемент представлен в спектре мощными линиями, а редкий элемент никак не проявляет себя в спектре. Многое зависит от температуры.


Давайте посмотрим на спектр поглощения атомарным водородом: в оптический диапазон попадают линии только бальмеровской серии. Но при каких условиях эти кванты поглощаются? При переходах только со второго уровня вверх. Но в нормальном-то (холодном) состоянии все электроны «сидят» на первом уровне, а на втором почти ничего нет. Значит, нам надо нагреть водород, чтобы какая-то доля электронов запрыгнула на второй уровень (потом они снова вернутся вниз, но перед этим какое-то время там проведут) – и тогда пролетающий оптический квант может быть поглощен электроном со второго уровня, что проявится в видимом спектре.

Итак, холодный водород не будет нам выдавать бальмеровскую серию, а теплый – будет. А если мы еще сильнее нагреем водород? Тогда много электронов запрыгнет на третий и более высокие уровни, а второй уровень снова обеднеет. Очень горячий водород тоже не даст нам спектральных линий, которые мы можем в оптическом диапазоне увидеть. Если пройтись от холодных звезд к самым горячим, то увидим, что линии любого элемента лишь в узком диапазоне температур могут быть достаточно хорошо представлены в спектре.


Когда астрофизики это поняли, им пришлось переставить спектральные классы в порядке роста температуры: от холодных звезд к горячим. Эта классификация по традиции тоже гарвардской называется, но она уже естественная, физическая. У звезд спектрального класса A температура поверхности около 10 тыс. градусов, водородные линии максимально яркие, а с ростом температуры они начинают исчезать, потому что атом водорода при температуре больше 20 тыс. градусов ионизуется. Аналогично дело обстоит с другими химическими элементами. Кстати, в спектрах звезд холоднее 4000 K присутствуют не только линии отдельных химических элементов, но и полосы, соответствующие устойчивым при таких температурах молекулам сложных веществ (например, оксидов титана и железа).


Получившуюся при упорядочивании классов по температуре последовательность букв OBAFGKM студентам-астрономам довольно просто запомнить, тем более что придуманы всякие мнемонические поговорки. Самая известная на английском – Oh, Be A Fine Girl, Kiss Me! Диапазон температур поверхности таков: у самых горячих звезд – десятки тысяч градусов, у самых холодных – две с небольшим тысячи. Для более тонкой классификации каждый класс разделили на десять подклассов и к каждой букве справа приписали одну цифру от 0 до 9. Замечу, что оптические спектры в цвете фотографируют только для красоты, а для научных исследований это бессмысленно, поэтому обычно делают черно-белые изображения.


Редко, но бывает, что звезды демонстрируют линии не поглощения (темные на ярком фоне), а излучения (яркие на темном фоне). Их происхождение уже не так легко понять, хотя это тоже довольно элементарно. В начале лекции мы видели, что разреженное облачко горячего газа дает нам линии излучения. Когда мы смотрим на звезду с линиями излучения в спектре, мы понимаем, что источником этих линий служит разреженный, полупрозрачный газ, находящийся на периферии звезды, в ее атмосфере. То есть это звезды с протяженной горячей атмосферой, которая прозрачна в континууме (в промежутках между линиями), а значит, почти ничего в нем не излучает (закон Кирхгофа). Но она не прозрачна в отдельных спектральных линиях, а раз не прозрачна в них, то и сильно в них излучает.


На сегодняшний день гарвардская классификация звездных спектров расширена. В нее добавлены новые классы, соответствующие горячим звездам с протяженной атмосферой, ядрам планетарных туманностей и новых звезд, а также недавно открытым довольно холодным объектам занимающим промежуточное положение между нормальными звездами и крупнейшими планетами; их называют «коричневыми карликами» или «бурыми карликами» (англ. – brown dwarf).


Есть еще ответвления от некоторых классов для звезд с оригинальным химическим составом. Это, кстати, загадка для нас: до сих пор не ясно, почему у некоторых звезд вдруг наблюдается избыток какого-то редкого химического элемента. Ведь, несмотря на разнообразие звездных спектров, химический состав их атмосфер очень схожий: на 98 % по массе Солнце и подобные ему звезды состоят из первых двух химических элементов – водорода и гелия, а все остальные элементы представлены лишь двумя оставшимися процентами массы.

Солнце – самый яркий для нас источник света, его спектр мы можем растянуть очень сильно, различить в нем десятки тысяч спектральных линий и расшифровать их. Так, установлено, что на Солнце присутствуют все элементы таблица Менделеева. Однако, открою вам секрет, до сих пор примерно 20 линий солнечного спектра, очень слабых, остались не идентифицированными. Так что даже с Солнцем проблема распознавания химического состава еще не решена до конца.


Распределение химических элементов в атмосфере Солнца обладает рядом интересных закономерностей). Считается, что это типичный состав звездного вещества. И для большинства звезд это верно. Начиная с углерода и до самых тяжелых ядер (по крайней мере, до урана) идет довольно ровный спад распространенности элементов по мере увеличения их порядкового номера. Однако между гелием и углеродом имеется очень сильный провал – так происходит потому, что литий и бериллий легче всех участвуют в термоядерных реакциях, они активнее даже водорода и гелия. И как только температура поднимается выше миллиона градусов, они очень быстро выгорают.

Но и внутри этого ровного тренда есть особенности. Во-первых, резко выделяется пик железа. В природе, в том числе и в звездах, железа, никеля и близких к ним элементов по сравнению с их соседями необычайно много. Дело в том, что железо – необычный химический элемент: это самый конечный продукт термоядерных реакций, идущих в равновесных условиях, т.е. без всяких взрывов. В термоядерных реакциях звезда синтезируют из водорода все более и более тяжелые элементы, но доходит дело до железа – и все останавливается. Дальше, если мы попытаемся из железа что-то сделать новое в термоядерной реакции, добавляя к нему нейтроны, протоны, другие ядра, то никакого выделения тепла не будет: когда костер догорел, из золы уже ничего не получишь. Наоборот, на осуществление реакции пришлось бы подводить энергию извне, а сама по себе никакая реакция с железом в обычных условиях не пойдет. Поэтому железа в природе накопилось много.

Другой важный момент, на который стоит обратить внимание: линия, соединяющая на графике точки, имеет пилообразный вид. Так получается потому, что ядра с четным количеством нуклонов (протонов и нейтронов) гораздо более стабильны, чем с нечетным. Поскольку стабильные ядра легче создать, чем разрушить, этих ядер по сравнению с соседними элементами нарабатывается всегда больше на целый порядок, а то и на полтора.

В отличие от Солнца, в составе земного шара и землеподобных планет содержится очень мало водорода и гелия, но начиная с углерода «звездное» распределение химических элементов характерно и для них. Поэтому у каждой планеты, не только у Земли, есть крупное железное ядро.


К сожалению, спектры показывают нам состав только поверхности звезд. Наблюдая свет звезды, мы почти ничего не можем сказать о том, что у нее внутри, а внутренняя жизнь звезд разной массы различается. Перенос энергии в звезде происходить несколькими механизмами, преимущественно лучеиспусканием и конвекцией. Например, у звезд типа Солнца в центральной части, где идут термоядерные реакции, энергию в основном переносит излучение, и вещество ядра не перемешивается с вышележащими слоями. На периферии перемешивание идет, но оно не достигает тех внутренних областей, в которых постепенно меняется химический состав за счет термоядерных реакций. Т.е. продукты термоядерной реакции не выносятся на поверхность, тут циркулирует исходное вещество, из которого Солнце родилось когда-то. У более массивных звезд внутри идет конвективное перемешивание, но дальше не распространяется. Выпрыгнуть на поверхность звезды наработанные химические элементы тоже не могут.

Наконец, маломассивные – это самые правильные звезды: конвекция у них – главный механизм переноса тепла, внутри них происходит полное перемешивание вещества. Значит, казалось бы, на их поверхность должно всплывать то, что в центре в термоядерных реакциях наработалось. Однако в этих маленьких звездах очень медленно идут термоядерные реакции, они очень экономно расходуют свою энергию и медленно эволюционируют. Продолжительность их жизни в сотни и тысячи раз больше, чем у звезд типа Солнца, т.е. триллионы лет. А за те 14 млрд лет, что прошли с момента рождения Вселенной, в их составе практически ничего не изменилось. Они еще младенцы, многие из них еще недоформировались и не запустили нормальный термоядерный цикл.

Таким образом, о том, что находится внутри звезд, какой там химический состав вещества, мы не знаем до сих пор, натурных данных у нас нет. Только моделирование нам может что-то об этом сказать.

Диаграмма Герцшпрунга–Рассела


Видимый блеск звезд измеряют в обратной логарифмической шкале звездных величин (слайд 43), но для физика это неинтересно. Ему важна полная мощность излучения звезды, а ее мы не можем просто так по фотографии угадать.


Например, Альфа Кентавра среди других звезд имеет потрясающую яркость, но это вовсе не значит, что она самая мощная, ничего подобного. Это совершенно обычная звезда типа Солнца, просто по случаю она оказалась к нам намного ближе остальных и поэтому как фонарь заливает своим светом окрестный кусочек неба, хотя большинство соседних с ней на этом фото звезд представляют собой гораздо более мощные источники излучения, но они расположены дальше.

Итак, надо оценить мощность звезды как можно более точно. Для этого мы используем фотометрический закон обратных квадратов: измеряя видимую яркость звезды (плотность светового потока, достигающего Земли) и расстояние до нее, вычисляем полную мощность ее излучения в ваттах. Теперь можно представить общую физическую картину, изобразив все звезды на двумерной диаграмме (слайд 46), на осях которой откладывают две выведенные из наблюдений величины – температуру поверхности звезды и относительную мощность ее излучения (астрономы, принимая во внимание только оптический диапазон, называют эту мощность светимостью и измеряют в единицах мощности Солнца). В начале XX века такую картинку впервые построили два астронома, по именам которых она называется диаграммой Герцшпрунга–Рассела.


Солнце, звезда с температурой около 6000 K и с единичной мощностью, располагается почти посередине этой диаграммы. Вдоль диапазона изменения обоих параметров звезды распределены практически непрерывно, но по плоскости диаграммы они не как попало разбросаны, а группируются в компактные области.

Сегодня на диаграмме Герцшпрунга–Рассела выделяют несколько типичных групп, в которых сконцентрированы наблюдаемые в природе звезды (слайд 47). Подавляющее большинство звезд (90%) лежит в узкой полосе по диагонали диаграммы; эту группу называют главной последовательностью. Она распространяется от тусклых холодных звезд до горячих яркосветящихся: от миллионных долей до нескольких миллионов солнечных светимостей. Для физика это естественно: чем горячее поверхность, тем сильнее она излучает.


По обе стороны от главной последовательности находятся группы аномальных звезд. Некоторое количество звезд с высокой температурой обладают необычно низкой светимостью (в сотни и тысячи раз меньше солнечной) из-за своего мелкого размера – мы называем их белыми карликами, такие они по цвету. Другие исключительные звезды, в противоположном углу диаграммы, характеризуется более низкой температурой, но огромной светимостью – значит, они явно имеют больший физический размер, это гиганты.

В процессе своей эволюции звезда может менять положение на диаграмме. Об этом – в одной из следующих лекций.

«Спектральный анализ физика» - Спектральный анализ Открытый урок. Оптотехники и светотехники нужны - сегодня, завтра, всегда! Стационарно – искровые оптико - эмиссонные спектрометры «МЕТАЛСКАН –2500». В спектрах таких звездах много линий металлов и молекул. Спектральный анализ в астрофизике. Цель урока. Главное поле деятельности Вуда - физическая оптика.

«Спектр излучения» - Лампы дневного света. Классификация источников света. В настоящее время составлены таблицы спектров всех атомов. Примером может служить бурно развивающаяся физическая химия. Спектральный анализ. Такие приборы называют спектральными аппаратами. 4, 6 - гелий. 7 - солнечный. На месте линий поглощения в солнечном спектре вспыхивают линии излучения.

«Спектр» - Спектры испускания. Каждый атом излучает набор электромагнитных волн определенных частот. Три вида: сплошной, линейчатый, полосатый. Открытие гелия. Поэтому каждый химический элемент имеет свой спектр. Полосатый. Усовершенствовал изготовление линз, дифракционных решеток. Спектры. Постулаты Бора. ФРАУНГОФЕР (Fraunhofer) Йозеф (1787–1826), немецкий физик.

«Спектры и спектральный анализ» - Спектры. Спектр излучения. Спектральный анализ. Линии поглощения. Спектроскоп. Уголовное дело. Дисперсия. Газы светятся. Метод спектрального анализа. Длина волны. Иозеф Фраунгофер. Коллиматор. Бунзен Роберт Вильгельм. Спектральный анализ в астрономии.

«Виды спектров» - Водород. 1. Непрерывный спектр. Виды спектров: Наблюдение сплошного и линейчатых спектров. 4. Спектры поглощения. Натрий. 3. Полосатый спектр. Лабораторная работа. Спектральный анализ. Прибор для определения химического состава сплава металлов. Определение состава вещества по спектру. Гелий. 2. Линейчатый спектр.

Луч света, проходящий через стеклянную призму преломляется, и после выхода из призмы идет уже по другому направлению. При этом лучи разного цвета преломляются различно. Из семи цветов радуги сильнее всего отклоняются световые лучи фиолетового цвета, в меньшей степени - синего, еще меньше - голубые лучи, затем - зеленые, желтые, оранжевые, меньше всего отклоняются красные лучи.

Любое светящееся тело испускает в пространство лучи разного цвета. Но так как они накладываются один на другой, то для человеческого глаза все они сливаются в один цвет.

Например, Солнце испускает лучи белого цвета, но если мы пропустим такой луч через призму и тем самым разложим его на составные части, то окажется, что белый цвет луча сложный: он состоит из смеси всех цветов радуги. Смешав эти цвета вместе, мы опять получим белый цвет.

В астрономии, для изучения того как устроены звезды, активно используются так называемые спектры звезд . Спектром называется луч какого-нибудь источника света, пропущенный через призму и разложенный ею на свои составные части. Немного отвлекшись, можно сказать, что обычная земная радуга есть ничто иное, как спектр Солнца, ведь своим появлением она обязана преломлению солнечного света в капельках воды, действующих в данном случае подобно призме.

Для того чтобы получить спектр в более чистом виде, ученые пользуются не простой стеклянной призмой, а специальным прибором - спектроскопом .

Принцип работы спектроскопа: мы знаем как «светится» совершенно «чистый» (идеальный) поток света, также мы знаем какие «помехи» вносят различные примеси. Сравнивая спектры, мы можем видеть температуру и химический состав тела, испустившего анализируемый световой поток

Если мы осветим щель спектроскопа светящимися парами какого-нибудь вещества, то увидим, что спектр этого вещества состоит из нескольких цветных линий на темном фоне. При этом цвета линий для каждого вещества всегда одни и те же — независимо от того, говорим мы о Земле или Альфа Центавра. Кислород или водород всегда остаются самим собой. Соответственно, зная как выглядит каждый из привычных нам химических элементов на спектрографе, мы можем очень точно определить их наличие в составе далеких звезд, просто сравнив спектр их излучения с нашим земным «эталоном».

Располагая списком спектров разных веществ, мы сможем каждый раз точно определить, с каким же веществом мы имеем дело. Достаточно малейшей примеси какого-либо вещества в металлическом сплаве или в горной породе, и это вещество выдаст свое присутствие, заявит о себе цветным сигналом в спектре.

Смесь паров нескольких химических элементов, не образующих химического соединения, дает наложение их спектров один на другой. По таким спектрам мы и распознаем химический состав смеси. Если светятся не разложенные на атомы молекулы сложного химического вещества, то есть химического соединения, то их спектр состоит из широких ярких цветных полос на темном фоне. Для всякого химического соединения эти полосы тоже всегда определенные, и мы их умеем распознавать.

Так выглядит спектр нашей «родной» звезды — Солнца

Спектр в виде полоски, состоящей из всех цветов радуги, дают твердые, жидкие и раскаленные вещества, например нить электрической лампочки, расплавленный чугун и раскаленный прут железа. Такой же спектр дают огромные массы сжатого газа, из которого состоит Солнце.

Вскоре после того как в спектре Солнца были обнаружены темные линии, некоторые из ученых обратили внимание на такое явление: в желтой части этого спектра есть темная линия, которая имеет ту же длину волны, что и яркая желтая линия в спектре разреженных светящихся паров натрия. Что это означает?

Для выяснения вопроса ученые провели опыт.

Был взят раскаленный кусок извести, дающий непрерывный спектр без всяких темных линий. Затем перед этим куском извести было помещено пламя газовой горелки, содержащей пары натрия. Тогда в непрерывном спектре, полученном от раскаленной извести, свет которой прошел через пламя горелки, появилась в желтой части темная линия. Стало ясно, что сравнительно более холодные пары натрия поглощают или задерживают лучи той же самой длины волны, какую эти пары сами по себе способны испускать.

Опытным путем, было установлено, что светящиеся газы и пары поглощают свет тех самых длин волн, которые они сами способны испускать, будучи достаточно нагретыми .

Так вслед за первой тайной - причиной окрашивания пламени в тот или другой цвет парами определенных веществ - была раскрыта и вторая тайна: причина появления темных линий в солнечном спектре.

Спектральный анализ в исследовании Солнца

Очевидно, Солнце - раскаленное тело, испускающее белый свет, спектр которого непрерывен - окружено слоем более холодных, но все же раскаленных газов. Эти газы и образуют вокруг Солнца его оболочку, или атмосферу. А в этой атмосфере содержатся пары натрия, которые и поглощают из лучей солнечного спектра лучи с гой самой длиной волны, которую натрий способен испускать. Поглощая, задерживая эти лучи, пары натрия создают в свете Солнца, прошедшем сквозь его атмосферу и дошедшем до нас, недостаток желтых лучей с этой длиной волны. Вот почему в соответствующем месте желтой части спектра Солнца мы находим темную линию.

Так, не побывав никогда на Солнце, находящемся от нас на расстоянии 150 миллионов километров, мы можем утверждать, что в составе солнечной атмосферы есть натрий.

Таким же образом, определив длины волн других темных линий, видимых в спектре Солнца, и сравнив их с длинами волн ярких линий, испускаемых парами различных веществ и наблюдаемых в лаборатории, мы точно определим, какие еще другие химические элементы входят в состав солнечной атмосферы.

Так было выяснено, что в солнечной атмосфере присутствуют те же химические элементы, что и на земле: водород, азот, натрий, магний, алюминий, кальций, железо и даже золото.

Спектры звезд, свет которых тоже можно направить в спектроскоп, похожи на спектр Солнца. И по темным линиям их мы можем определить химический состав звездных атмосфер так же, как мы определили химический состав солнечной атмосферы по темным линиям спектра Солнца.

Таким путем ученые установили, что даже количественно химический состав атмосфер Солнца и звезд очень похож на количественный химический состав земной коры.

Самый легкий из всех газов, из всех химических элементов - водород - составляет на Солнце 42% по весу. На долю кислорода приходится 23% по весу. Столько же приходится на долю всех металлов, вместе взятых. Углерод, азот и сера составляют вместе 6% от состава солнечной атмосферы. И только 6% приходится на все остальные элементы, вместе взятые.

Надо учесть, что атомы водорода легче всех остальных. Поэтому их число далеко превосходит число всех других атомов. Из каждой сотни атомов в атмосфере Солнца 90 атомов принадлежит водороду.

Средняя плотность Солнца на 40% больше плотности воды и все-таки оно ведет себя во всех отношениях как идеальный газ. Плотность на внешнем видимом краю Солнца составляет приблизительно одну миллионную от плотности воды, в то время как плотность вблизи его центра примерно в 50 раз выше плотности воды.

Спектральный анализ и температура звезд

Спектры звезд - это их паспорта с описанием всех звездных примет, всех их физических свойств. Надо лишь уметь в этих паспортах разобраться. Многое еще мы не умеем из них извлечь в будущем, но уже и сейчас мы читаем в них немало.

По спектру звезды мы можем узнать ее светимость, а следовательно, и расстояние до нее, температуру, размер, химический состав ее атмосферы, скорость движения в пространстве, скорость ее вращения вокруг оси и даже то, нет ли вблизи нее другой невидимой звезды, вместе с которой она обращается вокруг их общего центра тяжести.

Спектральный анализ дает ученым также возможность определять скорость движения светил к нам или от нас даже в тех случаях, когда эту скорость и вообще движение светил никакими другими способами обнаружить невозможно.

Если какой-нибудь источник колебаний, распространяющихся в виде волн, движется по отношению к нам, то, понятно, длина волны колебаний, воспринимаемая нами, меняется. Чем быстрее приближается к нам источник колебания, тем короче делается длина его волны. И наоборот, чем быстрее источник колебаний удаляется, тем длина волны по сравнению с той длиной волны, которую воспринял бы наблюдатель, неподвижный по отношению к источнику, увеличивается.

То же самое происходит и со светом, когда источник света - небесное светило - движется по отношению к нам. Когда светило приближается к нам, длина волны всех линий в его спектре становится короче. А когда источник света удаляется, то длина волны тех же самых линий становится больше. В соответствии с этим в первом случае линии спектра сдвигаются в сторону фиолетового конца спектра (то есть в сторону коротких длин волн), а во втором случае они смещаются к красному концу спектра.

Точно так же путем изучения распределения яркости в спектре звезд мы узнали их температуру.

Звезды красного цвета - самые «холодные». Они нагреты до 3 тысяч градусов, что примерно равняется температуре в пламени электрической дуги.

Температура желтых звезд составляет 6 тысяч градусов. Такова же температура поверхности нашего Солнца, которое тоже относится к разряду желтых звезд. Температуру в 6 тысяч градусов наша техника пока не может искусственно создать на Земле.

Белые звезды еще более горячие. Температура их составляет от 10 до 20 тысяч градусов.

Наконец, самыми горячими среди известных нам звезд являются голубые звезды , раскаленные до 30, а в некоторых случаях даже до 100 тысяч градусов.

В недрах звезд температура должна быть значительно выше. Определить ее точно мы не можем, потому что свет из глубины звезд до нас не доходит: свет звезд, наблюдаемый нами, излучается их поверхностью. Можно говорить лишь о научных расчетах, о том, что температура внутри Солнца и звезд составляет примерно 20 миллионов градусов.

Несмотря на раскаленность звезд, нас достигает лишь ничтожная доля испускаемого ими тепла - так далеки от нас звезды. Больше всего тепла доходит к нам от яркой красной звезды Бетельгейзе в созвездии Ориона: меньше Одной десятой от миллиардной доли малой калории 1 на квадратный сантиметр за минуту.

Иными словами, собирая с помощью 2,5— метрового вогнутого зеркала это тепло, в течение года мы бы могли нагреть им наперсток воды всего лишь на два градуса!

Истинное значение открытий Фраунгофера не было оценено еще несколько десятилетий. Наконец примерно в 1860 году Роберт Вильгельм Бунзен (18111899) и Густав Роберт Кирхгоф продемонстрировали важность спектральных линий в химическом анализе. Кирхгоф учился в Кенигсберге и в весьма юном возрасте, в 26 лет, получил должность профессора в университете г. Бреслау (ныне — Вроцлав). Там он познакомился с Бунзеном, и они стали друзьями. Когда Бунзен переехал в Гейдельберг, он смог найти там место и для Кирхгофа. В 1871 году Кирхгоф стал профессором теоретической физики в Берлине. Говорят, что Кирхгоф на своих лекциях скорее усыплял студентов, а не придавал им энтузиазма, но среди его студентов были и Генрих Герц, и Макс Планк, ставшие великими физиками.

Долгое время Кирхгоф в сотрудничестве с Бунзеном проводил свои успешные исследования. Бунзен начал анализ химического состава образцов по цвету, который они придавали бесцветному огню его знаменитой горелки. Кирхгоф решил, что будет лучше использовать спектроскоп для более точного измерения длины волны (цвета). Когда это удалось осуществить, все линии Фраунгофера были отождествлены.
Оказалось, что характерный цвет пламени обусловлен яркими спектральными линиями разной длины волны у разных элементов. Каждый элемент имеет собственный характерный признак в виде спектральных линий, которые появляются, когда образец нагревается до такой температуры, чтобы он превратился в горячий газ. По спектральным линиям можно определить химический состав иссле-дуемого образца. В письме, датированном 1859 годом, Бунзен писал: «Сейчас вместе с Кирхгофом мы проводим исследования, которые не дают нам уснуть. Кирхгоф сделал совершенно неожиданное открытие. Он нашел причину возникновения темных линий в спектре Солнца, и он способен воспроизвести эти линии… в непрерывном спектре пламени на тех же местах, что и линии Фраунгофера, Это открывает путь к определению химического состава Солнца и неподвижных звезд..,».
На самом деле еще в 1849 ГОДУ Жан Фуко (18191868) в Париже обнаружил совпадение между лабораторными спектральными линиями и линиями в спектре Солнца. Но по какимто причинам его открытие оказалось забыто. Ничего не зная о работе Фуко, Бунзен и Кирхгоф повторили и усовершенствовали его опыты.

Кирхгоф обобщил свои результаты в виде так называемых законов Кирхгофа.

  • I закон Кирхгофа: Горячий плотный газ и твердые тела излучают непрерывный спектр. Спектр называют непрерывным, если в нем представлены все цвета радуги и поэтому в нем нет темных линий.
  • II закон Кирхгофа: Разреженные (имеющие низкую плот

ность) газы излучают спектр состоящий из ярких линий. Яркие ли
нии с определенными длинами волн называют также эмиссионны
ми линиями.
Как уже говорилось, спектр с эмиссионными линиями возникает от горячего, разреженного газа в пламени бунзеновской горелки, наблюдаемом на темном фоне. Однако если за горелкой поставить источник света и пустить интенсивный луч света сквозь газ этого пламени, то можно предположить, что свет горелки и свет, идущий от источника за горелкой, будут складываться. Если же свет, приходящий изза горелки, имеет непрерывный спектр, то можно ожидать, что яркие линии пламени горелки будут налагаться на непрерывный спектр. Но Кирхгоф этого не увидел. Наоборот, он видел непрерывный спектр с темными линиями на тех местах, где должны были быть эмиссионные линии. И это он зафиксировал в своем третьем законе.

  • III закон Кирхгофа: Когда непрерывный спектр проходит через разреженный газ, в спектре возникают темные линии.

Темные линии называются абсорбционными линиями, или линиями поглощения. В спектре Солнца непрерывное излучение исходит из нижних, относительно горячих (около 5500 °С) и плотных слоев солнечной поверхности. На пути вверх свет проходит через более холодные и разреженные слои солнечной атмосферы, которая и дает темные линии Фраунгофера.
Спектральный анализ позволил исследовать химический состав Солнца и даже звезд. Например, две соседние темные спектральные линии «Э» в солнечном спектре видны как яркие линии в спектре горячего натриевого газа. Из этого Кирхгоф и Бунзен сделали вывод, что на Солнце много газообразного натрия. Кроме того, они нашли в спектре Солнца признаки железа, магния, кальция, хрома, меди, цинка, бария и никеля. К концу столетия были открыты водород, углерод, кремний и неизвестный элемент, который назвали гелием в честь греческого имени Солнца. В1895 году гелий был обнаружен и на Земле. Самый простой спектр из всех элементов оказался у водорода. Его спектральные линии образуют такой простой и стройный ряд, что преподаватель Базельского университета (Швейцария) Иоганн Якоб Бальмер (18251898) придумал простую формулу для определения их длин волн. Эту серию спектральных линий водорода называют бальмеровскими линиями.
Но невозможно определить степень обилия элементов на Солнце только лишь на основе интенсивности спектральных линий каждого элемента. С помощью сложных вычислений, учитывающих температуру, было выяснено, что наиболее обильным элементом на Солнце является водород (хотя его спектральные линии не очень интенсивны), а второе место занимает гелий. На долю всех прочих элементов приходится менее 2% (табл., там указано также обилие наиболее распространенных элементов на Земле и в человеческом теле).


Современный химический анализ показывает, что остальные звезды не сильно отличаются от Солнца. А именно, водород — самый распространенный элемент; его доля составляет примерно 72% массы звезды. Доля гелия около 26%, а на долю остальных элементов остается не более 2%. Однако содержание именно этих тяжелых элементов на поверхности звезд сильно различается от одной звезды к другой.