Процессинг - это созревание синтезированной на ДНК преРНК и преобразование её в зрелую РНК. Проходит в ядре клетки у эукариот.

Составные части процессинга

  1. Удаление нуклеотидов. Результат: значительное уменшение длины и массы исходной РНК.
  2. Присоединение нуклеотидов. Результат: незначительное увеличение длины и массы исходной РНК.
  3. Модификация (видоизменение) нуклеотидов. Результат: появление в составе РНК редких "экзотических" минорных ("меньших") нуклеотидов.

Удаление нуклеотидов

1. Отщепление отдельных нуклеотидов по одному с концов цепи РНК. Осуществляется ферментами экзонуклеазами . Обычно преРНК начинается на 5"-конце АТФ или ГТФ, а на 3"-конце заканчивается участками ГЦ. Они нужны только для самой транскрипции, но не нужны для работы РНК, поэтому и отщепляются.

2. Отрезание фрагментов РНК, состоящих из нескольких нуклеоидов. Осуществляется ферментами эндонуклеазами . Таким способом с концов преРНК удаляются спейсерные последовательности нуклеотидов.

3. Разрезание преРНК на отдельные индивидуальные молекулы РНК. Осуществляется ферментами эндонуклеазами. Таким способом получаются рибосомальные РНК (рРНК) и гистоновые (мРНК).

4. Сплайсинг . Это вырезание срединных участков (интронных последовательностей) из преРНК и затем её сшивание . Вырезание осуществляется ферментами эндонуклеазами, а сшивание - лигазами . В результате получается мРНК, состоящая только из экзонных последовательностей нуклеотидов. Все пре-мРНК подвергаются сплайсингу, кроме гистоновых.

В результате удаления нуклеотидов в мРНК может, например, вместо 9200 нуклеотидов остаться всего 1200.

В среднем после процессинга в зрелой мРНК остаётся только 13% от длины пре-мРНК, а 87% теряется.

Присоединение нуклеотидов

К пре-мРНК с начального 5"-конца присоединяется с помощью нетипичной пирофосфатной связи модифицированный 7-метилгуаниловый нуклеотид, это компонент "колпачка" ("шапочки") мРНК. Этот колпачок создаётся ещё на начальном этапе синтеза РНК, для того чтобы защитить нарождающуюся РНК от нападок ферментов-экзонуклеаз, отщепляющих концевые нуклеотиды от РНК.

После завершения синтеза пре-мРНК к её конечному участку со стороны 3"-конца ферментом полиаденилатполимеразой последовательно приращиваются адениловые нуклеотиды, так что получается полиадениловый "хвост" из примерно 200-250 А-нуклеотидов. Мишенью для этого процесса служат последовательности ААУААА и ГГУУУГУУГГУУ в конце преРНК. В результате у преРНК отрезается её собственный хвостик и заменяется на полиА-хвост.

Видео: Снабжение преРНК шапочкой и хвостиком

У пре-тРНК хвост на её 3"-конце создаётся последовательным присоединением трёх нуклеотидов: Ц, Ц и А. Они образуют акцепторную ветвь транспортной РНК.

Модификация нуклеотидов

Важно отметить, что модифицированные минорные нуклеотиды появляются в созревающей РНК именнов в результате процессинга, а не встраиваются в РНК в процессе её синтеза на ДНК.

В нуклеотидах колпачка пре-мРНК происходит метилирование рибозы.

В пре-рРНК метилируются рибозные остатки выборочно по всей длине цепи, с частотой примерно 1%, т.е. 1 нуклеотид из 100.

В пре-тРНК модификация происходит наиболее разнообразно. Например, если уридин восстанавливается, то получается дигидроуридин, если изомеризуется, то получается псевдоуридин, если метилируется, то получается метилуридин, Аденозин может дезаминироваться, превращаясь в инозин, а если затем метилируется, то получается метилинозин. Происходят и другие модификации нуклеотидов.

Видео: Подробно о процессинге

Итог процессинга

Исходные преРНК укорачиваются и модифицируются . В ядре клетки появляются зрелые РНК разных видов: рРНК (28S, 18S, 5,8S, 5S), тРНК (по 1-3 вида для каждой из 20 аминокислот), мРНК (тысячи вариантов в зависимости от количества экспрессированных в данной клетке генов). Здесь же в ядре рРНК связываются с рибосомными белками и формируют большие и малые субъединицы рибосом. Они покидают ядро и выходят в цитоплазму. А мРНК связываются с транспортными белками и в таком виде выходят из ядра в цитоплазму.

Именно данная стадия отличает реализацию имеющейся генетической информации у таких клеток, как эукариоты и прокариоты.

Интерпретация данного понятия

В переводе с английского данный термин означает «обработка, переработка». Процессинг - это процесс образования зрелых молекул рибонуклеиновой кислоты из пре-РНК. Иначе говоря, это совокупность реакций, которые приводят к трансформации первичных продуктов транскрипции (пре-РНК разных типов) в уже функционирующие молекулы.

Что касается процессинга р- и тРНК, он чаще всего сводится к отсечению с концов молекул лишних фрагментов. Если говорить об иРНК, то здесь можно отметить, что у эукариот данный процесс протекает многоступенчато.

Итак, после того, как мы уже узнали, что процессинг - это превращение первичного транскрипта в зрелую молекулу РНК, стоит перейти к рассмотрению его особенностей.

Основные особенности рассматриваемого понятия

Сюда можно отнести следующие:

  • модификацию как концов молекулы, так и РНК, по ходу которой к ним присоединяются специфические последовательности нуклеотидов, показывающие место начала (конца) трансляции;
  • сплайсинг - отсечение неинформативных последовательностей рибонуклеиновой кислоты, которые соответствуют интронам ДНК.

Что касается прокариот, их иРНК не подвержена процессингу. Она имеет способность работать сразу по окончании синтеза.

Где протекает рассматриваемый процесс?

У любого организма процессинг РНК протекает в ядре. Он осуществляется посредством особых ферментов (их группой) для каждого отдельно взятого типа молекул. Также процессингу могут быть подвержены такие продукты трансляции, как полипептиды, которые непосредственно считаны с иРНК. Данным изменениям подвергаются так называемые молекулы-предшественники большинства белков - коллагена, иммуноглобулинов, пищеварительных ферментов, некоторых гормонов, после чего начинается реальное их функционирование в организме.

Мы уже узнали, что процессинг - это процесс образования зрелых РНК из пре-РНК. Теперь стоит углубиться в природу самой рибонуклеиновой кислоты.

РНК: химическая природа

Это представляющая собой сополимер пиримидиновых и пуриновых рибонуклеитидов, которые соединены друг с другом, точно так же, как и в ДНК, 3’ - 5’-фосфодиэфирными мостиками.

Несмотря на то что эти 2 вида молекул схожи, они отличаются по нескольким признакам.

Отличительные признаки РНК и ДНК

Во-первых, у рибонуклеиновой кислоты присутствует углеродный остаток, к которому примыкают пиримидиновые и пуриновые основания, фосфатные группы, - рибоза, у ДНК же - 2’-дезоксирибоза.

Во-вторых, отличаются и пиримидиновые компоненты. Сходными составляющими выступают нуклеотиды аденина, цитозина, гуанина. В РНК вместо тимина присутствует урацил.

В-третьих, РНК имеет 1-цепочечную структуру, а ДНК - 2-цепочечная молекула. Но в цепи рибонуклеиновой кислоты присутствуют участки с противоположной полярностью (комплементарной последовательностью), благодаря которым ее единичная цепь способна сворачиваться и образовывать «шпильки» - структуры, наделенные 2-спиральными характеристиками (как показано на рисунке выше).

В-четвертых, ввиду того, что РНК - одиночная цепь, которая комплементарна лишь 1-ой из цепей ДНК, гуанин не обязательно должен присутствовать в ней в таком же содержании, как и цитозин, а аденин - как урацил.

В-пятых, РНК можно гидролизовать щелочью до 2’, 3’-циклических диэфиров мононуклеотидов. Роль промежуточного продукта в гидролизе играет 2’, 3’, 5-триэфир, неспособный к образованию в ходе аналогичного процесса для ДНК ввиду отсутствия у нее 2’-гидроксильных групп. По сравнению с ДНК щелочная лабильность рибонуклеиновой кислоты выступает полезным свойством и для диагностических целей, и для аналитических.

Данная последовательность комплементарна генной цепочки (кодирующей), с которой происходит «считывание» РНК. Из-за данного свойства молекула рибонуклеиновой кислоты может специфически связываться с кодирующей цепью, однако не способна этого делать с некодирующей ДНК-цепью. Последовательность РНК, кроме замены T на U, аналогична той, которая относится к некодирующей цепи гена.

Типы РНК

Практически все они вовлечены в такой процесс, как Известны следующие типы РНК:

  1. Матричные (мРНК). Это молекулы цитоплазматической рибонуклеиновой кислоты, которые выполняют функции матриц синтеза белка.
  2. Рибосомная (рРНК). Это молекула цитоплазматической РНК, выполняющая роль таких структурных компонентов, как рибосомы (органелл, участвующий в белковом синтезе).
  3. Транспортные (тРНК) . Это молекулы которые принимают участие в переводе (трансляции) информации мРНК в последовательность аминокислот уже в белках.

Существенная часть РНК в виде 1-ых транскриптов, которые образуются в в том числе клетки млекопитающих, подвержена в ядре процессу деградации, и не играет в цитоплазме информационной или структурной роли.

В человеческих клетках (культивируемых) найден класс малых ядерных рибонуклеиновых кислот, непосредственно не участвующих в белковом синтезе, однако оказывающих воздействие на процессинг РНК, а также общую клеточную «архитектуру». Их размеры варьируют, они содержат 90 - 300 нуклеотидов.

Рибонуклеиновая кислота - основной генетический материал у ряда вирусов растений, животных. Некоторые вирусы, содержащие РНК, никогда не проходят такую стадию, как РНК в ДНК. Но все же для многих вирусов животных, к примеру для ретровирусов, характерен обратный перевод их РНК-генома, направляемый РНК-зависимой обратной транскриптазой (ДНК-полимеразой) с формированием 2-спиральной ДНК-копии. В большинстве случаев появляющийся 2-спиральный ДНК-транскрипт внедряется в геном, в дальнейшем обеспечивая экспрессию вирусных генов и наработку новейших копий РНК-геномов (также вирусных).

Посттранскрипционные модификации рибонуклеиновой кислоты

Ее молекулы, синтезирующиеся с РНК-полимеразами, всегда функционально неактивны, выступают предшественниками, а именно пре-РНК. Они трансформируются в уже зрелые молекулы лишь после того, как пройдут соответствующие посттранскрипционные модификации РНК - этапы ее созревания.

Формирование зрелых мРНК начитается в ходе синтеза РНК и полимеразы II на этапе элонгации. Уже к 5’-концу постепенно растущей нити РНК прикрепляется 5’-концом ГТФ, затем отщепляется ортофосфат. Далее гуанин метилируется с появлением 7-метил-ГТФ. Такую особую группу, находящуюся в составе мРНК, именуют «кэпом» (шапочкой либо колпачком).

В зависимости от разновидности РНК (рибосомные, транспортные, матричные, пр.) предшественники подвергаются различным последовательным модификациям. К примеру, предшественники мРНК подвергаются сплайсингу, метилированию, кэпированию, полиаденилированию, иногда и редактированию.

Эукариоты: общая характеристика

Клетка эукариот выступает доменом живых организмов, а в ней содержится ядро. Кроме бактерий, архей, любые организмы являются ядерными. Растения, грибы, животные, включая группу организмов, именуемую протистами, - все выступают эукариотическими организмами. Они бывают как 1-клеточными, так и многоклеточными, однако у всех общий план клеточного строения. Принято считать, что эти настолько непохожие организмы имеют одно и то же происхождение, ввиду чего группа ядерных воспринимается в качестве монофилетического таксона наивысшего ранга.

На основании распространенных гипотез, эукариоты возникли 1,5 - 2 млрд. лет тому назад. Важная роль в их эволюции отводится симбиогенезу - симбиозу эукариотической клетки, имевшей ядро, способной к фагоцитозу, и бактерий, проглоченных ей, - предшественников пластид и митохондрий.

Прокариоты: общая характеристика

Это 1-клеточные живые организмы, которые не обладают ядром (оформленным), остальными мембранными органоидами (внутренними). Единственной крупной кольцевой 2-цепочечной молекулой ДНК, содержащей основную часть генетического клеточного материала, является та, которая не образует комплекс с белками-гистонами.

К прокариотам относят археи и бактерии, включая цианобактерии. Потомки безъядерных клеток - органеллы эукариот - пластиды, митохондрии. Они подразделяются на 2 таксона в рамках ранга домена: Археи и Бактерии.

Данные клетки не имеют ядерной оболочки, упаковка ДНК происходит без привлечения гистонов. Тип их питания осмотрофный, а генетический материал представлен одной которая замкнута в кольцо, и имеется лишь 1 репликон. У прокариот остаются органоиды, которые имеют мембранное строение.

Отличие эукариот от прокариот

Основополагающая особенность клеток эукариот связана с нахождением в них генетического аппарата, который расположен в ядре, где он защищен оболочкой. Их ДНК линейная, связанная с белками-гистонами, прочими белками хромосом, которые отсутствуют у бактерий. Как правило, в их присутствуют 2 ядерные фазы. Одна имеет гаплоидный набор хромосом, а впоследствии сливаясь, 2 гаплоидные клетки формируют диплоидную, которая содержит уже 2-ой набор хромосом. Бывает и так, что при последующем делении клетка снова становится гаплоидной. Такого рода жизненный цикл, а также диплоидность в целом, не характерны для прокариот.

Самым интересным отличием является наличие особых органелл у эукариот, которые имеют собственный генетический аппарат и размножаются делением. Эти структуры окружены мембраной. Данными органеллами выступают пластиды и митохондрии. По жизнедеятельности и строению они удивительно схожи с бактериями. Данное обстоятельство натолкнуло ученых на мысль касательно того, что они - потомки бактериальных организмов, которые вступили в симбиоз с эукариотами.

У прокариот имеется малое количество органелл, ни одна из которых не окружена 2-ой мембраной. В них отсутствует эндоплазматический ретикулум, лизосомы.

Еще 1 важное отличие эукариот от прокариот - присутствие явления эндоцитоза у эукариот, включая фагоцитоз у большинства групп. Последним называется способность захватывать посредством заключения в мембранный пузырь, а затем переваривать различные твердые частицы. Данный процесс обеспечивает важнейшую защитную функцию в организме. Возникновение фагоцитоза, предположительно, связано с тем, что их клетки имеют средние размеры. Прокариотические же организмы несоизмеримо меньше, ввиду чего в ходе эволюции эукариот возникла потребность, связанная со снабжением клетки значительным количеством пищи. В результате среди них возникли первые подвижные хищники.

Процессинг как один из этапов биосинтеза белка

Это второй этап, который начинается после транскрипции. Процессинг белков протекает лишь у эукариот. Это созревание иРНК. Если быть точным, это удаление участков, которые не кодируют белок, и присоединение управляющих.

Заключение

В данной статье описано, что представляет собой процессинг (биология). Также рассказано, что такое РНК, перечислены ее типы и посттранскрипционные модификации. Рассмотрены отличительные особенности эукариот и прокариот.

Напоследок стоит напомнить, что процессинг - это процесс образования зрелых РНК из пре-РНК.

Процессинг РНК (посттранскрипционные модификации РНК) - совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Также модифицируются (другими механизмами) рибосомные РНК, транспортные РНК и малые ядерные РНК.

Сплайсинг (от англ. splice - сращивать или склеивать концы чего-либо) - процесс вырезания определенных нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании информационной РНК (мРНК) у эукариот, при этом путём биохимических реакций с участием РНК и белков из мРНК удаляются участки, не кодирующие белок (интроны) и соединяются друг с другом кодирующие аминокислотную последовательность участки - экзоны. Таким образом незрелая пре-мРНК превращается в зрелую мРНК, с которой считываются (транслируются) белки клетки. Большинство генов прокариот, кодирующих белки, не имеют интронов, поэтому у них сплайсинг пре-мРНК встречается редко. У представителей эукариот, бактерий и архей встречается также сплайсинг транспортных РНК (тРНК) и других некодирующих РНК.

Процессинг и сплайсинг способны объединять структуры, удаленные друг от друга, в один ген, поэтому они имеют огромное эволюционное значение. Подобные процессы упрощают видообразование. Белки имеют блочную структуру. Например, фермент – ДНК-полимераза. Он представляет собой непрерывную полипептидную цепь. Он состоит из собственной ДНК-полимеразы и эндонуклеазы, которая расщепляет молекулу ДНК с конца. Фермент состоит из 2 доменов, которые образуют 2 независимые компактные частицы, связанные полипептидным мостиком. На границе между 2мя генами ферментов находится интрон. Когда-то домены были раздельными генами, а затем – сблизились.

Нарушения подобной структуры гена приводит к генным болезням. Нарушение строения интрона фенотипически незаметно, нарушение в экзонной последовательности приводят к мутации (мутации глобиновых генов).

Биосинтез белка - сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК. Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции. Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы иРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путём присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.



Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты - РНК.

рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин

Матричная, или информационная, РНК (мРНК, или иРНК). Транскрипция. Для того чтобы синтезировать белки с заданными свойствами, к месту их построения поступает "инструкция" о порядке включения аминокислот в пептидную цепь. Эта инструкция заключена в нуклеотидной последовательности матричных, или информационных РНК (мРНК, иРНК), синтезируемых на соответствующих участках ДНК. Процесс синтеза мРНК называют транскрипцией.

В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК, пройденные ею одноцепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции мРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов мРНК, шифрующие аминокислоты, называют кодонами. Последовательность кодонов мРНК шифрует последовательность аминокислот в пептидной цепи. Кодонам мРНК соответствуют определенные аминокислоты (табл.1).



Транспортная РНК (тРНК). Трансляция. Важная роль в процессе использования наследственной информации клеткой принадлежит транспортной РНК (тРНК). Доставляя необходимые аминокислоты к месту сборки пептидных цепей, тРНК выполняет функцию трансляционного посредника.

В ней выделяют четыре главные части, выполняющие различные функции. Акцепторный "стебель" образуется двумя комплементарно соединенными концевыми частями тРНК. Он состоит из семи пар оснований.3"-конец этого стебля несколько длиннее и формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН-группой. К этому концу присоединяется транспортируемая аминокислота. Остальные три ветви представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя из этих ветвей - антикодоновая - состоит из пяти пар нуклеотидов и содержит в центре своей петли антикодон. Антикодон - это три нуклеотида, комплементарные кодону мРНК, который шифрует аминокислоту, транспортируемую данной тРНК к месту синтеза пептида.

В целом различные виды тРНК характеризуются определенным постоянством нуклеотидной последовательности, которая чаще всего состоит из 76 нуклеотидов. Варьирование их числа связано главным образом с изменением количества нуклеотидов в дополнительной петле. Комплементарные участки, поддерживающие структуру тРНК, как правило, консервативны. Первичная структура тРНК, определяемая последовательностью нуклеотидов, формирует вторичную структуру тРНК, имеющую форму листа клевера. В свою очередь, вторичная структура обусловливает трехмерную третичную структуру, для которой характерно образование двух перпендикулярно расположенных двойных спиралей (рис.27). Одна из них образована акцепторной и ТψС-ветвями, другая - антикодоновой и D-ветвями.

На конце одной из двойных спиралей располагается транспортируемая аминокислота, на конце другой - антикодон. Эти участки оказываются максимально удаленными друг от друга. Стабильность третичной структуры тРНК поддерживается благодаря возникновению дополнительных водородных связей между основаниями полинуклеотидной цепи, находящимися в разных ее участках, но пространственно сближенных в третичной структуре.

Различные виды тРНК имеют сходную третичную структуру, хотя и с некоторыми вариациями.

Одной из особенностей тРНК является наличие в ней необычных оснований, возникающих вследствие химической модификации уже после включения нормального основания в полинуклеотидную цепь. Эти измененные основания обусловливают большое структурное многообразие тРНК при общем плане их строения.

14..Рибосомный цикл синтеза белка (инициация, элонгация, терминация). Посттрансляционные преобразования белков.

Рибосомный цикл синтеза белка. Процесс взаимодействия мРНК и тРНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах. Последние представляют собой сложные комплексы рРНК и разнообразных белков, в которых первые образуют каркас. Рибосомные РНК являются не только структурным компонентом рибосом, но и обеспечивают связывание их с определенной нуклеотидной последовательностью мРНК. Этим устанавливаются начало и рамка считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы и тРНК. Многочисленные белки, входящие в состав рибосом наряду с рРНК, выполняют как структурную, так и ферментативную роль.

Рибосомы про - и эукариот очень сходны по структуре и функциям. Они состоят из двух субчастиц: большой и малой. У эукариот малая субчастица образована одной молекулой рРНК и 33 молекулами разных белков. Большая субчастица объединяет три молекулы рРНК и около 40 белков. Прокариотические рибосомы и рибосомы митохондрий и пластид содержат меньше компонентов.

В рибосомах имеется две бороздки. Одна из них удерживает растущую полипептидную цепь, другая - мРНК. Кроме того, в рибосомах выделяют два участка, связывающих тРНК. В аминоацильном, А-участке размещается аминоацил-тРНК, несущая определенную аминокислоту. В пептидильном, П-участке располагается обычно тРНК, которая нагружена цепочкой аминокислот, соединенных пептидными связями. Образование А- и П-участков обеспечивается обеими субчастицами рибосомы.

В каждый момент рибосома экранирует сегмент мРНК протяженностью около 30 нуклеотидов. При этом обеспечивается взаимодействие только двух тРНК с двумя расположенными рядом кодонами мРНК (рис. 3.31).

Трансляция информации на «язык» аминокислот выражается в постепенном наращивании пептидной цепи в соответствии с инструкцией, заключенной в мРНК. Этот процесс протекает на рибосомах, которые обеспечивают последовательность расшифровки информации с помощью тРНК. В ходе трансляции можно выделить три фазы: инициацию, элонгацию и терминацию синтеза пептидной цепи.

Фаза инициации, или начало синтеза пептида, заключается в объединении двух находящихся до этого порознь в цитоплазме субчастиц рибосомы на определенном участке мРНК и присоединении к ней первой аминоацил-тРНК. Этим задается также рамка считывания информации, заключенной в мРНК (рис. 3.32).

В молекуле любой мРНК вблизи ее 5"-конца имеется участок, комплементарный рРНК малой субчастицы рибосомы и специфически узнаваемый ею. Рядом с ним располагается инициирующий стартовый кодон АУТ, шифрующий аминокислоту метионин. Малая субчастица рибосомы соединяется с мРНК таким образом, что стартовый кодон АУТ располагается в области, соответствующей П-участку. При этом только инициирующая тРНК, несущая метионин, способна занять место в недостроенном П-участке малой субчастицы и комплементарно соединиться со стартовым кодоном. После описанного события происходит объединение большой и малой субчастиц рибосомы с образованием ее пептидильного и аминоацильного участков (рис. 3.32).

К концу фазы инициации П-участок занят аминоацил-тРНК, связанной с метионином, тогда как в А-участке рибосомы располагается следующий за стартовым кодон.

Описанные процессы инициации трансляции катализируются особыми белками - факторами инициации, которые подвижно связаны с малой субчастицей рибосомы. По завершении фазы инициации и образования комплекса рибосома - мРНК - инициирующая аминоацил-тРНК эти факторы отделяются от рибосомы.

Фаза элонгации, или удлинения пептида, включает в себя все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. Она представляет собой циклически повторяющиеся события, при которых происходит специфическое узнавание аминоацил-тРНК очередного кодона, находящегося в А-участке, комплементарное взаимодействие между антикодоном и кодоном.

Благодаря особенностям трехмерной организации тРНК. (см. разд. 3.4.3.1) при соединении ее антикодона с кодоном мРНК. транспортируемая ею аминокислота располагается в А-участке, поблизости от ранее включенной аминокислоты, находящейся в П-участке. Между двумя аминокислотами образуется пептидная связь, катализуемая особыми белками, входящими в состав рибосомы. В результате предыдущая аминокислота теряет связь со своей тРНК и присоединяется к аминоацил-тРНК, расположенной в А-участке. Находящаяся в этот момент в П-участке тРНК высвобождается и уходит в цитоплазму (рис. 3.33).

Перемещение тРНК, нагруженной пептидной цепочкой, из А-участка в П-участок сопровождается продвижением рибосомы по мРНК на шаг, соответствующий одному кодону. Теперь следующий кодон приходит в контакт с А-участком, где он будет специфически «опознан» соответствующей аминоацил-тРНК, которая разместит здесь свою аминокислоту. Такая последовательность событий повторяется до тех пор, пока в А-участок рибосомы не поступит кодон-терминатор, для которого не существует соответствующей тРНК.

Сборка пептидной цепи осуществляется с достаточно большой скоростью, зависящей от температуры. У бактерий при 37 °С она выражается в добавлении к подипептиду от 12 до 17 аминокислот в 1 с. В эукариотических клетках эта скорость ниже и выражается в добавлении двух аминокислот в 1 с.

Фаза терминации, или завершения синтеза полипептида, связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ или У ГА), когда тот входит в зону А-участка рибосомы. При этом к последней аминокислоте в пептидной цепи присоединяется вода, и ее карбоксильный конец отделяется от тРНК. В результате завершенная пептидная цепь теряет связь с рибосомой, которая распадается на две субчастицы (рис. 3.34).

Посттрансляционные преобразования белков. Синтезированные в ходе трансляции пептидные цепи на основе своей первичной структуры приобретают вторичную и третичную, а многие-и четвертичную организацию, образуемую несколькими пептидными цепями. В зависимости от функций, выполняемых белками, их аминокислотные последовательности могут претерпевать различные преобразования, формируя функционально активные молекулы белка.

Многие мембранные белки синтезируются в виде пре-белков, имеющих на N-конце лидерную последовательность, которая обеспечивает him узнавание мембраны. Эта последовательность отщепляется при созревании и встраивании белка в мембрану. Секреторные белки также имеют на N-конце лидерную последовательность, которая обеспечивает их транспорт через мембрану.

Некоторые белки сразу после трансляции несут дополнительные аминокислотные про-последовательности, определяющие стабильность предшественников активных белков. При созревании белка они удаляются, обеспечивая переход неактивного пробелка в активный белок. Например, инсулин вначале синтезируется как пре-проинсулин. Во время секреции пре-последовательность отщепляется, а затем проинсулин подвергается модификации, при которой из него удаляется часть цепи и он превращается в зрелый инсулин.

I - РНК-полимераза связывается с ДНК и начинает синтезировать мРНК в направлении 5" → 3";

II - по мере продвижения РНК-полимеразы к 5"-концу мРНК прикрепляются рибосомы, начинающие синтез белка;

III - группа рибосом следует за РНК-полимеразой, на 5"-конце мРНК начинается ее деградация;

IV -процесс деградации протекает медленнее, чем транскрипция и трансляция;

V - после окончания транскрипции мРНК освобождается от ДНК, на ней продолжается трансляция и деградация на 5"-конце

Формируя третичную и четвертичную организацию в ходе посттрансляционных преобразований, белки приобретают способность активно функционировать, включаясь в определенные клеточные структуры и осуществляя ферментативные и другие функции.

Рассмотренные особенности реализации генетической информации в про - и эукариотических клетках обнаруживают принципиальное сходство этих процессов. Следовательно, механизм экспрессии генов, связанный с транскрипцией и последующей трансляцией информации, которая зашифрована с помощью биологического кода, сложился в целом еще до того, как были сформированы эти два типа клеточной организации. Дивергентная эволюция геномов про - и эукариот привела к возникновению различий в организации их наследственного материала, что не могло не отразиться и на механизмах его экспресии.

Постоянное совершенствование наших знаний об организации и функционировании материала наследственности и изменчивости обусловливает эволюцию представлений о гене как функциональной единице этого материала.

Взаимосвязь между геном и признаком. Пример. Гипотеза «один ген - один фермент», ее современная трактовка.

Открытия экзон-интронной организации эукариотических генов и возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная последовательность первичного транскрипта может обеспечить синтез нескольких полипептидных цепей с разными функциями или их модифицированных аналогов. Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий дыхательный фермент цитохром b. Он может существовать в двух формах (рис. 3.42). «Длинный» ген, состоящий из 6400 п. н., имеет 6 экзонов общей протяженностью 1155 п. н. и 5 интронов. Короткая форма гена состоит из 3300 п. н. и имеет 2 интрона. Она фактически представляет собой лишенный первых трех интронов «длинный» ген. Обе формы гена одинаково хорошо экспрессируются.

После удаления первого интрона «длинного» гена box на основе объединенной нуклеотидной последовательности двух первых экзонов и части нуклеотидов второго интрона образуется матрица для самостоятельного белка - РНК-матуразы (рис. 3.43). Функцией РНК-матуразы является обеспечение следующего этапа сплайсинга - удаление второго интрона из первичного транскрипта и в конечном счете образование матрицы для цитохрома b.

Другим примером может служить изменение схемы сплайсинга первичного транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная форма антител имеет на С-конце длинный «хвост» аминокислот, который обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого хвоста нет, что объясняется удалением в ходе сплайсинга из первичного транскрипта кодирующих этот участок нуклеотидов.

У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 (рис. 3.44) видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D

В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, .определяющих движение РНК-полимеразы в разных направлениях вдоль молекулы ДНК.

Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген - один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид - один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.

Один ген один фермент.

В 1940 г Дж. Бидл и Эдвард Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований – у микроскопического грибка Neurospora crassa.. Ими были получены мутации, у которых; отсутствовала активность того-или иного фермента метаболизма. А это приводило к тому, что мутантный гриб бьл не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду. Сформулированная Дж. Бидлом и Э. Татумом теория "один ген - один фермент" - быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.

Методы. селекции так называемых "биохимических мутаций", приводящих к нарушениям действия ферментов, обеспечивающих разные пути метаболизма, оказались очень плодотворными не только для науки, но и для практики. Сначала они привели к возникновению генетики и селекции промышленных микроорганизмов, а потом и к микробиологической промышленности, которая использует штаммы микроорганизмов, сверх продуцирующие такие стратегически важные вещества, как антибиотики, витамины, аминокислоты и др.. В основе принципов селекции и генной инженерии штаммов сверхпродуцентов лежит представление, что "один ген кодирует один фермент". И хотя это представление отлично практике приносит многомиллионные прибыли и спасает миллионы жизней (антибиотики) - оно не является окончательным. Один ген - это не только один фермент.

Синтез РНК (транскрипция РНК).

Структура РНК.

Организация генетического материала у эукариот.

Способ записи генетической информации

Организация генетического материала. Функциональные отделы генома.

Общие сведения об экспрессии генов.

1. Общие сведения об экспрессии генов

Как известно, в ДНК содержится определенная генетиче­ская информация:

О структуре всех белков и РНК организма, а также о порядке реализации этой информации в раз­ных клетках в процессе онтогенеза и при различных функциональных состояниях.

Поскольку во всех соматических клетках организма - один и тот же набор из 46 хромосом, - то, несмотря сильные отличия между клетками, все они содержат в своих ДНК одну и ту же генетическую информацию. (Некоторое исключение составляют лимфоциты, в процессе формирования которых происходит перестройка генов иммуноглобулинов.)

В процессе репликации ДНК генетиче­ская информация воспроизводится целиком, чтобы затем передаваться дочерним клеткам. Но, кроме того, эта информация экспрессируется (реализуется) в клетке, обуславливая все проявления ее жизнедеятель­ности. Однако экспрессии подвергается не вся имеющая­ся в ядре генетическая информация, а лишь какая-то ее часть.

Экспрессия информации о структуре определенного белка включает 2 основных этапа:

а) Первый из них - транскрипция: образование в клеточ­ном ядре на соответствующем гене (локализующемся в одной из хромосом) специального посредника - матричной РНК (мРНК).

Смысл этого процесса - переписывание информации о структуре белка с огромного неподвижного носителя (ДНК в составе хромосомы) на небольшой подвижный носитель -мРНК. Примерно так же обстоит дело, когда с же­сткого диска компьютера, содержащего тысячи фай­лов, переписывают один из них на дискету. Следовательно, мРНК, считанные с разных генов, должны отличаться друг от друга - как отли­чаются друг от друга сами гены. Другое важное обстоя­тельство: непосредствен­ный продукт транскрип­ции гена правильней называть предшественником мРНК (пре- мРНК). Дело в том, что новообразован­ная мРНК подвергается тут же (в ядре) созреванию, или процессингу. При этом она пре­терпевает существенную модификацию. И лишь после того зрелая мРНК поступает из ядра в цитоплазму.

б) Второй из основных этапов экспрессии гена трансля­ция: синтез белка на рибосомах по программе, диктуемой мРНК. Суть этой программы - определение очередности, в ко­торой аминокислоты должны включаться в строящуюся пеп­тидную цепь. Причем в процессе участвуют не свободные, а активированные аминокислоты: каждая из них связана с т. н. транспортной РНК (тРНК), т. е. находится в виде аминоацил- тРНК (аа- тРНК). Для каждой из 20 аминокислот имеется своя специфическая форма тРНК, а чаще даже не одна, а несколько форм.



Рибосомы же играют в трансляции роль молекулярных ма­шин, обеспечивающих правильное взаимодействие участников. В состав рибосомы входят четыре молекулы т. и. рибосомной РНК (рРНК) - по одной молекуле каждого из 4 х видов рРНК. Объединяясь с рибосомными белками, они образуют две субъе­диницы рибосомы и выполняют в них структурную, а также, возможно, каталитическую функции. Таким образом, в трансляции участвуют PНK трех клас­сов - мРНК, тРНК и рРНК.

2. Организация генетического материала. Функциональные отделы генома

Гены и их структура

Собственно информация о структуре белков и РНК записа­на в участках ДНК, называемых генами и цистронами.

Ген - это участок ДНК, кодирующий один белок.

Цистрон же участок ДНК, кодирующий одну полипептидную цепь.

У животных и чело­века цистроны нередко рас­полагаются в разных хромосомах и обычно тоже называ­ются генами. Кроме генов всех белков организма, в хромосомах имеются также гены РНК - четырех видов рибосомных РНК и нескольких десятков транспортных РНК.

Общая совокупность генов, определяющих наследственную информацию организма, называется геномом .

Почти все гены эукариот (в отличие от генов прокариот) имеют характерную особенность: содержат не только кодирую­щие участки -экзоны , но и некодирующие -интроны . Экзоны и интроны перемежаются друг с другом, что придает гену как бы «разорванную» структуру.

Число интронов в гене варьирует от 2 до несколь­ких десятков; в гене миози­на их около 50. Порой на ин­троны приходится до 90 % общей длины гена.

Прочие отделы ДНК

Между генами также находятся некодирующие последовательности - спейсеры . Несмотря на общее название, функциональная роль их может быть обсалютно различной.

а) Многие спейсерные участки, видимо, выполняют струк­турную роль:

Участвуют в правильной укладке нуклеосомной цепи в высшие структуры хроматина,

В прикреплении хромосом к аппарату центриолей и т. д.

б) Другие некодирующие участки ДНК служат специфиче­скими локусами связывания определенных белков:

Функционирующих на ДНК ферментов,

Белков, выполняющих регуляторную функцию.

При этом участки связывания РНК-полимеразы (фермента, синтезирующего РНК на ДНК) называются промоторами . Они либо вплотную примыкают к началу гена (или группы ге­нов), либо отделены от гена какими-либо другими функцио­нальными локусами.

в) У эукариот (включая человека) регуляцию «прочтения» ге­нов осуществляют не только белки-репрессоры, но и белки-ак­тиваторы - т. н. транскрипционные факторы.

К последним относятся уже упоминавшиеся общие факторы транскрипции, необходимые для связывания РНК полимеразы с промотором. Эти факторы имеются во всех клетках и необходи­мы для «прочтения» любого функционирующего гена.

Другие транскрипционные факторы повышают активность только определенных генов, и локусы ДНК, связывающие такие факторы, называются энхансерами .

г) Наконец, в ДНК могут содержаться короткие локусы, служащие сигналами об окончании (терминации ) транскрип­ции ДНК.

Терминирующие участки, распола­гающиеся после генов, называются терминаторами .

3. Способ записи генетической информации

Функциональная роль цепей ДНК

Две цепи ДНК в области гена принципиально различаются по своей функциональной роли: одна из них является кодирую­щей или смысловой , вторая - матричной .

Это значит, что в процессе «считывания» гена (транскрип­ции, или синтеза пре-мРНК) в качестве матрицы выступает только одна - матричная - цепь ДНК. Продукт же этого про­цесса - пре- мРНК по последовательности нуклеотидов сов­падает с кодирующей цепью ДНК (с заменой тиминовых основа­ний на урациловые).

Таким образом, получается, что с помощью матричной це­ни ДНК при транскрипции воспроизводится в структуре РНК генетическая информации кодирующей цепи ДНК.

На рисунках ген принято изображать так, чтобы кодирую­щая цепь была сверху; тогда, в соответствии с общим правилом изображения ДНК, 5"-конец кодирующей цепи дол­жен располагаться слева.

Информация на кодирующей цепи записана в направлении 5´→3´; следовательно, промотор находится со стороны 5"-конца кодирующей цепи гена. И этот же конец принято считать 5"-концом всего гена (хотя у его матричной цепи здесь находится 3‘- конец).

Основные свойства генетического кода

Единицей информации в кодирующей цепи ДНК является триплет - последовательность из трех нуклеотидов.

4 вида нуклеотидов (встречающиеся в ДНК) могут образо­вывать 64 вида триплетов. Из них 61 триплет является смы­словым, т. е. кодирует ту или иную из 20 аминокислот, а 3 три­плета являются «бессмысленными».

Как видим, на одну аминокислоту приходится в среднем несколько смысловых триплетов (в реальности от 1 до 6). По этой причине генетический код называют вырожденным . Не будь он таким, случайные точечные мутации (замены в ДНК одних нуклеотидов на другие) с очень высокой частотой приво­дили бы к появлению «бессмысленных» триплетов.

В то же время код специфичен : каждому из смысловых три­плетов соответствует только одна аминокислота.

Сама же информация о белке состоит в том, что в полном ге­не (исключая интроны) линейная последовательность триплетов кодирует аналогичную линейную последовательность аминоки­слот в первичной структуре данного белка (в направлении от аминного к карбоксильному концу пептидной цепи).

Этого оказывается вполне достаточно, поскольку первич­ная структура белка определяет пространственную конфигура­цию белковой молекулы, а также ее физико-химические и био­логические свойства.

Линейное соответствие между последовательностью три­плетов в экзонах гена и аминокислот в пептидной цепи обозначается как коллинеарность генетического кода.

Итак, генетический код является триплетным. специфиче­ским, вырожденным, коллинеарным и непрерывным. К этому списку обычно добавляют универсальность : у всех видов организмов смысл любого триплета один и тот же.

Генетический код

Говоря о коде, до сих пор мы имели в виду смысловую цепь ДНК. Но такова же, с учетом замены тимина (Т) на урацил (У), последовательность нуклеотидов в пре-мРНК.

Триплеты мРНК, соответствующие триплетам ДНК, назы­ваются кодонами . Действительно, именно они непосредственно:

Определяют порядок включения аминокислот в пептидную цепь, синтезируемую на рибосоме.

Кодоны одной аминокислоты различаются лишь последним (третьим) нуклеотидом.

У сходных по стро­ению аминокислот кодоны также сходны между собой: совпада­ют по двум нуклеотидам или по одному, но центрально­му, нуклеотиду.

4. ОРГАНИЗАЦИЯ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА У ЭУКАРИОТ

Гены ряда белков и РНК

Одна из отличительных черт мно­гих генов эукариот - наличие в их составе некодирующих участков - интронов.

Другая особенность состоит в том, что наряду с уникальны­ми генами (представленными в гаплоидном геноме единичным числом копий) встречаются многократно повторяющиеся гены.

Чтобы проиллюстрировать эти две особенности, рассмо­трим некоторые конкретные гены:

Гены гистонов

Гистоны - основные (по кислотно-щелочным свой­ствам) белки, участвующие в формировании нуклеосомной структуры хроматина. Каждый из пяти видов эт­их белков (HI, Н2А, Н2В, НЗ и Н4) кодируется соответству­ющим геном.

Гены рибосомных РНК

В состав рибосом входят рРНК четырех видов. Данные РНК различаются по константе седиментации.

На функционирование генов оказывают влияние очень многие белки.

Общие факторы транскрипции

Общие факторы транскрипции – это такие транскрипционные факторы, которые необходимы для связывания РНК-полимера­зы с промотором, причем и сами тоже взаимодействуют с промотором.

Белок р53 как транскрипционный фактор

Среди большого числа уже открытых транскрипционных факторов наиболее известен, пожалуй, белок р53. Это объясня­ется тем, что он контролирует исключительно важные клеточ­ные процессы и, благодаря этому, вовлечен в большое количе­ство всевозможных регуляторных цепей.

Функциональная роль.

Белок р53 (или его ген) активируется в ответ на разнообраз­ные повреждения клеточной структуры:

Нерепарированные разрывы и другие повреждения ДНК,

Нарушение расхождения хромосом в митозе,

Разрушение микротрубочек и т. д.

В итоге через посредничество белка р53 клетка в ответ на повреждения своей структуры

Либо задерживается на той или иной стадии митотиче­ского цикла и исправляет эти повреждения;

Либо (при невозможности исправлений) вообще прекра­щает деления и вступает в процесс клеточного старения;

Либо (при потенциальной опасности поврежденной клет­ки для ее окружения) осуществляет апоптоз, т. е., по­просту говоря, самоубийство.

В частности, апоптозу, помимо прочих, подвергаются и клетки, в которых произошла опухолевая трансформация. В этой связи понятно, почему одновременно тормозится ангио­генез: это еще один способ ограничения опухолевого роста.

Поэтому белок р53 - один из наиболее важных опухоле­вых супрессоров. В большинстве же развивающихся опухолей функции белка р53 оказываются в том или ином отношении на­рушены.

5. СТРУКТУРА РНК

Все транскрипционные факторы, как и сама транскрипция, призваны обеспечить только одно - образование с нужной ско­ростью РНК на тех или иных участках хромосом.

Общий план строения РНК

Как и ДНК, РНК представляют собой линейные (т. е. неразветвленные) полинуклеотиды с тем же принципом организации:

Состоят из четырех видов нуклеотидов, каждое из которых включает азотистое основание, пентозу и фосфатный остаток;

Нуклеотиды связаны в цепь с помощью 5´,3´-фосфоди- эфирных связей;

Полинуклеотидные цепи полярны, т. е. имеют различи­мые 5"- и 3"-концы.

Но имеются и отличия от ДНК. Главное из них - то, что мо­лекулы РНК (кроме РНК некоторых вирусов) являются не двух-, а одноцепочечными. Причиной служат следующие три особен­ности первичной структуры.

а) Во-первых, пентоза в РНК это не дезоксирибоза, а ри боза, которая содержит дополнительную гидроксигруппу. По­следняя делает двухцепочечную структуру менее компактной.

б) Во вторых, среди четырех главных, или мажорных, азо­тистых основании вместо тимина содержится урацил, отличающнйся от тимина лишь отсутствием метильной группы в 5-м по­ложении.

6. СИНТЕЗ РНК (ТРАНСКРИПЦИЯ ДНК)

Общая характеристика транскрипции

В отличие от репликации ДНК, транскрипция ДНК происходит прак­тически во всех ядросодержащих клетках - как делящихся, так и неделящихся.

Причем в делящихся клетках она совершается в любой мо­мент митотического цикла, кроме периода репликации (у эука­риот) и собственно деления.

Более того, транскрипция какого либо участка ДНК может совершаться не только почти в любой момент цикла, но и много­кратно - сколь угодное число раз. С другой стороны, набор транскрибируемых в клетке участков под действием тех или иных факторов нередко меняется.

Ферментативное обеспечение процесса осуществляется РНК-полимеразой. У эукариот три вида этого фермента:

РНК-полимераза I - для синтеза пре-рРНК.

РНК-полимераза II - для синтеза пре-мРНК и

РНК-полимераза III - для синтеза пре-тРНК

Фермент ползет вдоль ДНК и катализирует поочередное включение в растущую цепь рибонуклеотидов, комплементар­ных нуклеотидам матричной цепи ДНК.

Еще одно сходство с синтезом ДНК состоит в направлении роста строящейся цепи - 5´→3´. Это значит, что у этой цепи оче­редные нуклеотиды присоединяются к З"-концу.

Как при всех матричных синтезах, строящаяся цепь антипараллельна матричной цепи ДНК. Следовательно, по­следняя транскрибируется ферментом в направлении 3´→5´.

Но имеются и принципиальные отличия от синтеза ДНК.

а) Асимметричность процесса: в качестве матрицы, как мы знаем, используется лишь одна цепь ДНК. Не совсем ясно, как ферментная система осуществляет правильный выбор нужной це­пи. Видимо, ключевую роль тут играют какие-то последователь­ности нуклеотидов на одной из цепей, узнаваемые системой.

б) Консервативность процесса: молекула ДНК по оконча­нии синтеза РНК возвращается в исходное состояние. При син­тезе же ДНК молекулы наполовину обновляются, что делает ре­пликацию полуконсервативной.

в) Наконец, синтез РНК не требует для своего начала ника­кой затравки, тогда как при репликации ДНК необходима РНК- затравка.

Механизм транскрипции

Инициация транскрипции

Первый и, пожалуй, важнейший этап транскрипции - это ее инициация: связывание РНК- полимеразы с промотором и образование первой межнуклеотидной связи.

О связывании РНК-полимеразы мы говорили уже не раз, поэтому сейчас лишь напомним основные моменты (с добавле­нием некоторых сведений).

У эукариот всегда требуется предварительное связывание с промотором целой совокупности белков общих факторов транскрипции, с образованием комплекса. Связавшись с промотором, РНК- полимераза вызывает ло­кальную денатурацию ДНК, т. е. разделение цепей ДНК на про­тяжении примерно 1,5 витка ДНК. Как говорят, образуется транскрипционный «гла­зок». Благодаря этому нуклеотиды матричной цепи ДНК в обла­сти «глазка» становятся доступными для спаривания с рНТФ (рибонуклеозидтрифосфат).

Первым в строящуюся цепь РНК всегда включается пури­новый нуклеотид - АТФ или ГТФ, причем все три его фосфат­ных остатка сохраняются.

Затем образуется первая 5",3"-фосфатная связь со вторым нуклеотидом.

Элонгация транскрипции

Следующий за инициацией этап - элонгация: постепенное удлинение растущей цепи пре- РНК до окончательного размера.

Это происходит по мере продвижения РНК-полимеразы по ДНК. Соответственно, перемещается и транскрипционный «глазок», т. е. участок локального расплетения ДНК. На транскрибированной же части ДНК двухцепочечная спи­ральная структура восстанавливается сразу после ухода РНК- полимеразы.

Примерная скорость движения фермента и синтеза РНК - 30 нуклеотидов в секунду.

Терминация транскрипции

Последний этап терминация, или окончание транскрип­ции.

Сигналом для этого служат специальные ГЦ-богатые участ­ки в конце генов. Поскольку сила взаимодействия пар ГЦ до­вольно велика, локальная денатурация таких участ­ков в ДНК происходит трудней. Это замедляет продвижение РНК -полимеразы и может служить для нее сигналом к прекра­щению транскрипции.

Но еще до окончания процесса в конце новосинтезированной РНК тоже успевает появиться ГЦ богатый участок. Благо­даря взаимодействию между своими нуклеотидами, он образует «шпильку».

Т. е. взаимодействия с нуклеотидами матричной цепи ДНК заменяются на «внутришпилечные» взаимодействия. Это облегчает отсоединение РНК от ДНК.

7. СОЗРЕВАНИЕ (ПРОЦЕССИНГ) РНК

Практически все процессы созревания РНК могут быть по­дразделены на три типа:

Удаление одних,

Присоединение других и

Модификация тех же или третьих нуклеотидов.

Удаление «лишних» последовательностей

Общее описание

Удаление «лишних» нуклеотидов осуществляется спе­циальными нуклеазами. Экзонуклеазы последовательно отще­пляют с определенного конца цепи (3´ или 5´) по одному нуклео­тиду. А эндонуклеазы разрезают цепь где-то в средних участ­ках, приводя к ее фрагментации.

Механизм, сплайсинга

Один из ключевых моментов рассматриваемого механизма обеспечение точности разрезания цепи пре-РНК: ошибка даже на один нуклеотид приведет к «сдвигу рамки», что изменит смысл всех кодонов мРНК или антикодона тРНК.

Точность достигается благодаря двум обстоятельствам:

Во-первых, в начале и в конце каждого интрона имеются определенные последовательности нуклеотидов: так, интроны всегда начинаются с Г-У, а кончаются дуплетом А-Г.

Во-вто­рых, для узнавания этих последовательностей используются специальные РНК т. н. малые ядерные РНК (мяРНК). По­следние связаны с ферментами, катализирующими сплайсинг. Такие рибонуклеопротеидные комплексы называются сплайосомами.

Сплайсинг начинается со взаимодействия двух мяРНК с на­чалом и концом интрона. Это дает «ориентацию» для эндону­клеазы: последняя действует на границах двух- и одноцепочеч­ных участков.

Первый разрыв пре-РНК происходит в области 5´ конца ин­трона - это место нахождения левого края левой мяРНК. При этом 5" конец интрона связывается с одним из ну­клеотидов в средней части того же интрона, что приводит к обра­зованию кольцевой структуры.

Присоединение и модификация нуклеотидов

Итак, в процессе созревания пре-РНК последняя теряет значительную часть нуклеотидов. Но происходит также и не­транскрипционное присоединение отдельных нуклеотидов.

В случае пре-мРНК со стороны 5"-конца присоединяется (с помощью нетипичной для полинуклеотидов пирофосфатной связи) 7-метилгуаниловый нуклеотид - компонент «колпач­ка». А со стороны З"-конца понуклеотидно наращивается поли(А)-фрагмент примерно из 200 нуклеотидов. Для этого ис­пользуются специальные ферменты; в частности, для образова­ния поли(А) - фрагмента полиаденилатполимераза.

В случае же пре-тРНК с З"-конца по очереди присоединяют­ся три нуклеотида - Ц, Ц и А, образующие акцепторную ветвь.

Созревание мРНК называется процессингом. Биологиче­ское значение процессинга в эукариотической клетке заключа­ется в возможности получения различных комбинаций экзонов гена, а значит, получения большего разнообразия белков, ко­дируемых одной нуклеотидной последовательностью ДНК.

Кроме того модификация 3’- и 5’-концов мРНК служит для регу­ляции ее экспорта из ядра, поддержания стабильности в цито­плазме и для улучшения взаимодействия с рибосомами.

Еще до завершения транскрипции происходит полиадени- лирование З’-конца (разд. 6.3). К 5"-концу мРНК посредством трифосфатного моста присоединяется 7-метилгуанозин, соеди­няющийся в необычной позиции 5"^5", и происходит метилиро­вание рибоз двух первых нуклеотидов. Этот процесс называется кэпированием.

Процесс вырезания определенных нуклеотидных последо­вательностей из молекул РНК и соединения последовательно­стей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК, называется сплайсингом. В ходе сплайсинга из мРНК уча­стки, не кодирующие белок (интроны), удаляются, а экзоны - участки, кодирующие аминокислотную последовательность, со­единяются друг с другом, и незрелая пре-мРНК превращается в зрелую мРНК, с которой синтезируются (транслируются) белки клетки.

Для сплайсинга необходимо наличие специальных 3"- и 5"- последовательностей. Сплайсинг катализируется состоящим из РНК и белков большим комплексом, который называется сплайсосомой. Сплайсосома включает пять малых ядерных ри- бонуклеопротеидов (мяРНП) - и1, и2, и4, и5 и иб. РНК, вхо­дящая в состав мяРНП, взаимодействует с интроном и, возможно, участвует в катализе. Она принимает участие в сплайсинге интронов, содержащих в 5" сайте ГУ, и АГ в 3" сплайсинг-сайте.

Иногда мРНК в процессе созревания могут подвергаться альтернативному сплайсингу, который заключается в том, что имеющиеся в составе пре-мРНК интроны вырезаются в разных альтернативных комбинациях, при которых вырезаются и неко­торые экзоны. Некоторые из продуктов альтернативного сплай­синга пре-мРНК нефункциональны, как например, при определении пола у плодовой мушки дрозофилы, однако часто в результате альтернативного сплайсинга пре-мРНК одного ге­на образуются многочисленные мРНК и их белковые продукты.

В настоящее время известно, что у человека 94 % генов подвержено альтернативному сплайсингу (остальные б % генов не содержат интронов). Альтернативный сплайсинг у многокле­точных эукариот является ключевым механизмом увеличения разнообразия белков, не создавая избыточных копий гена, а также позволяет осуществлять тканеспецифическую и стадиес­пецифическую регуляцию экспрессии (проявления) генов.