1 Дополнительное построение, ведущее к теореме о средней линии треугольника, трапеции и свойствам подобия треугольников.

И она равна половине гипотенузы .
Следствие 1.
Следствие 2.

2 Все прямоугольные треугольники с одинаковым острым углом - подобны. Взгляд на тригонометрические функции.

3 Пример дополнительного построения - высота, опущенная на гипотенузу. Вывод теоремы Пифагора на основе подобия треугольников.

Отсюда видно, что

1 Все прямоугольные треугольники с одинаковым острым углом - подобны. Взгляд на тригонометрические функции.

Треугольники со сторонами штрихованными и с не штрихованными подобны по равенству двух углов. Поэтому откуда

Это значит, что указанные отношения зависят лишь от острого угла прямоугольного треугольника и по сути определяют его. Это одно из оснований появления тригонометрических функций:

Часто запись тригонометрических функций угла в подобных прямоугольных треугольниках наглядней записи соотношений подобия!

2 Пример дополнительного построения - высота, опущенная на гипотенузу. Вывод теоремы Пифагора на основе подобия треугольников.

Опустим на гипотенузу AB высоту CH. Имеем три подобных треугольника ABC, AHC и CHB. Запишем выражения для тригонометрических функций:

Отсюда видно, что . Складывая, получаем теорему Пифагора, поскольку :

Другое доказательство теоремы Пифагора см.в комментарии к задаче 4.
3 Важный пример дополнительного построения – построение угла, равного одному из углов треугольника.

Проводим из вершины прямого угла отрезок прямой, составляющий с катетом CA угол, равный углу CAB заданного прямоугольного треугольника ABC. В результате получим равнобедренный треугольник ACM с углами при основании . Но другой треугольник, получающийся при таком построении, также будет равнобедренным, поскольку каждый его угол при основании равен (по свойству углов прямоугольного треугольника и по построению - из прямого угла «вычли» угол ). В силу того, что треугольники BMC и AMC равнобедренные с общей стороной MC имеем равенство MB=MA=MC, т.е. MC – медиана, проведенная к гипотенузе прямоугольного треугольника , и она равна половине гипотенузы .
Следствие 1. Середина гипотенузы является центром окружности, описанной вокруг этого треугольника, поскольку получилось, что середина гипотенузы равноудалена от вершин прямоугольного треугольника.
Следствие 2. Средняя линия прямоугольного треугольника, соединяющая середину гипотенузы и середину катета, параллельна противоположному катету и равна его половине.

Опустим в равнобедренных треугольниках BMC и AMC высоты MH и MG на основания. Поскольку в равнобедренном треугольнике, высота, опущенная на основание, является также и медианой (и биссектрисой), то MH и MG –линии прямоугольного треугольника, соединяющие середину гипотенузы с серединами катетов. По построению они оказываются параллельными противоположным катетам и равные их половинам, поскольку треугольники равны MHC и MGC равны (причем MHCG – прямоугольник). Этот результат является основанием для доказательства теоремы о средней линии произвольного треугольника и, далее, средней линии трапеции и свойства пропорциональности отрезков, отсекаемых параллельными прямыми на двух пересекающих их прямых.


Задачи
Использование свойств подобия -1
Использование основных свойств - 2
Использование дополнительного построения 3-4

1 2 3 4

Высота, опущенная из вершины прямого угла прямоугольного треугольника равна корню квадратном из длин отрезков, на которые она делит гипотенузу.

Решение представляется очевидным, если знать вывод теоремы Пифагора из подобия треугольников:

\(\mathrm{tg}\beta=\frac{h}{c_1}=\frac{c_2}{h}\),
откуда \(h^2=c_1c_2\).

Найти геометрическое место точек (ГМТ) пересечения медиан всевозможных прямоугольных треугольников, гипотенуза АВ которых зафиксирована.

Точка пересечения медиан любого треугольника отсекает от медианы одну треть, считая от точки ее пересечения с соответствующей стороной. В прямоугольном треугольнике медиана, проведенная из прямого угла, равна половине гипотенузы. Поэтому искомое ГМТ есть окружность радиуса, равной 1/6 от длины гипотенузы, с центром в середине этой (фиксированной) гипотенузы.

Тема урока

Средняя линия треугольника

Цели урока

Закрепить знания школьников о треугольниках;
Познакомить учащихся с таким понятием, как средняя линия треугольника;
Сформировать знания учеников о свойствах треугольников;
Продолжать обучать детей применению свойств фигур при решении задач;
Развивать логическое мышление, усидчивость и внимание учеников.

Задачи урока

Формировать знания школьников о средней линии треугольников;
Проверить знания учащихся по пройденным темам о треугольниках;
Проверить умение учащихся решать задачи.
Развивать у школьников интерес к точным наукам;
Продолжать формировать умение учащихся излагать свои мысли и владеть математическим языком;

План урока

1. Средняя линия треугольника. Основные понятия.
2. Средняя линия треугольника, теоремы и свойства.
3. Повторение ранее изученного материала.
4. Основные линии треугольника и их свойства.
5. Интересные факты из области математики.
6. Домашнее задание.

Средняя линия треугольника

Средней линией треугольника называют такой отрезок, который соединяет середины двух сторон данного треугольника.

В каждом треугольнике есть три средние линии, которые образуют еще один новый треугольник, расположенный внутри.

Вершины вновь образованного треугольника находятся на срединах сторон данного треугольника.

В каждом треугольнике есть возможность провести три средние линии.

Теперь давайте более детально остановимся на этой теме. Посмотрите на рисунок треугольника вверху. Перед вами треугольник АВС, на котором проведении средние линии. Отрезки MN, MP и NP образуют внутри данного треугольника еще один треугольник MNP.

Свойства средней линии треугольника

Каждая средняя линия треугольника, соединяющая середины его сторон, обладает следующими свойствами:

1. Средняя линия треугольника параллельна его третей стороне и равна её половине.

Таким образом, мы видим, что сторона АС параллельна MN, которая в два раза меньше, чем сторона АС.



2. Средние линии треугольника делят его на четыре равных треугольника.

Если мы посмотрим на треугольник АВС, то увидим, что средние линии MN, MP и NP разделили его на четыре равных треугольника, и в итоге образовались треугольники MBN, PMN, NCP и AMP.

3. Средняя линия треугольника отсекает от данного треугольника подобный, площадь которого равняется одной четвертой исходного треугольника.

Так, например, в треугольнике АВС средняя линия MP отсекает от данного треугольника, образуя треугольник AMP, площадь которого равна одной четвертой треугольника АВС.

Треугольники

В предыдущих классах вы уже изучали такую геометрическую фигуру, как треугольник и знаете, какие бывают виды треугольников, чем они отличаются и какими свойствами обладают.

Треугольник относится к простейшим геометрическим фигурам, которые имеют три стороны, три угла и их площадь ограничена тремя точками и тремя отрезками, которые попарно соединяют эти точки.

Вот мы вспомнили определение треугольника, а сейчас давайте повторим все что вы знаете об этой фигуре, ответив на вопросы:

4. Какие виды треугольников вы уже изучили? Перечислите их.
5. Дайте определения каждому из видов треугольников.
6. Чему равна площадь треугольника?
7. Чему равна сумма углов этой геометрической фигуры?
8. Какие типы треугольников вам известны? Назовите их.
9. Какие вы знаете треугольники по типу равных сторон?
10. Дайте определение гипотенузы.
11. Сколько острых углов может быть в треугольнике?

Основные линии треугольника

К основным линиям треугольника относятся: медиана, биссектриса, высота и срединный перпендикуляр.

Медиана

Медианой треугольника называют отрезок, который соединяет вершину треугольника с серединой противолежащей стороны данного треугольника.

Свойства медиан треугольника

1. Она делит треугольник на два других, равных по площади;
2. Все медианы данной фигуры пересекаются в одной точке. Эта точка делит их в отношении два к одному, начиная отсчет от вершины, и называется центром тяжести треугольника;
3. Медианы разделяют данный треугольник на шесть равновеликих.

Биссектриса

Луч, который выходит из вершины и, проходя между сторонами угла, делит его пополам, называется биссектрисой этого угла.

А если отрезок биссектрисы угла соединяет его вершину с точкой, которая лежит на противолежащей стороне треугольника, то он называется биссектрисой треугольника.

Свойства биссектрис треугольника

1. Биссектрисой угла является геометрическое место точек, которые равноудалены от сторон данного угла.
2. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, которые являются пропорциональными прилежащим сторонам треугольника.
3. Центром окружности, вписанной в треугольник, является точка пересечения биссектрис данной фигуры.

Высота

Перпендикуляр, который проведен с вершины к фигуры к прямой, которая является противоположной стороной треугольника, называется его высотой.

Свойства высот треугольника

1. Высота, проведенная из вершины прямого угла, делит треугольник на два подобных.
2. Если треугольник является остроугольным, то его две высоты отсекают от данного треугольника ему подобные.

Срединный перпендикуляр

Срединным перпендикуляром треугольника называют прямую, которая проходит через середину отрезка, который расположен перпендикулярно к этому отрезку.

Свойства серединных перпендикуляров треугольника

1. Любая точка серединного перпендикуляра к отрезку, равноудалена от его концов. В этом случае будет верно и обратное утверждение.
2. Точка пересечения серединных перпендикуляров, которые проведены к сторонам треугольника, есть центром окружности, которая описана около этого треугольника.

Интересные факты из области математики

Будет ли для вас новостью узнать, что за расшифровку секретной переписки правительства Испании, Франсуа Виета хотели отправить на костер, так как считали, что узнать шифр мог только дьявол, а человеку это не по силам.

Известно ли вам, что первым человеком, который предложил нумеровать кресла, ряды и места, был Рене Декарт? Аристократы-театралы даже просили короля Франции дать за это Декарту награду, но, увы, король отказал, так как считал, что давать награды философу – это ниже его достоинства.

Из-за учащихся, которые могли запомнить теорему Пифагора, но не смогли ее понять, эту теорему называли «ослиным мостом». Это значило, что ученик «осел», который не смог преодолеть мост. В данном случае мостом считали теорему Пифагора.

Писатели сказочники посвящали свои произведения не только мифическим героям, людям и зверюшкам, но и математическим символам. Так, например, автор знаменитой «Красной Шапочки», написал сказку о любви циркуля и линейки.

Домашнее задание

1. Перед вами изображены три треугольника, дайте ответ, являются ли проведенные в треугольниках линии средними?
2. Сколько средних линий можно построить в одном треугольнике?



3. Дан треугольник АВС. Найдите стороны треугольника АВС, если его средние линии имеют такие размеры: OF = 5,5 см, FN = 8 см, ON = 7 см.

Средняя линия трапеции, а особенно ее свойства, очень часто используются в геометрии для решения задач и доказательства тех или иных теорем.


– это четырехугольник, у которого только 2 стороны параллельны друг другу. Параллельные стороны называют основаниями (на рисунке 1 - AD и BC ), две другие – боковыми (на рисунке AB и CD ).

Средняя линия трапеции – это отрезок, соединяющий середины ее боковых сторон (на рисунке 1 - KL ).

Свойства средней линии трапеции

Доказательство теоремы о средней линии трапеции

Доказать , что средняя линия трапеции равна полусумме ее оснований и параллельна этим основаниям.

Дана трапеция ABCD со средней линией KL . Для доказательства рассматриваемых свойств требуется провести прямую через точки B и L . На рисунке 2 это прямая BQ . А также продолжить основание AD до пересечения с прямой BQ .

Рассмотрим полученные треугольники LBC и LQD :

  1. По определению средней линии KL точка L является серединой отрезка CD . Отсюда следует, что отрезки CL и LD равны.
  2. ∠ BLC = ∠ QLD , так как эти углы вертикальные.
  3. ∠ BCL = ∠ LDQ , так как эти углы накрест лежащие при параллельных прямых AD и BC и секущей CD .

Из этих 3 равенств следует, что рассмотренные ранее треугольники LBC и LQD равны по 1 стороне и двум прилежащим к ней углам (см. рис. 3). Следовательно, ∠ LBC = ∠ LQD , BC=DQ и самое главное - BL=LQ => KL , являющаяся средней линией трапеции ABCD , также является и средней линией треугольника ABQ . Согласно свойству средней линией треугольника ABQ получаем.

В решении планиметрических задач, помимо сторон и углов фигуры, нередко активное участие принимают и другие величины – медианы, высоты, диагонали, биссектрисы и прочие. К их числу относится и средняя линия.
Если исходный многоугольник – трапеция, то что представляет собой его средняя линия? Данный отрезок представляет собой часть прямой, которая пересекает боковые стороны фигуры посередине и располагается параллельно двум другим сторонам – основаниям.

Как найти среднюю линию трапеции через линию средины и основания

Если известны величина верхнего и нижнего оснований, то рассчитать неизвестное поможет выражение:

a, b – основания, l – средняя линия.

Как найти среднюю линию трапеции через площадь

Если в исходных данных присутствует значение площади фигуры, то с помощью данной величины также можно вычислить длину линии средины трапеции. Воспользуемся формулой S = (a+b)/2*h,
S – площадь,
h – высота,
a, b – основания.
Но, так как l = (a+b)/2, то S = l*h, а значит l=S/h.

Как найти среднюю линию трапеции через основание и углы при нем

При наличии длины большего основания фигуры, ее высоты, а также известных градусных мер углов при нем, выражение для нахождения линии средины трапеции будет иметь следующий вид:

l=a – h*(ctgα+ctgβ)/2, при этом
l – искомая величина,
a – большее основание,
α, β – углы при нем,
h – высота фигуры.

Если известно значение меньшего основания (при тех же остальных данных), найти линию средины поможет соотношение:

l=b+h*(ctgα+ctgβ)/2,

l – искомая величина,
b – меньшее основание,
α, β – углы при нем,
h – высота фигуры.

Найти среднюю линию трапеции через высоту, диагонали и углы

Рассмотрим ситуацию, когда в условиях задачи присутствуют значения диагоналей фигуры, углы, которые они образуют, пересекаясь друг с другом, а также высота. Рассчитать среднюю линию можно с помощью выражений:

l=(d1*d2)/2h*sinγ или l=(d1*d2)/2h*sinφ,

l – линия средины,
d1, d2 – диагонали,
φ, γ – углы между ними,
h – высота фигуры.

Как найти среднюю линию трапецииДля равнобедренной фигуры

В случае, если базовая фигура – трапеция равнобедренная, приведенные выше формулы будут иметь следующий вид.

  • При наличии значений оснований трапеции изменений в выражении не произойдет.

l = (a+b)/2, a, b – основания, l – средняя линия.

  • Если известны высота, основание и углы, к нему прилегающие, то:

l=a-h*ctgα,
l=b+h*ctgα,

l – линия средины,
a, b – основания (b < a),
α – углы при нем,
h – высота фигуры.

  • Если известна боковая сторона трапеции и одно из оснований, то определить искомую величину можно, обратившись к выражению:

l=a-√(c*c-h*h),
l=b+√(c*c-h*h),
l – линия средины,
a, b – основания (b < a),
h – высота фигуры.

  • При известных значениях высоты, диагоналей (а они равны между собой) и углах, образованных в результате их пересечения, линию средины можно найти следующим образом:

l=(d*d)/2h*sinγ или l=(d*d)/2h*sinφ,

l – линия средины,
d – диагонали,
φ, γ – углы между ними,
h – высота фигуры.

  • Известны площадь и высота фигуры, тогда:

l=S/h,
S – площадь,
h – высота.

  • Если перпендикуляр-высота неизвестен, его можно определить с помощью определения тригонометрической функции.

h=c*sinα, поэтому
l=S/c*sinα,
l – линия средины,
S – площадь,
c – боковая сторона,
α- угол у основания.

Средняя линия треугольника интересный характеризующий отрезок, так как обладает несколькими свойствами, позволяющими найти простое решение для казалось бы сложной задачи. Поэтому рассмотрим основные свойства средней линии и поговорим о том, как найти длину этого отрезка в треугольнике.

Треугольник и его характеризующие отрезки

Треугольник это фигура, состоящая из трех сторон и трех углов. В зависимости от углов треугольники делятся на:

  • Остроугольные
  • Тупоугольные
  • Прямоугольные

Рис. 1. Виды треугольников

Основными характеризующими отрезками треугольника являются:

  • Медиана – отрезок, соединяющий вершину с серединой противоположной стороны.
  • Биссектриса – отрезок, делящий угол пополам
  • Высота - перпендикуляр, опущенный из вершины треугольника на противоположную сторону.

Рис. 2. Высота, медиана и биссектриса в треугольнике

Для каждого из характеризующих отрезков существует своя точка пересечения. При соединении трех точек пересечения медиан, биссектрис и высот получается золотое сечение треугольника.

Однако существует и ряд дополнительных характеризующих отрезков:

  • Серединный перпендикуляр - высота восстановленная из середины высоты. Как правило серединный перпендикуляр продолжается до пересечения с другой стороной.
  • Средняя линия - отрезок, соединяющий середины смежных сторон.
  • Радиус вписанной окружности . Вписанная окружность - окружность, которая касается каждой из сторон треугольника.
  • Радиус описанной окружности. Описанная окружность - окружность, содержащая в себе все стороны треугольника.

Смежными сторонами треугольников называют стороны, которые имеют общую вершину. В геометрии существует понятие противоположных сторон, т.е. сторон, которые лежат друг напротив друга и не имеют общих вершин. Но это понятие для треугольников не применимо - любая пара сторон в треугольнике является смежной.

Свойство средней линии

Свойств средней линии не так много, но все они имеют значение при решении задач. Дело в том, что задач на нахождение длины средней линии мало, а потому некоторые из них способны построить ученика в ступор при всей своей простоте.

Поэтому приведем и обсудим все свойства средней линии треугольника:

  • Средняя линия равна половине основания. Вообще правильнее сказать не половине основания, а половине противолежащей стороны. Так как сторон в треугольнике 3, а основание всего одно. Но в общем случае, основанием можно считать любую из сторон треугольника, так что подобная формулировка считается допустимой. К тому же ее проще выучить. В общем случае по этому свойству и определяется длина средней линии треугольника.
  • Средняя линия параллельна основанию. С понятием основания здесь та же ситуация, что и в прошлом свойстве.
  • Средняя линия отсекает от треугольника малый подобный треугольник с коэффициентом подобия, равным 0,5
  • Три средние линии делят треугольник на 4 равных треугольника, подобных большому треугольнику с коэффициентом подобия 0,5

Рис. 3. Средние линии в треугольнике

Собственно формула длины средней линии вытекает из второго свойства:

$m=1\over{2}*a$- где m - средняя линия, а- сторона противоположная средней линии.

Что мы узнали?

Мы поговорили о второстепенных характеризующих отрезках, выделив среднюю линию. Привели свойства средних линий и поговорили о особенностях формулировки этих свойств. Рассказали, как выводится формула длины средней линии треугольника и как средняя линия разбивает треугольник. Все эти свойства используются при решении треугольников.

Тест по теме

Оценка статьи

Средняя оценка: 4.3 . Всего получено оценок: 174.