1. Скорость химических реакций. Определение понятия. Факторы, влияющие на скорость химической реакции: концентрация реагента, давление, температура, присутствие катализатора. Закон действующих масс (ЗДМ) как основной закон химической кинетики. Константа скорости, ее физический смысл. Влияние на константу скорости реакции природы реагирующих веществ, температуры и присутствия катализатора.

Скорость гомогенной реакции - это величина, численно равная изменению молярной концентрации любого участника реакции в единицу времени.

Средняя скорость реакции v ср в интервале времени от t 1 до t 2 определяется соотношением:

Основные факторы, влияющие на скорость гомогенной химической реакции:

  • - природа реагирующих веществ;
  • - молярные концентрации реагентов;
  • - давление (если в реакции участвуют газы);
  • - температура;
  • - наличие катализатора.

Скорость гетерогенной реакции - это величина, численно равная изменению химического количества любого участника реакции в единицу времени на единице площади поверхности раздела фаз: .

По стадийности химические реакции подразделяются на простые (элементарные) и сложные. Большинство химических реакций представляют собой сложные процессы, протекающие в несколько стадий, т.е. состоящие из нескольких элементарных процессов.

Для элементарных реакций справедлив закон действующих масс: скорость элементарной химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Для элементарной реакции аА + bB > ... скорость реакции, согласно закону действующих масс, выражается соотношением:

где с(А) и с(В) - молярные концентрации реагирующих веществ А и В; a и b - соответствующие стехиометрические коэффициенты; k - константа скорости данной реакции.

Для гетерогенных реакций в уравнение закона действующих масс входят концентрации не всех реагентов, а только газообразных или растворенных. Так, для реакции горения углерода:

С (к) + О 2 (г) > СО 2 (г)

уравнение скорости имеет вид: .

Физический смысл константы скорости - она численно равна скорости химической реакции при концентрациях реагирующих веществ, равных 1 моль/дм 3 .

Величина константы скорости гомогенной реакции зависит от природы реагирующих веществ, температуры и катализатора.

2. Влияние температуры на скорость химической реакции. Температурный коэффициент скорости химической реакции. Активные молекулы. Кривая распределения молекул по их кинетической энергии. Энергия активации. Соотношение величин энергии активации и энергии химической связи в исходных молекулах. Переходное состояние, или активированный комплекс. Энергия активации и тепловой эффект реакции (энергетическая схема). Зависимость температурного коэффициента скорости реакции от величины энергии активации.

При увеличении температуры скорость химической реакции обычно возрастает. Величина, показывающая во сколько раз увеличивается скорость реакции при увеличении температуры на 10 градусов (или, что то же самое, на 10 К), называется температурным коэффициентом скорости химической реакции (г):

где - значения скорости реакции соответственно при температурах Т 2 и Т 1 ; г - температурный коэффициент скорости реакции.

Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость химической реакции увеличивается в 2 - 4 раза.

Более точное описание зависимости скорости реакции от температуры осуществимо в рамках теории активации Аррениуса. Согласно этой теории, химическая реакция может происходить при столкновении только активных частиц. Активными называются частицы, которые обладают определенной, характерной для данной реакции, энергией, необходимой для преодоления сил отталкивания, возникающих между электронными оболочками реагирующих частиц. Доля активных частиц возрастает при увеличении температуры.

Активированный комплекс - это промежуточная неустойчивая группировка, образующаяся при столкновении активных частиц и находящаяся в состоянии перераспределения связей. При распаде активированного комплекса образуются продукты реакции.

Энергия активации Е а равна разности между средней энергией реагирующих частиц и энергией активированного комплекса.

Для большинства химических реакций энергия активации меньше энергии диссоциации наименее прочных связей в молекулах реагирующих веществ.

В теории активации влияние температуры на скорость химической реакции описывается уравнением Аррениуса для константы скорости химической реакции:

где А - постоянный множитель, не зависящий от температуры, определяющийся природой реагирующих веществ; е - основание натурального логарифма; Е а - энергия активации; R - молярная газовая постоянная.

Как следует из уравнения Аррениуса, константа скорости реакции тем больше, чем меньше энергия активации. Даже небольшое снижение энергии активации (например, при внесении катализатора) приводит к заметному возрастанию скорости реакции.

По уравнению Аррениуса, увеличение температуры приводит к увеличению константы скорости химической реакции. Чем меньше величина Е а, тем заметнее влияние температуры на скорость реакции и, значит, тем больше температурный коэффициент скорости реакции.

3. Влияние катализатора на скорость химической реакции. Гомогенный и гетерогенный катализ. Элементы теории гомогенного катализа. Теория промежуточных соединений. Элементы теории гетерогенного катализа. Активные центры и их роль в гетерогенном катализе. Понятие об адсорбции. Влияние катализатора на энергию активации химической реакции. Катализ в природе, промышленности, технике. Биохимический катализ. Ферменты.

Катализом называется изменение скорости химической реакции под действием веществ, количество и природа которых после завершения реакции остаются такими же, как и до реакции.

Катализатор - это вещество, изменяющее скорость химической реакции, но остающееся химически неизменным.

Положительный катализатор ускоряет реакцию; отрицательный катализатор, или ингибитор, замедляет реакцию.

В большинстве случаев действие катализатора объясняется тем, что он снижает энергию активации реакции. Каждый из промежуточных процессов с участием катализатора протекает с меньшей энергией активации, чем некатализируемая реакция.

При гомогенном катализе катализатор и реагирующие вещества образуют одну фазу (раствор). При гетерогенном катализе катализатор (обычно твердое вещество) и реагирующие вещества находятся в разных фазах.

В ходе гомогенного катализа катализатор образует с реагентом промежуточное соединение, с большой скоростью реагирующее со вторым реагентом или быстро разлагающееся с выделением продукта реакции.

Пример гомогенного катализа: окисление оксида серы(IV) до оксида серы(VI) кислородом при нитрозном способе получения серной кислоты (здесь катализатором является оксид азота(II), легко реагирующий с кислородом).

При гетерогенном катализе реакция протекает на поверхности катализатора. Начальными стадиями являются диффузия частиц реагентов к катализатору и их адсорбция (т. е. поглощение) поверхностью катализатора. Молекулы реагента взаимодействуют с атомами или группами атомов, находящимися на поверхностим катализатора, образуя промежуточные поверхностные соединения. Перераспределение электронной плотности, происходящее в таких промежуточных соединениях, приводит к образованию новых веществ, которые десорбируются, т. е. удаляются с поверхности.

Процесс образования промежуточных поверхностных соединений происходит на активных центрах катализатора.

Пример гетерогенного катализа - увеличение скорости окисления оксида серы(IV) до оксида серы(VI) кислородом в присутствии оксида ванадия(V).

Примеры каталитических процессов в промышленности и технике: синтез аммиака, синтез азотной и серной кислот, крекинг и риформинг нефти, дожиг продуктов неполного сгорания бензина в автомобилях и т. д.

Примеры каталитических процессов в природе многочисленны, поскольку большинство биохимических реакций, протекающих в живых организмах, относятся к числу каталитических реакций. Катализаторами таких реакций являются белковые вещества, называемые ферментами. В организме человека находится около 30 000 ферментов, каждый из которых катализирует процессы только одного типа (например, птиалин слюны катализирует только превращение крахмала в глюкозу).

4. Химическое равновесие. Обратимые и необратимые химические реакции. Состояние химического равновесия. Константа химического равновесия. Факторы, определяющие величину константы равновесия: природа реагирующих веществ и температура. Сдвиг химического равновесия. Влияние изменения концентрации, давления и температуры на положение химического равновесия.

Химические реакции, в результате которых исходные вещества полностью превращаются в продукты реакции, называются необратимыми. Реакции, идущие одновременно в двух противоположных направлениях (прямом и обратном), называются обратимыми.

В обратимых реакциях состояние системы, при котором скорости прямой и обратной реакции равны (), называется состоянием химического равновесия. Химическое равновесие является динамическим, т. е. его установление не означает прекращение реакции. В общем случае для любой обратимой реакции аА + bB - dD + eE, независимо от ее механизма, выполняется соотношение:

При установившемся равновесии произведение концентраций продуктов реакции, отнесенное к произведению концентраций исходных веществ, для данной реакции при данной температуре представляет собой постоянную величину, называемую константой равновесия (К).

Величина константы равновесия зависит от природы реагирующих веществ и температуры, но не зависит от концентраций компонентов равновесной смеси.

Изменение условий (температуры, давления, концентрации), при которых система находится в состоянии химического равновесия (), вызывает нарушение равновесия. В результате неодинакового изменения скоростей прямой и обратной реакций () c течением времени в системе устанавливается новое химическое равновесие (), соответствующее новым условиям. Переход из одного равновесного состояния в другое называется сдвигом, или смещением положения равновесия.

Если при переходе из одного равновесного состояние в другое увеличиваются концентрации веществ, записанных в правой части уравнения реакции, говорят, что равновесие смещается вправо. Если же при переходе из одного равновесного состояние в другое увеличиваются концентрации веществ, записанных в левой части уравнения реакции, говорят, что равновесие смещается влево.

Направление смещения химического равновесия в результате изменения внешних условий определяется принципом Ле-Шателье: Если на систему, находящуюся в состоянии химического равновесия, оказать внешнее воздействие (изменить температуру, давление или концентрации веществ), то оно будет благоприятствовать протеканию того из двух противоположных процессов, который ослабляет это воздействие.

Согласно принципу Ле-Шателье:

Увеличение концентрации компонента, записанного в левой части уравнения, приводит к смещению равновесия вправо; увеличение концентрации компонента, записанного в правой части уравнения, приводит к смещению равновесия влево;

При увеличении температуры равновесие смещается в сторону протекания эндотермической реакции, а при уменьшении температуры - в сторону протекания экзотермической реакции;

  • - При увеличении давления равновесие смещается в сторону реакции, уменьшающей число молекул газообразных веществ в системе, а при уменьшении давления - в сторону реакции, увеличивающей число молекул газообразных веществ.
  • 5. Фотохимические и цепные реакции. Особенности протекания фотохимических реакций. Фотохимические реакции и живая природа. Неразветвленные и разветвленные химические реакции (на примере реакций образования хлороводорода и воды из простых веществ). Условия зарождения и обрыва цепей.

Фотохимические реакции - это реакции, проходящие под действием света. Фотохимическая реакция протекает, если реагент поглощает кванты излучения, характеризующиеся вполне определенной для данной реакции энергией.

В случае одних фотохимических реакций, поглощая энергию, молекулы реагента переходят в возбужденное состояние, т.е. становятся активными.

В других случаях фотохимическая реакция протекает, если поглощаются кванты настолько большой энергии, что химические связи разрываются и происходит диссоциация молекул на атомы или группы атомов.

Скорость фотохимической реакции тем больше, чем больше интенсивность облучения.

Пример фотохимической реакции в живой природе - фотосинтез, т.е. образование органических веществ клеток благодаря энергии света. У большинства организмов фотосинтез проходит при участии хлорофилла; в случае высших растений фотосинтез суммарно выражается уравнением:

CO 2 + H 2 O органическое вещество + О 2

В основе функционирования процессов зрения тоже лежат фотохимические процессы.

Цепная реакция - реакция, представляющая собой цепь элементарных актов взаимодействия, причем возможность протекания каждого акта взаимодействия зависит от успешности прохождения предыдущего акта.

Стадии цепной реакции - зарождение цепи, развитие цепи и обрыв цепи.

Зарождение цепи происходит, когда за счет внешнего источника энергии (кванта электромагнитного излучения, нагревания, электрического разряда) образуются активные частицы с неспаренными электронами (атомы, свободные радикалы).

В ходе развития цепи радикалы взаимодействуют с исходными молекулами, причем в каждом акте взаимодействия образуются новые радикалы.

Обрыв цепи наступает, если два радикала сталкиваются и передают выделяющуюся при этом энергию третьему телу (молекуле, устойчивой к распаду, или стенке сосуда). Цепь также может оборваться, если образуется малоактивный радикал.

Два типа цепных реакций - неразветвленные и разветвленные.

В неразветвленных реакциях на стадии развития цепи из каждого реагирующего радикала образуется один новый радикал.

В разветвленных реакциях на стадии развития цепи из одного реагирующего радикала образуется 2 или больше новых радикалов.

6. Факторы, определяющие направление протекания химической реакции. Элементы химической термодинамики. Понятия: фаза, система, среда, макро- и микросостояния. Основные термодинамические характеристики. Внутренняя энергия системы и ее изменение в ходе химических превращений. Энтальпия. Соотношение энтальпии и внутренней энергии системы. Стандартная энтальпия вещества. Изменение энтальпии в системах в ходе химических превращений. Тепловой эффект (энтальпия) химической реакции. Экзо- и эндотермические процессы. Термохимия. Закон Гесса. Термохимические расчеты.

Термодинамика изучает закономерности обмена энергией между системой и внешней средой, возможность, направление и пределы самопроизвольного протекания химических процессов.

Термодинамическая система (или просто система) - тело или группа взаимодействующих тел, мысленно выделяемых в пространстве. Остальная часть пространства за пределами системы называется окружающей средой (или просто средой). Система отделена от среды реальной или воображаемой поверхностью.

Гомогенная система состоит из одной фазы, гетерогенная система - из двух или более фаз.

Фаза - это часть системы, однородная во всех ее точках по химическому составу и свойствам и отделенная от других частей системы поверхностью раздела.

Состояние системы характеризуется всей совокупностью ее физических и химических свойств. Макросостояние определяется усредненными параметрами всей совокупности частиц системы, а микросостояние - параметрами каждой отдельной частицы.

Независимые переменные, определяющие макросостояние системы, называются термодинамическими переменными, или параметрами состояния. В качестве параметров состояния обычно выбирают температуру Т, давление р, объем V, химическое количество n, концентрацию с и т. д.

Физическая величина, значение которой зависит только от параметров состояния и не зависит от пути перехода к данному состоянию, называется функцией состояния. Функциями состояния являются, в частности:

U - внутренняя энергия;

Н - энтальпия;

S - энтропия;

G - энергия Гиббса (свободная энергия или изобарно-изотермический потенциал).

Внутренняя энергия системы U - это ее полная энергия, состоящая из кинетической и потенциальной энергии всех частиц системы (молекул, атомов, ядер, электронов) без учета кинетической и потенциальной энергии системы как целого. Поскольку полный учет всех этих составляющих невозможен, то при термодинамическом изучении системы рассматривают изменение ее внутренней энергии при переходе из одного состояния (U 1) в другое (U 2):

U1 U2 U = U2 - U1

Изменение внутренней энергии системы может быть определено экспериментально.

Система может обмениваться энергией (теплотой Q) с окружающей средой и совершать работу А, или, наоборот, над системой может быть совершена работа. Согласно первому закону термодинамики, являющемуся следствием закона сохранения энергии, теплота, полученная системой, может быть использована только на увеличение внутренней энергии системы и на совершение системой работы:

Q = U + A

В дальнейшем будем рассматривать свойства таких систем, на которые не воздействуют никакие иные силы, кроме сил внешнего давления.

Если в системе процесс идет при постоянном объеме (т. е. отсутствует работа против сил внешнего давления), то А = 0. Тогда тепловой эффект процесса, идущего при постоянном объеме, Q v равен изменению внутренней энергии системы:

Большинство химических реакций, с которыми приходится сталкиваться в обыденной жизни, идет при постоянном давлении (изобарные процессы). Если на систему не действуют иные силы, кроме постоянного внешнего давления, то:

A = p(V2 - V1 ) = pV

Поэтому в нашем случае (р = const):

Qp =U + pV

Q р = U2 - U1 + p(V2 - V1 ), откуда

Q p = (U2 + pV2 ) - (U1 + pV1 ).

Функция U + pV называется энтальпией; ее обозначают буквой Н. Энтальпия есть функция состояния и имеет размерность энергии (Дж).

Qp = H2 - H1 = H,

т. е. тепловой эффект реакции при постоянном давлении и температуре Т равен изменению энтальпии системы в ходе реакции. Он зависит от природы реагентов и продуктов, их физического состояния, условий (Т, р) проведения реакции, а также от количества веществ, участвующих в реакции.

Энтальпией реакции называют изменение энтальпии системы, в которой реагенты взаимодействуют в количествах, равных стехиометрическим коэффициентам в уравнении реакции.

Энтальпия реакции называется стандартной, если реагенты и продукты реакции находятся в стандартных состояниях.

Стандартное состояние вещества - агрегатное состояние или кристаллическая форма вещества, в которой оно термодинамически наиболее устойчиво при стандартных условиях (T = 25 o C или 298 К; р = 101,325 кПа).

Стандартным состоянием вещества, существующего при 298 К в твердом виде, считают его чистый кристалл под давлением 101,325 кПа; в жидком виде - чистую жидкость под давлением 101,325 кПа; в газообразном виде - газ с собственным давлением 101,325 кПа.

Для растворенного вещества стандартным считают его состояние в растворе при моляльности 1 моль/кг, причем предполагается, что раствор обладает свойствами бесконечно разбавленного раствора.

Стандартная энтальпия реакции образования 1 моль данного вещества из простых веществ, находящихся в своих стандартных состояниях, называется стандартной энтальпией образования этого вещества.

Пример записи: (CO 2) = - 393,5 кДж/моль.

Стандартная энтальпия образования простого вещества, находящегося в наиболее устойчивом (при данных р и Т) агрегатном состоянии, принимается равной 0. Если элемент образует несколько аллотропных модификаций, то нулевую стандартную энтальпию образования имеет только самая устойчивая (при данных р и Т) модификация.

Обычно термодинамические величины определяют при стандартных условиях:

р = 101,32 кПа и Т = 298 К (25 о С).

Химические уравнения, в которых указаны изменения энтальпии (тепловые эффекты реакций), называются термохимическими уравнениями. В литературе можно встретить две формы записи термохимических уравнений.

Термодинамическая форма записи термохимического уравнения:

С (графит) + О 2 (г) СО 2 (г) ; = - 393,5 кДж.

Термохимическая форма записи термохимического уравнения этого же процесса:

С (графит) + О 2 (г) СО 2 (г) + 393,5 кДж.

В термодинамике тепловые эффекты процессов рассматривают с позиций системы. Поэтому, если система выделяет теплоту, то Q < 0, а энтальпия системы уменьшается (ДH < 0).

В классической термохимии тепловые эффекты рассматриваются с позиций окружающей среды. Поэтому, если система выделяет теплоту, то принимается, что Q > 0.

Экзотермическим называется процесс, протекающий с выделением теплоты (ДH < 0).

Эндотермическим называется процесс, протекающий с поглощением теплоты (ДH > 0).

Основным законом термохимии является закон Гесса: "Тепловой эффект реакции определяется только начальным и конечным состоянием системы и не зависит от пути перехода системы из одного состояния в другое".

Следствие из закона Гесса: Стандартный тепловой эффект реакции равен сумме стандартных теплот образования продуктов реакции за вычетом суммы стандартных теплот образования исходных веществ с учетом стехиометрических коэффициентов:

  • (реакции) = (прод.) -(исх.)
  • 7. Понятие об энтропии. Изменение энтропии в ходе фазовых превращений и химических процессов. Понятие об изобарно-изотермическом потенциале системы (энергии Гиббса, свободной энергии). Соотношение между величиной изменения энергии Гиббса и величинами изменения энтальпии и энтропии реакции (основное термодинамическое соотношение). Термодинамический анализ возможности и условий протекания химических реакций. Особенности протекания химических процессов в живых организмах.

Энтропия S - это величина, пропорциональная логарифму числа равновероятных микросостояний (W), через которые может быть реализовано данное макросостояние:

S = k · ln W

Единица энтропии - Дж/моль?K.

Энтропия является количественной мерой степени неупорядоченности системы.

Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, при расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы, в результате которых упорядоченность системы возрастает (конденсация, полимеризация, сжатие, уменьшение числа частиц), сопровождаются уменьшением энтропии.

Существуют методы расчета абсолютного значения энтропии вещества, поэтому в таблицах термодинамических характеристик индивидуальных веществ приведены данные для S 0 , а не для ДS 0 .

Стандартная энтропия простого вещества, в отличие от энтальпии образования простого вещества, не равна нулю.

Для энтропии справедливо утверждение, аналогичное рассмотренному выше для Н: изменение энтропии системы в результате химической реакции (S) равно сумме энтропий продуктов реакции за вычетом суммы энтропий исходных веществ. Как и при вычислении энтальпии, суммирование производят с учетом стехиометрических коэффициентов.

Направление, в котором в изолированной системе самопроизвольно протекает химическая реакция, определяется совместным действием двух факторов: 1) тенденцией к переходу системы в состояние с наименьшей внутренней энергией (в случае изобарных процессов - с наименьшей энтальпией); 2) тенденцией к достижению наиболее вероятного состояния, т. е. состояния, которое может быть реализовано наибольшим числом равновероятных способов (микросостояний), т.е.:

ДH > min, ДS > max.

Функцией состояния, одновременно отражающей влияние обеих упомянутых выше тенденций на направление протекания химических процессов, служит энергия Гиббса (свободная энергия, или изобарно-изотермический потенциал), связанная с энтальпией и энтропией соотношением

где Т - абсолютная температура.

Как видно, энергия Гиббса имеет ту же размерность, что и энтальпия, и поэтому обычно выражается в Дж или кДж.

Для изобарно-изотермических процессов (т. е. процессов, протекающих при постоянных температуре и давлении) изменение энергии Гиббса равно:

G = H - TS

Как и в случае H и S, изменение энергии Гиббса G в результате химической реакции (энергия Гиббса реакции) равно сумме энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ; суммирование производят с учетом числа молей участвующих в реакции веществ.

Энергию Гиббса образования вещества относят к 1 молю этого вещества и обычно выражают в кДж/моль; при этом G 0 образования наиболее устойчивой модификации простого вещества принимают равной нулю.

При постоянстве температуры и давления химические реакции могут самопроизвольно протекать только в таком направлении, при котором энергия Гиббса системы уменьшается (G0). Это есть условие принципиальной возможности осуществления данного процесса.

В приведенной таблице показана возможность и условия протекания реакции при различных сочетаниях знаков Н и S:

По знаку G можно судить о возможности (невозможности) самопроизвольного протекания отдельно взятого процесса. Если на систему оказывать воздействие, то в ней можно осуществить переход от одних веществ к другим, характеризующийся увеличением свободной энергии (G>0). Например, в клетках живых организмов протекают реакции образования сложных органических соединений; движущей силой таких процессов являются солнечное излучение и реакции окисления в клетке.

«ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ, ХИМИЧЕСКОЙ КИНЕТИКИ И РАВНОВЕСИЯ»

Основы химической термодинамики

1 . Что изучает химическая термодинамика:

1) скорости протекания химических превращений и ме­ханизмы этих превращений;

2) энергетические характеристики физических и хими­ческих процессов и способность химических систем выпол­нять полезную работу;

3) условия смещения химического равновесия;

4) влияние катализаторов на скорость биохимических процессов.

2. Открытой системой называют такую систему, которая:

3. Закрытой системой называют такую систему, которая:

1) не обменивается с окружающей средой ни веществом, ни энергией;

2) обменивается с окружающей средой и веществом, и энергией;

3) обменивается с окружающей средой энергией, но не обменивается веществом;

4) обменивается с окружающей средой веществом, но не обменивается энергией.

4. Изолированной системой называют такую систему, которая:

1) не обменивается с окружающей средой ни веществом, ни энергией;

2) обменивается с окружающей средой и веществом, и энергией;

3) обменивается с окружающей средой энергией, но не обменивается веществом;

4) обменивается с окружающей средой веществом, но не обменивается энергией.

5. К какому типу термодинамических систем принадле­жит раствор, находящийся в запаянной ампуле, помещен ной в термостат?

1) изолированной;

2) открытой;

3) закрытой;

4) стационарной.

6. К какому типу термодинамических систем принадле жит раствор, находящийся в запаянной ампуле?

1) изолированной;

2) открытой;

3) закрытой;

4) стационарной.

7. К какому типу термодинамических систем принадле жит живая клетка?

1) открытой;

2) закрытой;

3) изолированной;

4) равновесной.

8 . Какие параметры термодинамической системы назы- I вают экстенсивными?

1) величина которых не зависит от числа частиц в системе;

3) величина которых зависит от агрегатного состояния системы;

9. Какие параметры термодинамической системы назы­вают интенсивными?

!) величина которых не зависит от числа частиц в системе;

2) величина которых зависит от числа частиц в системе;

3) величина которых зависит от агрегатного состояния;

4) величина которых зависит от времени.

10 . Функциями состояния термодинамической системы называют такие величины, которые:

1) зависят только от начального и конечного состояния системы;

2) зависят от пути процесса;

3) зависят только от начального состояния системы;

4) зависят только от конечного состояния системы.

11 . Какие величины являются функциями состояния си­стемы: а) внутренняя энергия; б) работа; в) теплота; г) эн­тальпия; д) энтропия.

3) все величины;

4) а, б, в, г.

12 . Какие из следующих свойств являются интенсив­ными: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

3) б, в, г, е;

13. Какие из следующих свойств являются экстенсивны­ми: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

3) б, в, г, е;

14 . Какие формы обмена энергией между системой и окружающей средой рассматривает термодинамика: а) теп­лота; б) работа; в) химическая; г) электрическая; д) механи­ческая; е) ядерная и солнечная?

2) в, г,д, е;

3) а, в, г, д, е;

4) а, в, г, д.

15. Процессы, протекающие при постоянной темпера­туре, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

16 . Процессы, протекающие при постоянном объеме, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

17 . Процессы, протекающие при постоянном давлении, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

18 . Внутренняя энергия системы - это: 1) весь запас энергии системы, кроме потенциальной энер­гии ее положения и кинетической энергии системы в целом;

2) весь запас энергии системы;

3) весь запас энергии системы, кроме потенциальной энергии ее положения;

4) величина, характеризующая меру неупорядоченнос­ти расположения частиц системы.

19 . Какой закон отражает связь между работой, тепло­той и внутренней энергией системы?

1) второй закон термодинамики;

2) закон Гесса;

3) первый закон термодинамики;

4) закон Вант-Гоффа.

20 . Первый закон термодинамики отражает связь между:

1) работой, теплотой и внутренней энергией;

2) свободной энергией Гиббса, энтальпией и энтропией системы;

3) работой и теплотой системы;

4) работой и внутренней энергией.

21 . Какое уравнение является математическим выра­жением первого закона термодинамики для изолирован­ных систем?

l)AU=0 2)AU=Q-p-AV 3)AG = AH-TAS

22 . Какое уравнение является математическим выраже­нием первого закона термодинамики для закрытых систем?

1)AU=0; 2)AU=Q-p-AV;

3) AG = AH - T*AS;

23 . Постоянной или переменной величиной является внутренняя энергия изолированной системы?

1) постоянной;

2) переменной.

24 . В изолированной системе протекает реакция сгора­ния водорода с образованием жидкой воды. Изменяется ли внутренняя энергия и энтальпия системы?

1) внутренняя энергия не изменится, энтальпия изменится;

2) внутренняя энергия изменится, энтальпия не изменится;

3) внутренняя энергия не изменится, энтальпия не изменится;

4) внутренняя энергия изменится, энтальпия изменится.

25 . При каких условиях изменение внутренней энергии равно теплоте, получаемой системой из окружающей среды?

1) при постоянном объеме;

3) при постоянном давлении;

4) ни при каких.

26 . Тепловой эффект реакции, протекающей при посто­янном объеме, называется изменением:

1) энтальпии;

2) внутренней энергии;

3) энтропии;

4) свободной энергии Гиббса.

27 . Энтальпия реакции - это:

28. Химические процессы, при протекании которых про­исходит уменьшение энтальпии системы и во внешнюю сре­ду выделяется теплота, называются:

1) эндотермическимий;

2) экзотермическими;

3) экзэргоническими;

4) эндэргоническими.

29 . При каких условиях изменение энтальпии равно теп­лоте, получаемой системой из окружающей среды?

1) при постоянном объеме;

2) при постоянной температуре;

3) при постоянном давлении;

4) ни при каких.

30 . Тепловой эффект реакции, протекающей при посто-янном давлении, называется изменением:

1) внутренней энергии;

2) ни одно из предыдущих определений неверно;

3) энтальпии;

4) энтропии.

31. Какие процессы называют эндотермическими?

32 . Какие процессы называют экзотермическими?

1) для которых АН отрицательно;

2) для которых AG отрицательно;

3) для которых АН положительно;

4) для которых AG положительно.

33 . Укажите формулировку закона Гесса:

1) тепловой эффект реакции зависит только от началь­ного и конечного состояния системы и не зависит от пути реакции;

2) теплота, поглощаемая системой при постоянном объе­ме, равна изменению внутренней энергии системы;

3) теплота, поглощаемая системой при постоянном дав­лении, равна изменению энтальпии системы;

4) тепловой эффект реакции не зависит от начально­го и конечного состояния системы, а зависит от пути ре­акции.

34. Какой закон лежит в основе расчетов калорийности продуктов питания?

1) Вант-Гоффа;

3) Сеченова;

35. При окислении каких веществ в условиях организма выделяется большее количество энергии?

1) белков;

3) углеводов;

4) углеводов и белков.

36 . Самопроизвольным называется процесс, который:

1) осуществляется без помощи катализатора;

2) сопровождается выделением теплоты;

3) осуществляется без затраты энергии извне;

4) протекает быстро.

37 . Энтропия реакции - это:

1) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изобарно-изотер-мических условиях;

2) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изохорно-изотер-мических условиях;

3) величина, характеризующая возможность самопро­извольного протекания процесса;

4) величина, характеризующая меру неупорядоченнос­ти расположения и движения частиц системы.

38 . Какой функцией состояния характеризуется тенден­ция системы к достижению вероятного состояния, которо­му соответствует максимальная беспорядочность распреде­ления частиц?

1) энтальпией;

2) энтропией;

3) энергией Гиббса;

4) внутренней энергией.

39 . В каком соотношении находятся энтропии трех агрегат­ных состояний одного вещества: газа, жидкости, твердого тела:

I) S (г) > S (ж) > S (тв); 2)S(тв)>S(ж)>S(г); 3)S(ж)>S(г)>S(TB); 4) агрегатное состояние не влияет на значение энтропии.

40 . В каком из следующих процессов должно наблюдать­ся наибольшее положительное изменение энтропии:

1) СН3ОН (тв) --> СН,ОН (г);

2) СH4OH (тв) --> СН 3 ОН (ж);

3) СН,ОН (г) -> CH4OH (тв);

4) СН,ОН (ж) -> СН3ОН (тв).

41 . Выберите правильное утверждение: энтропия систе­мы увеличивается при:

1) повышении давления;

2) переходе от жидкого к твердому агрегатному состоянию

3) повышении температуры;

4) переходе от газообразного к жидкому состоянию.

42. Какую термодинамическую функцию можно исполь­зовать, чтобы предсказать возможность самопроизвольно­го протекания реакции в изолированной системе?

1) энтальпию;

2) внутреннюю энергию;

3) энтропию;

4) потенциальную энергию системы.

43 . Какое уравнение является математическим выраже­нием 2-го закона термодинамики для изолированных систем?

44 . Если система обратимым образом получает количе­ство теплоты Q при температуре Т, то об T;

2) возрастает на величину Q/T;

3) возрастает на величину, большую Q/T;

4) возрастает на величину, меньшую Q/T.

45 . В изолированной системе самопроизвольно проте­кает химическая реакция с образованием некоторого коли­чества продукта. Как изменяется энтропия такой системы?

1) увеличивается

2) уменьшается

3) не изменяется

4) достигает минимального значения

46 . Укажите, в каких процессах и при каких условиях изменение энтропии может быть равно работе процесса?

1) в изобарных, при постоянных Р и Т;

2) в изохорных, при постоянных V и Т;

З) изменение энтропии никогда не равно работе; 4) в изотермических, при постоянных Р и 47 . Как изменится связанная энергия системы TS при нагревании и при ее конденсации?

1) при нагревании растет, при конденсации уменьшается;

2) при нагревании уменьшается, при конденсации растет;

3) не происходит изменение T-S;

4) при нагревании и конденсации растет.

48 . Какие параметры системы необходимо поддержи­вать постоянными, чтобы по знаку изменения энтропии можно было судить о направлении самопроизвольного про­текания процесса?

1) давление и температуру;

2) объем и температуру;

3) внутреннюю энергию и объем;

4) только температуру.

49 . В изолированной системе все самопроизвольные процессы протекают в сторону увеличения беспорядка. Как при этом изменяется энтропия?

1) не изменяется;

2) увеличивается;

3) уменьшается;

4) сначала увеличивается, а затем уменьшается.

50 . Энтропия возрастает на величину Q/T для:

1) обратимого процесса;

2) необратимого процесса;

3) гомогенного;

4) гетерогенного.

51 Как изменяется энтропия системы за счет прямой и обратной реакции при синтезе аммиака?

3) энтропия не изменяется в ходе реакции;

4) энтропия увеличивается для прямой и обратной ре­акции.

52 . Какими одновременно действующими факторами определяется направленность химического процесса?

1) энтальпийным и температурным;

2) энтальпийным и энтропийным;

3) энтропийным и температурным;

4) изменением энергии Гиббса и температуры.

53. В изобарно-изотермических условиях максимальная работа, осуществляемая системой:

1) равна убыли энергии Гиббса;

2) больше убыли энергии Гиббса;

3) меньше убыли энергии Гиббса;

4) равна убыли энтальпии.

54 . Какие условия необходимо соблюдать, чтобы мак­симальная работа в системе совершалась за счет убыли энер­гии Гиббса?

1) необходимо поддерживать постоянными V и t;

2) необходимо поддерживать постоянными Р и t;

3) необходимо поддерживать постоянными АН и AS;

4) необходимо поддерживать постоянными PиV

55 . За счет чего совершается максимальная полезная работа химической реакции при постоянных давлении и температуре?

1) за счет убыли энергии Гиббса;

3) за счет увеличения энтальпии;

4) за счет уменьшения энтропии.

56. За счет чего совершается маскимальная полезная рабо­та живым организмом в изобарно-изотермических условиях?

1) за счет убыли энтальпии;

2) за счет увеличения энтропии;

3) за счет убыли энергии Гиббса;

4) за счет увеличения энергии Гиббса.

57 . Какие процессы называют эндэргоническими?

58. Какие процессы называют экзэргоническими?

2) AG 0; 4) AG > 0.

59. Самопроизвольный характер процесса лучше опре­делять путем оценки:

1)энтропии;

3) энтальпии;

2) свободной энергии Гиббса;

4) температуры.

60 . Какую термодинамическую функцию можно исполь­зовать для предсказания возможности самопроизвольного протекания процессов в живом организме?

1) энтальпию;

3) энтропию;

2) внутреннюю энергию;

4) свободную энергию Гиббса.

61 . Для обратимых процессов изменение свободной энергии Гиббса...

1) всегда равно нулю;

2) всегда отрицательно;

3) всегда положительно;

62 . Для необратимых процессов изменение свободной энергии:

1) всегда равно нулю;

2) всегда отрицательно;

3) всегда положительно;

4) положительно или отрицательно в зависимости от обстоятельств.

63. В изобарно-изотермических условиях в системе са­мопроизвольно могут осуществляться только такие процес­сы, в результате которых энергия Гиббса:

1) не меняется;

2) увеличивается;

3) уменьшается;

4) достигает максиального значения.

64 . Для некоторой химической реакции в газовой фазе при постоянных Р и TAG > 0. В каком направлении само­произвольно протекает эта реакция?

Г) в прямом направлении;

2) не может протекать при данных условиях;

3) в обратном направлении;

4) находится в состоянии равновесия.

65 . Каков знак AG процесса таяния льда при 263 К?

66 . В каком из следующих случаев реакция неосуществи­ма при любых температурах?

1)AH>0;AS>0; 2)AH>0;AH

3)A#4)AH= 0;AS = 0.

67. В каком из следующих случаев реакция возможна при любых температурах?

1)ДH 0; 2)AH 0; AS > 0; 4)AH = 0;AS = 0.

68 . Если АН

1) [АН] > ;

2) при любых соотношениях АН и TAS; 3){AH]

4) [АН] = [Т-А S].

69 . При каких значениях по знаку АН и AS в системе возможны только экзотермические процессы?

70. При каких соотношениях АН и T* AS химический про­цесс направлен в сторону эндотермической реакции:

71 . При каких постоянных термодинамических парамет­рах изменение энтальпии может служить критерием направ­ления самопроизвольного процесса? Какой знак DH в этих условиях указывает на самопроизвольный процесс?

1) при постоянных S и Р, АН

3) при постоянных Put, АН

2) при постоянных 5 и Р, АН > 0; 4) при постоянных Vn t, АН > 0.

72 . Можно ли и в каких случаях по знаку изменения эн­тальпии в ходе химической реакции судить о возможности ее протекания при постоянных Ти Р1

1) можно, если ЛЯ » T-AS;

2) при данных условиях нельзя;

3) можно, если АН « T-AS;

4) можно, если АН = T-AS.

73 . Реакция ЗН 2 + N 2 -> 2NH 3 проводится при 110°С, так что все реагенты и продукты находятся в газовой фазе. Ка­кие из указанных ниже величин сохраняются в ходе реакции?

2) энтропия;

3) энтальпия;

74 . Какие из следующих утверждений верны для реак­ций, протекающих в стандартных условиях?

1) эндотермические реакции не могут протекать само­произвольно;

2) эндотермические реакции могут протекать при дос­таточно низких температурах;

3) эндотермические реакции могут протекать при высо­ких температурах, если AS > 0;

4) эндотермические реакции могут протекать при высо­ких температурах, если AS

75 . Каковы особенности биохимических процессов: а) под­чиняются принципу энергетического сопряжения; б) как правило обратимы; в) сложные; г) только экзэргонические (AG

1) а, б, в, г;

2) б, в, г; 3) а, 6, в; 4) в, д.

76 . Экзэргонические реакции в организме протекают самопроизвольно, так как:

77 . Эндэргонические реакции в организме требуют под­вода энергии, так как: 1)AG >0;

78 . При гидролизе любого пептида АН 0, бу­дет ли данный процесс протекать самопроизвольно?

1) будет, так как AG > 0;

3) не будет, так как AG > 0;

2) будет, так как AG

4) не будет, так как AG

79 . Калорийностью питательных веществ называется энергия:

1) выделяемая при полном окислении 1 г питательных веществ;

2) выделяемая при полном окислении 1 моль питатель­ных веществ;

3) необходимая для полного окислении 1 г питательных веществ;

4) необходимая для полного окислении 1 моль питатель­ных веществ.

80 . Для процесса тепловой денатурации многих фермен­тов ЛЯ > 0 и AS > 0. Может ли данный процесс протекать самопроизвольно?

1) может при высоких температурах, так как \T-AS\ > |АД];

2) может при низких температурах, так как \T-AS\

3) не может, так как \T-AS\ > |AH];

4) не может, так как \T-AS\

81 . Для процесса тепловой гидратации многих белков АН

1) может при достаточно низких температурах, так как |AH| > \T-AS\;

2) может при достаточно низких температурах, так как |АЯ|

3) может при высоких температурах, так как |АH)

4) не может ни при каких температурах.

Программа

Параметров химических реакций, химического равновесия ; - рассчитывать тепловые эффекты и скорость химических реакций... реакций; - основы физической и коллоидной химии, химической кинетики , электрохимии, химической термодинамики и термохимии; ...

  • Задачи профессиональной деятельности выпускника. Компетенции выпускника, формируемые в результате освоения ооп впо. Документы, регламентирующие содержание и организацию образовательного процесса при реализации ооп впо (3)

    Регламент

    Модуль 2. Основные физико-химические закономерности протекания химических процессов Основы химической термодинамики . Основы химической кинетики . Химическое равновесие . Модуль 3..Основы химии растворов Общие...

  • Данное пособие может быть использовано для самостоятельной работы студентами нехимических специальностей

    Документ

    Простые вещества. На этой основе в химической термодинамике создана система расчета тепловых эффектов... , Cr2O3? ТЕМА 2. ХИМИЧЕСКАЯ КИНЕТИКА И ХИМИЧЕСКОЕ РАВНОВЕСИЕ Как было показано ранее, химическая термодинамика позволяет предсказать принципиальную...

  • Рабочая программа дисциплины химия направление подготовки

    Рабочая программа

    4.1.5. Окислительно-восстановительные процессы. Основы электрохимии Окислительно-восстановительные процессы. ... Способы количественного выражения состава растворов. 5 Химическая термодинамика 6 Кинетика и равновесие . 7 Диссоциация, рН, гидролиз 8 ...

  • Скорость химических реакций. Определение понятия. Факторы, влияющие на скорость химической реакции: концентрация реагента, давление, температура, присутствие катализатора. Закон действующих масс (ЗДМ) как основной закон химической кинетики. Константа скорости, ее физический смысл. Влияние на константу скорости реакции природы реагирующих веществ, температуры и присутствия катализатора.

    1. с. 102-105; 2. с. 163-166; 3. с. 196-207, с. 210-213; 4. с. 185-188; 5. с. 48-50; 6. с. 198-201; 8. с. 14-19

    Скорость гомогенной реакции - это величина, численно равная изменению концентрации любого участника реакции в единицу времени.

    Средняя скорость реакции v ср в интервале времени от t 1 до t 2 определяется соотношением:

    Основные факторы, влияющие на скорость гомогенной химической реакции:

    - природа реагирующих веществ;

    - концентрация реагента;

    - давление (если в реакции участвуют газы);

    - температура;

    - наличие катализатора .

    Скорость гетерогенной реакции - это величина, численно равная изменению концентрации любого участника реакции в единицу времени на единице поверхности: .

    По стадийности химические реакции подразделяются на элементарные и сложные . Большинство химических реакций представляют собой сложные процессы, протекающие в несколько стадий, т.е. состоящие из нескольких элементарных процессов.

    Для элементарных реакций справедлив закон действующих масс : скорость элементарной химической реакции при данной температуре прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам уравнения реакции.

    Для элементарной реакции аА + bB → ... скорость реакции, согласно закону действующих масс, выражается соотношением:

    гдес(А) и с(В) - молярные концентрации реагирующих веществ А и В; a и b - соответствующие стехиометрические коэффициенты; k – константа скоростиданной реакции.

    Для гетерогенных реакций в уравнение закона действующих масс входят концентрации не всех реагентов, а только газообразных или растворенных. Так, для реакции горения углерода:

    С(к) + О 2 (г) → СО 2 (г)

    уравнение скорости имеет вид .

    Физический смысл константы скорости – она численно равна скорости химической реакции при концентрациях реагирующих веществ, равных 1 моль/дм 3 .

    Величина константы скорости гомогенной реакции зависит от природы реагирующих веществ, температуры и катализатора.

    Влияние температуры на скорость химической реакции. Температурный коэффициент скорости химической реакции. Активные молекулы. Кривая распределения молекул по их кинетической энергии. Энергия активации. Соотношение величин энергии активации и энергии химической связи в исходных молекулах. Переходное состояние, или активированный комплекс. Энергия активации и тепловой эффект реакции (энергетическая схема). Зависимость температурного коэффициента скорости реакции от величины энергии активации.



    1. с. 106-108; 2. с. 166-170; 3. с. 210-217; 4. с. 188-191; 5. с. 50-51; 6. с. 202-207; 8 . с. 19-21.

    При увеличении температуры скорость химической реакции обычно возрастает.

    Величина, показывающая во сколько раз увеличивается скорость реакции при увеличении температуры на 10 градусов (или, что то же самое, на 10 К), называется температурным коэффициентом скорости химической реакции (γ) :

    где - скорости реакции соответственно при температурах Т 2 и Т 1 ; γ - температурный коэффициент скорости реакции.

    Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа : при повышении температуры на каждые 10 градусов скорость химической реакции увеличивается в 2-4 раза.

    Более точное описание зависимости скорости реакции от температуры осуществимо в рамках теории активации Аррениуса. Согласно этой теории, химическая реакция может происходить только при столкновении активных частиц. Активными называются частицы, которые обладают определенной, характерной для данной реакции, энергией, необходимой для преодоления сил отталкивания, возникающих между электронными оболочками реагирующих частиц.

    Доля активных частиц возрастает при увеличении температуры.

    Активированный комплекс - это промежуточная неустойчивая группировка, образующаяся при столкновении активных частиц и находящаяся в состоянии перераспределения связей . Продукты реакции образуются при распаде активированного комплекса.



    Энергия активации Е а равна разности между средней энергией реагирующих частиц и энергией активированного комплекса .

    Для большинства химических реакций энергия активации меньше энергии диссоциации наименее прочной связи в молекулах реагирующих веществ.

    В теории активации влияние температуры на скорость химической реакции описывается уравнением Аррениуса для константы скорости химической реакции:

    где А – постоянный множитель, не зависящий от температуры, определяющийся природой реагирующих веществ; е - основание натурального логарифма; Е а – энергия активации; R – молярная газовая постоянная.

    Как следует из уравнения Аррениуса, константа скорости реакции тем больше, чем меньше энергия активации. Даже небольшое снижение энергии активации (например, при внесении катализатора) приводит к заметному возрастанию скорости реакции.

    По уравнению Аррениуса, увеличение температуры приводит к увеличению константы скорости химической реакции. Чем больше величина Е а, тем заметнее влияние температуры на скорость реакции и, значит, тем больше температурный коэффициент скорости реакции.

    Влияние катализатора на скорость химической реакции. Гомогенный и гетерогенный катализ. Элементы теории гомогенного катализа. Теория промежуточных соединений. Элементы теории гетерогенного катализа. Активные центры и их роль в гетерогенном катализе. Понятие об адсорбции. Влияние катализатора на энергию активации химической реакции. Катализ в природе, промышленности, технике. Биохимический катализ. Ферменты.

    1. с. 108-109; 2. с. 170-173; 3. с. 218-223; 4 . с. 197-199; 6. с. 213-222; 7. с. 197-202.; 8. с. 21-22.

    Катализом называется изменение скорости химической реакции под действием веществ, количество и природа которых после завершения реакции остаются такими же, как и до реакции .

    Катализатор - это вещество, изменяющее скорость химической реакции и остающееся после нее химически неизменным.

    Положительный катализатор ускоряет реакцию; отрицательный катализатор , или ингибитор , замедляет реакцию.

    В большинстве случаев действие катализатора объясняется тем, что он снижает энергию активации реакции. Каждый из промежуточных процессов с участием катализатора протекает с меньшей энергией активации, чем некатализируемая реакция.

    При гомогенном катализе катализатор и реагирующие вещества образуют одну фазу (раствор). При гетерогенном катализе катализатор (обычно твердое вещество) и реагирующие вещества находятся в разных фазах.

    В ходе гомогенного катализа катализатор образует с реагентом промежуточное соединение, с большой скоростью реагирующее со вторым реагентом или быстро разлагающееся с выделением продукта реакции.

    Пример гомогенного катализа: окисление оксида серы(IV) до оксида серы(VI) кислородом при нитрозном способе получения серной кислоты (здесь катализатором является оксид азота(II), легко реагирующий с кислородом).

    При гетерогенном катализе реакция протекает на поверхности катализатора. Начальными стадиями являются диффузия частиц реагентов к катализатору и их адсорбция (т. е. поглощение) поверхностью катализатора. Молекулы реагента взаимодействуют с атомами или группами атомов, находящимися на поверхностим катализатора, образуя промежуточные поверхностные соединения . Перераспределение электронной плотности, происходящее в таких промежуточных соединениях, приводит к образованию новых веществ, которые десорбируются , т. е. удаляются с поверхности.

    Процесс образования промежуточных поверхностных соединений происходит на активных центрах катализатора - на участках поверхности, характеризуюшихся особым распределением электронной плотности.

    Пример гетерогенного катализа: окисление оксида серы(IV) до оксида серы(VI) кислородом при контактном способе получения серной кислоты (здесь катализатором может быть оксид ванадия(V) с добавками).

    Примеры каталитических процессов в промышленности и технике: синтез аммиака, синтез азотной и серной кислот, крекинг и риформинг нефти, дожиг продуктов неполного сгорания бензина в автомобилях и т. д.

    Примеры каталитических процессов в природе многочисленны, поскольку большинство биохимических реакций - химических реакций, протекающих в живых организмах - относятся к числу каталитических реакций. Катализаторами таких реакций являются белковые вещества, называемые ферментами . В организме человека находится около 30 тыс. ферментов, каждый из которых катализирует прохождение только одного процесса или одного типа процессов (например, птиалин слюны катализирует превращение крахмала в сахар).

    Химическое равновесие. Обратимые и необратимые химические реакции. Состояние химического равновесия. Константа химического равновесия. Факторы, определяющие величину константы равновесия: природа реагирующих веществ и температура. Сдвиг химического равновесия. Влияние изменения концентрации, давления и температуры на положение химического равновесия.

    1. с. 109-115; 2. с. 176-182; 3 . с. 184-195, с. 207-209; 4. с.172-176, с. 187-188; 5. с. 51-54; 8 . с. 24-31.

    Химические реакции, в результате которых исходные вещества полностью превращаются в продукты реакции, называются необратимыми . Реакции, идущие одновременно в двух противоположных направлениях (прямом и обратном), называются обратимыми .

    В обратимых реакциях состояние системы, при котором скорости прямой и обратной реакции равны (), называется состоянием химического равновесия . Химическое равновесие является динамическим , т. е. его установление не означает прекращение реакции. В общем случае для любой обратимой реакции аА + bB ↔ dD + eE, независимо от ее механизма, выполняется соотношение:

    При установившемся равновесии произведение концентраций продуктов реакции, отнесенное к произведению концентраций исходных веществ, для данной реакции при данной температуре представляет собой постоянную величину, называемую константой равновесия (К ).

    Величина константы равновесия зависит от природы реагирующих веществ и температуры, но не зависит от концентраций компонентов равновесной смеси.

    Изменение условий (температуры, давления, концентрации), при которых система находится в состоянии химического равновесия (), вызывает нарушение равновесия. В результате неодинакового изменения скоростей прямой и обратной реакций () c течением времени в системе устанавливается новое химическое равновесие (), соответствующее новым условиям. Переход из одного равновесного состояния в другое называется сдвигом, или смещением, положения равновесия .

    Если при переходе из одного равновесного состояние в другое увеличиваются концентрации веществ, записанных в правой части уравнения реакции, говорят, что равновесие смещается вправо . Если же при переходе из одного равновесного состояние в другое увеличиваются концентрации веществ, записанных в левой части уравнения реакции, говорят, что равновесие смещается влево .

    Направление смещения химического равновесия в результате изменения внешних условий определяется принципом Ле-Шателье : Если на систему, находящуюся в состоянии химического равновесия, оказать внешнее воздействие, то оно будет благоприятствовать протеканию того из двух противоположных процессов, который ослабляет это воздействие.

    Согласно принципу Ле-Шателье,

    Увеличение концентрации компонента, записанного в левой части уравнения, приводит к смещению равновесия вправо; увеличение концентрации компонента, записанного в правой части уравнения, приводит к смещению равновесия влево;

    При увеличении температуры равновесие смещается в сторону протекания эндотермической реакции, а при уменьшении температуры - в сторону протекания экзотермической реакции;

    При увеличении давления равновесие смещается в сторону реакции, уменьшающей число молекул газообразных веществ в системе, а при уменьшении давления - в сторону реакции, увеличивающей число молекул газообразных веществ.

    Фотохимические и цепные реакции. Особенности протекания фотохимических реакций. Фотохимические реакции и живая природа. Неразветвленные и разветвленные химические реакции (на примере реакций образования хлороводорода и воды из простых веществ). Условия зарождения и обрыва цепей.

    2. с. 173-176; 3. с. 224-226; 4. 193-196; 6. с. 207-210; 8. с. 49-50.

    Фотохимические реакции - это реакции, проходящие под действием света. Фотохимическая реакция протекает, если реагент поглощает кванты излучения, характеризующиеся вполне определенной для данной реакции энергией.

    В случае одних фотохимических реакций, поглощая энергию, молекулы реагента переходят в возбужденное состояние, т.е. становятся активными.

    В других случаях фотохимическая реакция протекает, если поглощаются кванты настолько большой энергии, что химические связи разрываются и происходит диссоциация молекул на атомы или группы атомов.

    Скорость фотохимической реакции тем больше, чем больше интенсивность облучения.

    Пример фотохимической реакции в живой природе: фотосинтез , т.е. образование организмами органических веществ клеток благодаря энергии света. У большинства организмов фотосинтез проходит при участии хлорофилла; в случае высших растений фотосинтез суммарно выражается уравнением:

    CO 2 + H 2 O органическое вещество + О 2

    В основе функционирования зрения тоже лежат фотохимические процессы.

    Цепная реакция - реакция, представляющая собой цепь элементарных актов взаимодействия, причем возможность протекания каждого акта взаимодействия зависит от успешности прохождения предыдущего акта .

    Стадии цепной реакции:

    Зарождение цепи,

    Развитие цепи,

    Обрыв цепи.

    Зарождение цепи происходит, когда за счет внешнего источника энергии (кванта электромагнитного излучения, нагревания, электрического разряда) образуются активные частицы с неспаренными электронами (атомы, свободные радикалы).

    В ходе развития цепи радикалы взаимодействуют с исходными молекулами, причем в каждом акте взаимодействия образуются новые радикалы.

    Обрыв цепи наступает, если два радикала сталкиваются и передают выделяющуюся при этом энергию третьему телу (молекуле, устойчивой к распаду, или стенке сосуда). Цепь также может оборваться, если образуется малоактивный радикал.

    Два типа цепных реакций: неразветвленные и разветвленные.

    В неразветвленных реакциях на стадии развития цепи из одного реагирующего радикала образуется один новый радикал.

    В разветвленных реакциях на стадии развития цепи из одного реагирующего радикала образуется более одного новых радикалов.

    6. Факторы, определяющие направление протекания химической реакции. Элементы химической термодинамики. Понятия: фаза, система, среда, макро- и микросостояния. Основные термодинамические характеристики. Внутренняя энергия системы и ее изменение в ходе химических превращений. Энтальпия. Соотношение энтальпии и внутренней энергии системы. Стандартная энтальпия вещества. Изменение энтальпии в системах в ходе химических превращений. Тепловой эффект (энтальпия) химической реакции. Экзо- и эндотермические процессы.

    1. с. 89-97; 2. с. 158-163, с. 187-194; 3. с. 162-170; 4. с. 156-165; 5. с. 39-41; 6. с. 174-185; 8. с. 32-37.

    Термодинамика изучает закономерности обмена энергией между системой и внешней средой, возможность, направление и пределы самопроизвольного протекания химических процессов.

    Термодинамическая система (или просто система ) – тело или группа взаимодействующих тел, мысленно выделяемых в пространстве . Остальная часть пространства за пределами системы называется окружающей средой (или просто средой ). Система отделена от среды реальной или воображаемой поверхностью.

    Гомогенная система состоит из одной фазы, гетерогенная система – из двух или более фаз.

    Фаз а это часть системы, однородная во всех ее точках по химическому составу и свойствам и отделенная от других фаз системы поверхностью раздела.

    Состояние системы характеризуется всей совокупностью ее физических и химических свойств. Макросостояние определяется усредненными параметрами всей совокупности частиц системы, а микросостояние - параметрами каждой отдельной частицы.

    Независимые переменные, определяющие макросостояние системы, называются термодинамическими переменными, или параметрами состояния . В качестве параметров состояния обычно выбирают температуру Т , давление р , объем V , химическое количество n , концентрацию с и т. д.

    Физическая величина, значение которой зависит только от параметров состояния и не зависит от пути перехода к данному состоянию, называется функцией состояния . Функциями состояния являются, в частности:

    U - внутренняя энергия;

    Н - энтальпия;

    S - энтропия;

    G - энергия Гиббса (или свободная энергия, или изобарно-изотермический потенциал).

    Внутренняя энергия системы U это ее полная энергия, состоящая из кинетической и потенциальной энергии всех частиц системы (молекул, атомов, ядер, электронов) без учета кинетической и потенциальной энергии системы как целого. Поскольку полный учет всех этих составляющих невозможен, то при термодинамическом изучении системы рассматривают изменение ее внутренней энергии при переходе из одного состояния (U 1) в другое (U 2):

    U 1 U 2 DU = U 2 - U 1

    Изменение внутренней энергии системы может быть определено экспериментально.

    Система может обмениваться энергией (теплотой Q ) с окружающей средой и совершать работу А , или, наоборот, над системой может быть совершена работа. Согласно первому закону термодинамики , являющемуся следствием закона сохранения энергии, теплота, полученная системой, может быть использована только на увеличение внутренней энергии системы и на совершение системой работы:

    В дальнейшем будем рассматривать свойства таких систем, на которые не воздействуют никакие иные силы, кроме сил внешнего давления.

    Если в системе процесс идет при постоянном объеме (т. е. отсутствует работа против сил внешнего давления), то А = 0. Тогда тепловой эффект процесса, идущего при постоянном объеме , Q v равен изменению внутренней энергии системы:

    Q v = ΔU

    Большинство химических реакций, с которыми приходится сталкиваться в обыденной жизни, идет при постоянном давлении (изобарные процессы ). Если на систему не действуют иные силы, кроме постоянного внешнего давления, то:

    A = p(V 2 -V 1) = pDV

    Поэтому в нашем случае (р = const):

    Q р = U 2 – U 1 + p(V 2 - V 1), откуда

    Q p = (U 2 + pV 2) - (U 1 + pV 1)

    Функция U+pV , называетсяэнтальпией ; ее обозначают буквой Н. Энтальпия есть функция состояния и имеет размерность энергии (Дж).

    Q p = H 2 - H 1 = DH

    Тепловой эффект реакции при постоянном давлении и температуре Т равен изменению энтальпии системы в ходе реакции. Он зависит от природы реагентов и продуктов, их физического состояния, условий (Т,р ) проведения реакции, а также от количества веществ, участвующих в реакции.

    Энтальпией реакции называют изменение энтальпии системы, в которой реагенты взаимодействуют в количествах, равных стехиометрическим коэффициентам уравнения реакции .

    Энтальпия реакции называется стандартной , если реагенты и продукты реакции находятся в стандартных состояниях.

    Стандартными состояниями являются:

    Для твердого вещества - индивидуальное кристаллическое вещество при 101,32 кПа,

    Для жидкого вещества - индивидуальное жидкое вещество при 101,32 кПа,

    Для газообразного вещества - газ при парциальном давлении 101,32 кПа,

    Для растворенного вещества - вещество в растворе при моляльности 1 моль/кг, причем предполагается, что раствор обладает свойствами бесконечно разбавленного раствора.

    Стандартная энтальпия реакции образования 1 моль данного вещества из простых веществ называется стандартной энтальпией образования этого вещества.

    Пример записи: D f H о 298 (CO 2) = -393,5 кДж/моль.

    Стандартная энтальпия образования простого вещества, находящегося в наиболее устойчивом (при данных р и Т) агрегатном состоянии, принимается равной 0. Если элемент образует несколько аллотропных модификаций, то нулевую стандартную энтальпию образования имеет только самая устойчивая (при данных р и Т ) модификация.

    Обычно термодинамические величины определяют при стандартных условиях :

    р = 101,32 кПа и Т = 298 К (25 о С).

    Химические уравнения, в которых указаны изменения энтальпии (тепловые эффекты реакций), называются термохимическими уравнениями. В литературе можно встретить две формы записи термохимических уравнений.

    Термодинамическая форма записи термохимического уравнения:

    С (графит) + О 2(г) ® СО 2(г) ; DН о 298 = -393,5 кДж

    Термохимическая форма записи термохимического уравнения этого же процесса:

    С (графит) + О 2(г) ® СО 2(г) + 393,5 кДж.

    В термодинамике тепловые эффекты процессов рассматривают с позиций системы, поэтому, если система выделяет теплоту, то Q <0, а энтальпия системы уменьшается (ΔH< 0).

    В классической термохимии тепловые эффекты рассматриваются с позиций окружающей среды, поэтому, если система выделяет теплоту, то принимается, что Q >0.

    Экзотермическим называется процесс, протекающий с выделением теплоты (ΔH<0).

    Эндотермическим называется процесс, протекающий с поглощением теплоты (ΔH>0).

    Основным законом термохимии является закон Гесса: тепловой эффект реакции определяется только начальным и конечным состоянием системы и не зависит от пути перехода системы из одного состояния в другое.

    Следствие из закона Гесса: стандартный тепловой эффект реакции равен сумме стандартных теплот образования продуктов реакции за вычетом суммы стандартных теплот образования исходных веществ с учетом стехиометрических коэффициентов:

    DН о 298 (р-ции) = åD f Н о 298 (прод.) –åD f Н о 298 (исх.)

    7. Понятие об энтропии. Изменение энтропии в ходе фазовых превращений и химических процессов. Понятие об изобарно-изотермическом потенциале системы (энергии Гиббса, свободной энергии). Соотношение между величиной изменения энергии Гиббса и величинами изменения энтальпии и энтропии реакции (основное термодинамическое соотношение). Термодинамический анализ возможности и условий протекания химических реакций. Особенности протекания химических процессов в живых организмах.

    1. с. 97-102; 2. с. 189-196; 3. с. 170-183; 4. с. 165-171; 5. с. 42-44; 6. с. 186-197; 8. с. 37-46.

    Энтропия S - это величина, пропорциональная логарифму числа равновероятных микросостояний, через которые может быть реализовано данное макросостояние:

    Единица энтропии - Дж/моль·K.

    Энтропия является количественной мерой степени неупорядоченности системы.

    Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, при расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы, в результате которых упорядоченность системы возрастает (конденсация, полимеризация, сжатие, уменьшение числа частиц), сопровождаются уменьшением энтропии.

    Существуют методы расчета абсолютного значения энтропии вещества, поэтому в таблицах термодинамических характеристик индивидуальных веществ приведены данные для S 0 , а не для ΔS 0 .

    Стандартная энтропия простого вещества, в отличие от энтальпии образования простого вещества, не равна нулю.

    Для энтропии справедливо утверждение, аналогичное рассмотренному выше для : изменение энтропии системы в результате химической реакции (DS) равно сумме энтропий продуктов реакции за вычетом суммы энтропий исходных веществ. Как и при вычислении энтальпии, суммирование производят с учетом стехиометрических коэффициентов.

    Направление, в котором самопроизвольно протекает химическая реакция, определяется совместным действием двух факторов: 1) тенденцией к переходу системы в состояние с наименьшей внутренней энергией (в случае изобарных процессов - с наименьшей энтальпией); 2) тенденцией к достижению наиболее вероятного состояния, т. е. состояния, которое может быть реализовано наибольшим числом равновероятных способов (микросостояний):

    ΔH → min, ΔS → max

    Функцией состояния, одновременно отражающей влияние обеих упомянутых выше тенденций на направление протекания химических процессов, служит энергия Гиббса (свободная энергия , или изобарно-изотермический потенциал) , связанная с энтальпией и энтропией соотношением

    G = H - TS,

    где Т - абсолютная температура.

    Как видно, энергия Гиббса имеет ту же размерность, что и энтальпия, и поэтому обычно выражается в Дж или кДж.

    Для изобарно-изотермических процессов , (т. е. процессов, протекающих при постоянных температуре и давлении) изменение энергии Гиббса равно:

    Как и в случае DH и DS, изменение энергии Гиббса DG в результате химической реакции (энергия Гиббса реакции) равно сумме энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ; суммирование производят с учетом числа молей участвующих в реакции веществ.

    Энергию Гиббса образования вещества относят к 1 молю этого вещества и обычно выражают в кДж/моль; при этом DG 0 образования наиболее устойчивой модификации простого вещества принимают равной нулю.

    При постоянстве температуры и давления химические реакции могут самопроизвольно протекать только в таком направлении, при которомэнергия Гиббса системы уменьшается (D G<0).Это есть условие принципиальной возможности осуществления данного процесса.

    В приведенной таблице показана возможность и условия протекания реакции при различных сочетаниях знаков DН и DS .

    По знаку DG можно судить о возможности (невозможности) самопроизвольного протекания отдельно взятого процесса. Если на систему оказывать воздействие , то в ней можно осуществить переход от одних веществ к другим, характеризующийся увеличением свободной энергии (DG >0). Например, в клетках живых организмов протекают реакции образования сложных органических соединений; движущей силой таких процессов являются солнечное излучение и реакции окисления в клетке.

    Термодинамика – наука о превращении одних форм энергии в другие на основе закона сохранения энергии. Термодинамика устанавливает направление самопроизвольного течения химических реакций при данных условиях. При химических реакциях рвутся связи в исходных веществах и возникают новые связи в конечных продуктах. Сумма энергий связей после реакции не равна сумме энергий связи до реакции, т.е. протекание химической реакции сопровождается выделением или поглощением энергии, причем формы ее различны.

    Термохимия – раздел термодинамики, посвященный изучению тепловых эффектов реакций. Тепловой эффект реакции, измеренный при постоянных температуре и давлении, называют энтальпией реакции и выражают в джоулях (Дж) и килоджоулях (кДж).

    Для экзотермических реакций , для эндотермических - . Энтальпию образования 1моль данного вещества из простых веществ, измереного при температуре 298 К (25 °С) и давлении 101,825 кПа (1 атм), называют стандартной (кДж/моль). Энтальпии простых веществ условно принимают равными нулю.

    В основе термохимических расчетов лежит закон Гесса: тепловой эффект реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода. Часто в термохимических расчетах применяют следствие из закона Гесса: тепловой эффект химической реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом коэффициентов перед формулами этих веществ в уравнении реакции:

    В термохимических уравнениях указывают значение энтальпии химической реакции . При этом у формулы каждого вещества указывают его физическое состояние: газообразное (г), жидкое (ж), твердое кристаллическое (к).

    В термохимических уравнениях тепловые эффекты реакций дают в расчете на 1 моль исходного или конечного вещества. Поэтому здесь допускаются дробные коэффициенты. При химических реакциях проявляется диалектический закон единства и борьбы противоположностей. С одной стороны система стремится к упорядочению (агрегации) – уменьшению Н, а с другой стороны – к беспорядку (дезагрегации). Первая тенденция растет с понижением температуры, а вторая – с её повышением. Тенденцию к беспорядку характеризует величина, названная энтропией S [Дж/(моль. К)]. Она является мерой неупорядоченности системы. Энтропия пропорциональна количеству вещества и возрастает с увеличением движения частиц при нагревании, испарении, плавлении, расширении газа, ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядоченностью системы: конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т.п. – ведут к уменьшению энтропии. Энтропия – функция состояния, т.е.



    Общая движущая сила процесса складывается из двух сил: стремление к упорядочению и стремления к беспорядку . При p = const и T = const общую движущую силу процесса можно представить следующим образом:

    Энергия Гиббса , или изобарно-изотермический потенциал, также подчиняется следствию закона Гесса:

    Самопроизвольно протекают процессы, идущие в сторону уменьшения любого потенциала и, в частности, в сторону уменьшения . При состоянии равновесия температура начала равновесной реакции равна:

    Таблица 5

    Стандартные энтальпии образования , энтропии и энергии Гиббса образования некоторых веществ при 298 К (25°С)

    Вещество , кДж/моль , Дж/моль , кДж/моль
    CaO (к) -635,5 39,7 -604,2
    CaCO 3 (к) -1207,0 88,7 -1127,7
    Ca(OH) 2 (к) -986,6 76,1 -896,8
    H 2 O (ж) -285,8 70,1 -237,3
    H 2 O (г) -241,8 188,7 -228,6
    Na 2 O (к) -430,6 71,1 -376,6
    NaOH (к) -426,6 64,18 -377,0
    H 2 S (г) -21,0 205,7 -33,8
    SO 2 (г) -296,9 248,1 -300,2
    SO 3 (г) -395,8 256,7 -371,2
    C 6 H 12 O 6 (к) -1273,0 - -919,5
    C 2 H 5 OH (ж) -277,6 160,7 -174,8
    CO 2 (г) -393,5 213,7 -394,4
    CO(г) -110,5 197,5 -137,1
    C 2 H 4 (г) 52,3 219,4 68,1
    CH 4 (г) -74,9 186,2 -50,8
    Fe 2 O 3 (к) -822,2 87,4 -740,3
    FeO (к) -264,8 60,8 -244,3
    Fe 3 O 4 (к) -1117,1 146,2 -1014,2
    CS 2 (г) 115,3 65,1 237,8
    P 2 O 5 (к) -1492 114,5 -1348,8
    NH 4 Cl (к) -315,39 94,56 -343,64
    HCl (г) -92,3 186,8 -95,2
    NH 3 (г) -46,2 192,6 -16,7
    N 2 O (г) 82,0 219,9 104,1
    NO (г) 90,3 210,6 86,6
    NO 2 (г) 33,5 240,2 51,5
    N 2 O 4 (г) 9,6 303,8 98,4
    CuO (к) -162,0 42,6 -129,9
    H 2 (г) 130,5
    C (графит) 5,7
    O 2 (г) 205,0
    N 2 (г) 181,5
    Fe (к) 27,15
    Cl 2 (г) 222,9
    KNO 3 (к) -429,71 132,93 -393,13
    KNO 2 (к) -370,28 117,15 -281,58
    K 2 O (к) -361,5 87,0 -193,3
    ZnO (к) -350,6 43,6 -320,7
    Al 2 O 3 (к) -1676,0 50,9 -1582,0
    PCl 5 (г) -369,45 362,9 -324,55
    PCl 3 (г) -277,0 311,7 -286,27
    H 2 O 2 (ж) -187,36 105,86 -117,57

    Скорость реакции определяется природой и концентрацией реагирующих веществ и зависит от температуры и катализатора.

    Закон действия масс: При постоянной температуре скорость химической реакции пропорциональна произведению концентрации реагирующих веществ в степени их стехиометрических коэффициентов.

    Для реакции аА + вВ = сС + dD скорость прямой реакции:

    ,

    скорость обратной реакции: , где - концентрации растворенных или газообразных соединений, моль/л;

    a, b, c, d – стехиометрические коэффициенты в уравнении;

    К – константа скорости.

    В выражении для скорости реакции не включают концентрации твердых фаз.

    Влияние температуры на скорость реакции описывается правилом Вант-Гоффа: при нагревании на каждые 10 градусов скорость реакции возрастает в 2-4 раза.

    Скорость реакции при температурах t 1 и t 2 ;

    Температурный коэффициент реакции.

    Большинство химических реакций являются обратимыми:

    аА + вВ сС + dD

    отношение констант скоростей – величина постоянная, называемая константой равновесия

    К р = const при T = const.

    Принцип Ле – Шателье: Если на систему, находящуюся в состоянии химического равновесия, оказать какое – либо воздействие (изменить температуру, давление или концентрацию), то система будет реагировать таким образом, чтобы уменьшить приложенное воздействие:

    а) при повышении температуры в равновесных системах равновесие смещается в сторону эндотермической реакции, а при понижении температуры – в сторону экзотермической реакции;

    б) при повышении давления равновесие смещается в сторону меньших объемов, а при понижении давления – в сторону больших объемов;

    в) при повышении концентрации равновесие смещается в сторону ее уменьшения.

    Пример 1. Определите стандартное изменение энтальпии реакции:

    Экзо- или эндотермическая данная реакция?

    Решение: Стандартное изменение энтальпии химической реакции равно сумме стандартных энтальпий образования продуктов реакции за вычетом суммы стандартных энтальпий образования исходных веществ

    При каждом суммировании следует учитывать в соответствии с уравнением реакции, число молей участвующих в реакции веществ. Стандартные энтальпии образования простых веществ равны нулю:

    Согласно табличным данным:

    Реакции, которые сопровождаются выделением теплоты, называются экзотермическими, а те, которые сопровождаются поглощением теплоты, - эндотермическими. При постоянных температуре и давлении изменение энтальпии химической реакции равно по величине, но обратно по знаку ее тепловому эффекту. Поскольку стандартное изменение энтальпии данной химической реакции , то делаем вывод, что данная реакция является экзотермической.

    Пример 2. Реакция восстановления Fe 2 O 3 водородом протекает по уравнению:

    Fe 2 O 3(K) + 3H 2(Г) = 2Fe (K) + 3H 2 O (Г)

    Возможна ли эта реакция при стандартных условиях?

    Решение: Для ответа на этот вопрос задачи нужно вычислить стандартное изменение энергии Гиббса реакции . В стандартных условиях:

    Суммирование производят с учетом числа моделей, участвующих в реакции веществ, образования наиболее устойчивой модификации простого вещества принимают равной нулю.

    С учетом выше сказанного

    Согласно табличным данным:

    Самопроизвольно протекающие процессы идут в сторону уменьшения . Если < 0, процесс принципиально осуществим, если > 0, процесс самопроизвольно проходить не может.

    Следовательно, данная реакция при стандартных условиях невозможна.

    Пример 3. Написать выражения закона действия масс для реакций:

    а) 2NO (Г) + Cl 2(Г) = 2NOCl (Г)

    б) CaCO 3(K) = CaO (K) + CO 2(Г)

    Решение: Согласно закону действия масс скорость реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам:

    а) V = k 2 .

    б) Поскольку карбонат кальция - твердое вещество, концентрация которого не изменяется в ходе реакции, искомое выражение будет иметь вид:

    V = k, т.е. в данном случае скорость реакции при определенной температуре постоянна.

    Пример 4. Эндотермическая реакция разложения пентахлорида фосфора протекает по уравнению:

    PCl 5(Г) = PCl 3(Г) + Cl 2(Г) ;

    Как надо изменить: а) температуру; б) давление; в) концентрацию, чтобы сместить равновесие в сторону прямой реакции – разложение PCl 5 ? Напишите математическое выражение скорости прямой и обратной реакций, а также константы равновесия.

    Решение: Смещением или сдвигом химического равновесия называют изменения равновесных концентраций реагирующих веществ в результате изменения одного из условий реакции.

    Смещение химического равновесия подчиняется принципу Ле-Шателье, согласно которому изменение одного из условий, при которых система находится в равновесии, вызывает смещение равновесия в направлении той реакции, которая противодействует производному изменению.

    а) Так как реакция разложения PCl 5 эндотермическая , то для смещения равновесия в сторону прямой реакции нужно повысить температуру.

    б) Так как в данной системе разложение PCl 5 ведет к увеличению объема (из одной молекулы газа образуется две газообразные молекулы), то для смещения равновесия в сторону прямой реакции надо уменьшить давление.

    в) Смещение равновесия в указанном направлении можно достигнуть как увеличением концентрации PCl 5 , так и уменьшением концентрации PCl 3 или Cl 2 .

    Согласно закону действия масс, скорости прямой (V 1) и обратной (V 2) реакций выражаются уравнениями:

    V 2 = k

    Константа равновесия данной реакции выражается уравнением:

    Контрольные задания:

    81 - 100. а) рассчитайте стандартное изменение энтальпии прямой реакции и определите экзо- или эндотермическая это реакция;

    б) определите изменение энергии Гиббса прямой реакции и сделайте вывод о возможности её осуществления при стандартных условиях;

    в) напишите математическое выражение скорости прямой и обратной реакции, а также константы равновесия;

    г) как следует изменить условия, чтобы равновесие процесса сместить вправо?

    81. CH 4(г) + CO 2(г) = 2СO (г) + 2H 2(г)

    82. FeO (K) + CO (г) =Fe (K) + CO 2(г)

    83. C 2 H 4(г) + O 2(г) = CO 2(г) + H 2 O (г)

    84. N 2(г) + 3H 2(г) =2NH 3(г)

    85. H 2 O (г) +CO (г) = CO 2(г) +H 2(г)

    86. 4HCl (г) + O 2(г) = 2H 2 O (г) + 2Cl 2(г)

    87. Fe 2 O 3(К) +3H 2(г) = 2Fe (K) + 3H 2 O (г)

    88. 2SO 2(г) + O 2(г) = 2SO 3(г)

    89. PCl 5(г) = PCl 3(г) + Cl 2(г)

    90. CO 2(г) + C (графит) = 2СO (г)

    91. 2H 2 S (г) + 3O 2(г) = 2SO 2(г) + H 2 O (г)

    92. Fe 2 O 3(K) +CO (г) =2FeO (K) + CO 2(г)

    93. 4NH 3(г) + 5O 2(г) = 4NO (г) + 6H 2 O (г)

    94. NH 4 Cl (K) = NH 3(г) + HCl (г)

    95. CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г)

    96. CS 2(г) + 3O 2(г) = CO 2(г) + 2SO 2(г)

    97. 4HCl (г) + O 2(г) = 2Cl 2(г) + 2H 2 O (г)

    98. 2NO (г) + O 2(г) = N 2 O 4(г)

    99. NH 3(г) + HCl (г) = NH 4 Cl (K)

    100. CS 2(г) + 3O 2(г) = 2Cl 2(г) + 2SO 2(г)

    Тема 6: Растворы. Способы выражения концентрации растворов

    Растворы – это гомогенные системы, состоящие из растворителя, растворенных веществ и возможных продуктов их взаимодействия. Концентрацией раствора называется содержание растворенного вещества в определенной массе или известном объеме раствора или растворителя.

    Способы выражения концентрации растворов:

    Массовая доля () показывает количество граммов растворенного вещества в 100 г раствора:

    где т – масса растворенного вещества (г), т 1 – масса раствора (г).

    Молярная концентрация показывает число молей растворенного вещества, содержащихся в 1л раствора:

    где М- молярная масса вещества (г/моль), V- объем раствора (л).

    Моляльная концентрация показывает число молей растворенного вещества, содержащихся в 1000г растворителя:п 101-120. Найти массовую долю, молярную концентрацию, моляльную концентрацию для следующих растворов:

    Вариант Вещество (х) Масса вещества (х) Объем воды Плотность раствора
    CuSO 4 320 г 10 л 1,019
    NaCl 0,6 г 50 мл 1,071
    H 2 SO 4 2 г 100 мл 1,012
    Na 2 SO 4 13 г 100 мл 1,111
    HNO 3 12,6 г 100 мл 1,066
    HCl 3,6 кг 10 кг 1,098
    NaOH 8 г 200 г 1,043
    MgCl 2 190 г 810 г 1,037
    KOH 224 г 776 г 1,206
    CuCl 2 13,5 г 800 мл 1,012
    HCl 10,8 г 200 г 1,149
    CuSO 4 8 г 200 мл 1,040
    NaCl 6,1 г 600 мл 1,005
    Na 2 SO 3 4,2 г 500 мл 1,082
    H 2 SO 4 98 г 1000 мл 1,066
    ZnCl 2 13,6 г 100 мл 1,052
    H 3 PO 4 9,8 г 1000 мл 1,012
    Ba(OH) 2 100 г 900 г 1,085
    H 3 PO 4 29,4 г 600 мл 1,023
    NaOH 28 г 72 г 1,309

    Лекция 1 Химическая термодинамика. Химическая кинетика и катализ ПЛАН 1. Основные понятия термодинамики. 2. Термохимия. 3. Химическое равновесие. 4. Скорость химических реакций. 5. Влияние температуры на скорость реакций. 6. Явление катализа. Подготовили: к.х.н., доц. Іванець Л.М., ас. Козачок С.С. Лектор ассистент кафедры фармацевтической химии Козачок Соломея Степановна


    Термодинамика – Термодинамика – это раздел физики, изучающей взаимные преобразования различных видов энергии, связанных с переходом энергии в форме теплоты и работы. Большое практическое значение термодинамики в том, что она позволяет рассчитать тепловые эффекты реакции, заранее указать возможность или невозможность осуществления реакции, а также условия ее прохождения.






    Внутренная енергия Внутренная энергия - кинетическая энергия всех частиц системы (молекул, атомов, электронов) и потенциальная энергия их взаимодействий, кроме кинетической и потенциальной энергии системы в целом. Внутренная энергия является функцией состояния, т.е. ее изменение определяется заданным начальным и конечным состояниями системы и не зависит от пути процесса: U = U 2 – U 1


    Первый закон термодинамики Энергия не исчезает бесследно и не возникает из ничего, а только переходит из одного вида в другой в эквивалентном количестве. Вечный двигатель первого рода, то есть периодически действующая машина, которая дает работу, не тратя при этом энергии, невозможен. Q = U + W В любой изолированной системе общий запас энергии сохраняется неизменным. Q = U + W


    Тепловой эффект химической реакции при постоянном V или р не зависит от пути прохождения реакции, а определяется природой и состоянием исходных веществ и продуктов реакции Закон Гесса Н 1 Н 2 Н 3 Н 4 Исходние вещества продукты реакции Н 1 = Н 2 + Н 3 + Н 4 Н 1 = Н 2 + Н 3 + Н 4


    Второй закон термодинамики, как и первый, является результатом многовекового человеческого опыта. Существуют различные формулировки второго закона, но все они определяют направление самопроизвольных процессов: 1. Теплота не может самопроизвольно переходить от холодного тела к горячему (постулат Клаузиуса). 2. Процесс, единственным результатом которого является превращение теплоты в работу, невозможен (постулат Томсона). 3. Нельзя построить машину периодического действия, которая только охлаждаюет тепловой резервуар и выполняет работу (первый постулат Планка). 4. Любая форма энергии может полностью превратиться в теплоту, но теплота преобразуется в другие виды энергии лишь частично (второй постулат Планка).


    Энтропия – термодинамическая функция состояния, поэтому ее изменение не зависит от пути процесса, а определяется только начальным и конечным состояниями системы. тогда S 2 - S 1 = ΔS = S 2 - S 1 = ΔS = Физической смысл энтропии - это количество связанной энергии, которая отнесенная к одному градусу: в изолированных системах, направление течения самопроизвольных процессов определяется изменением энтропии.


    Характеристические функции U – функция изохорно-изоэнтропийного процесса: dU = TdS – pdV. Для произволного процесса: U 0 Н – функция изобарно-изоэнтропийного процесса:dН = TdS + Vdp Для произволного процесса: Н 0 S – функция изолированой системы Для произволного процесса: S 0 Для произволного процесса: S 0 F – функция изохорно-изотермического процесса dF = dU – TdS. Для произволного процесса: F 0 G – функция изобарно-изотермического процесса: dG = dH- TdS Для произволного процесса: G 0




    Классификация химических реакций по числу стадий Простые протекают в один элементарный химический актСложные протекают в несколько стадий Обратная реакция А В Обратная реакция: А В Паралельние: В А С Последовательные:АВС Сопряженные:А D Сопряженные: А D С В Е В Е








    Влияние температуры на скорость реакций Влияние температуры на скорость ферментативных реакций t t


    Сравнение Вант- Гоффа: Расчет срока годности лекарств по методу "ускоренного старения" Вант- Гоффа: при t 2 t 1 Температурной коэффициент скорости: