Рассмотрим функцию, заданную формулой (уравнением)

Этой функции, а следовательно, и уравнению (11) соответствует на плоскости вполне определенная линия, которая является графиком данной функции (см. рис. 20). Из определения графика функции следует, что эта линия состоит из тех и только тех точек плоскости координаты которых удовлетворяют уравнению (11).

Пусть теперь

Линия, являющаяся графиком этой функции, состоит из тех и только тех точек плоскости координаты которых удовлетворяют уравнению (12). Это значит, что если точка лежит на указанной линии, то ее координаты удовлетворяют уравнению (12). Если же точка не лежит на этой линии, то ее координаты уравнению (12) не удовлетворяют.

Уравнение (12) разрешено относительно у. Рассмотрим уравнение, содержащее х и у и не разрешенное относительно у, например уравнение

Покажем, что и этому уравнению в плоскости соответствует линия, а именно - окружность с центром в начале координат и радиусом, равным 2. Перепишем уравнение в виде

Его левая часть представляет собой квадрат расстояния точки от начала координат (см. § 2, п. 2, формула 3). Из равенства (14) следует, что квадрат этого расстояния равен 4.

Это значит, что любая точка , координаты которой удовлетворяют уравнению (14), а значит и уравнению (13), находится от начала координат на расстоянии, равном 2.

Геометрическое место таких точек есть окружность с центром в начале координат и радиусом 2. Эта окружность и будет линией, соответствующей уравнению (13). Координаты любой ее точки, очевидно, удовлетворяют уравнению (13). Если же точка не лежит на найденной нами окружности, то квадрат ее расстояния от начала координат будет либо больше, либо меньше 4, а это значит, что координаты такой точки уравнению (13) не удовлетворяют.

Пусть теперь, в общем случае, дано уравнение

в левой части которого стоит выражение, содержащее х и у.

Определение. Линией, определяемой уравнением (15), называется геометрическое место точек плоскости координаты которых удовлетворяют этому уравнению.

Это значит, что если линия L определяется уравнением то координаты любой точки L удовлетворяют этому уравнению, а координаты всякой точки плоскости лежащей вне L, уравнению (15) не удовлетворяют.

Уравнение (15) называется уравнением линии

Замечание. Не следует думать, что любое уравнение определяет какую-нибудь линию. Например, уравнение не определяет никакой линии. В самом деле, при любых действительных значениях и у левая часть данного уравнения положительна, а правая равна нулю, и следовательно, этому уравнению не могут удовлетворять координаты никакой точки плоскости

Линия может определяться на плоскости не только уравнением, содержащим декартовы координаты, но и уравнением в полярных координатах. Линией, определяемой уравнением в полярных координатах, называется геометрическое место точек плоскости, полярные координаты которых удовлетворяют этому уравнению.

Пример 1. Построить спираль Архимеда при .

Решение. Составим таблицу для некоторых значений полярного угла и соответствующих им значений полярного радиуса .

Строим в полярной системе координат точку , которая, очевидно, совпадает с полюсом; затем, проведя ось под углом к полярной оси, строим на этой оси точку с положительной координатой после этого аналогично строим точки с положительными значениями полярного угла и полярного радиуса (оси для этих точек на рис. 30 не указаны).

Соединив между собой точки получим одну ветвь кривой, обозначенную на рис. 30 жирной линией. При изменении от 0 до эта ветвь кривой состоит из бесконечного числа витков.

Линию на плоскости будем рассматривать как геометрическое место точек M(x, y), удовлетворяющих некоторому условию.

Если в декартовой системе координат записать свойство, которым обладают все точки линии, связав координаты и некоторые константы, можно получить уравнение вида: F(x, y) = 0 или .

Пример. Написать уравнение окружности с центром в точке C(x 0 , y 0) и радиуса R.

Окружность – геометрическое место точек, равноудаленных от точки С. Возьмем точку М с текущими координатами. Тогда |CM| = R или или .

Если центр окружности находится в начале координат, то x 2 + y 2 = R 2 .

Не всякое уравнение вида F(x, y) = 0 определяет линию в указанном смысле: x 2 + y 2 = 0 – точка.

Прямая на плоскости.

Прямые на данной плоскости являются частным случаем прямых в пространстве. Поэтому их уравнения можно получить из соответствующих уравнений прямых в пространстве.

Общее уравнение прямой на плоскости. Уравнение прямой с угловым коэффициентом.

Любую прямую в плоскости XOY можно задать как линию пересечения плоскости Ax + By + Cz + D = 0 с плоскостью XOY: z = 0.

- прямая линия в плоскости XOY: Ax + By + D = 0.

Полученное уравнение называется общим уравнением прямой. В дальнейшем его будем записывать в виде:

Ax + By + C = 0 (1)

1) Пусть , тогда или y = kx + b (2) – уравнение прямой с угловым коэффициентом. выясним геометрический смысл k и b.

Положим x = 0. Тогда y = b – начальная ордината прямой.

Положим y = 0. Тогда ; - угловой коэффициент прямой.

Частные случаи: а) b = 0, y=kx – прямая проходит через начало координат; б) k = 0, y = b – прямая параллельна оси ОХ; b) если B = 0, то Ax + C = 0, ,

Это - геометрическое место точек с постоянными абсциссами, равными a, т.е. прямая перпендикулярна оси ОХ.

Уравнение прямой в отрезках.

Пусть дано общее уравнение прямой: Ax + By + C = 0, причем . Разделим обе его части на –C:

или (3),

где ; . Это уравнение прямой в отрезках. Числа a и b – величины отрезков, отсекаемых на осях координат.

Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.



Пусть дана точка M 0 (x 0 , y 0), лежащая на прямой L и угловой коэффициент k. Запишем уравнение:

Здесь b неизвестно. Найдем его, учитывая, что M 0 L:

y 0 = kx 0 + b (**).

Вычтем почленно из (1) (2):

y – y 0 = k(x – x 0) (4).

Уравнение прямой, проходящей через данную точку в данном направлении.

Уравнение прямой, проходящие через две данные точки.

Пусть даны две точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) L. Запишем уравнение (4) в виде: y – y 1 = k(x – x 1). Т.к. M 2 L, то y 2 – y 1 = k(x 2 – x 1). Поделим почленно:

(5),

Это уравнение имеет смысл, если , . Если x 1 = x 2 , то M 1 (x 1 , y 1) и M 2 (x 1 , y 2). Если у 2 = у 1 , то М 1 (х 1 , у 1); М 2 (х 2 , у 1).

Т.о., если один из знаменателей в (5) обращается в нуль, надо приравнять нулю соответствующий числитель.

Пример. М 1 (3, 1) и М 2 (-1, 4). Написать уравнение прямой, проходящей через эти точки. Найти k.

Пусть на плоскости  задана декартова прямоугольная система координат Оху и некоторая линия L.

Определение . Уравнение F(x;y)=0 (1) называется уравнением линии L (относительно заданной системы координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты х и у ни одной точки, не лежащей на линии L.

Т.о. линией на плоскости называется геометрическое место точек {M(x;y)}, координаты которых удовлетворяют уравнению (1).

Уравнение (1) определяет линию L.

Пример. Уравнение окружности.

Окружность – множество точек, равноудаленных от заданной точки М 0 (х 0 ,у 0).

Точка М 0 (х 0 ,у 0) – центр окружности .

Для любой точки М(х;у), лежащей на окружности, расстояние ММ 0 =R (R=const)

ММ 0 ==R

(х-х 0 ) 2 +(у-у 0 ) 2 =R 2 –(2) уравнение окружности радиуса R с центром в точке М 0 (х 0 ,у 0).

Параметрическое уравнение линии.

Пусть координаты х и у точек линии L выражаются при помощи параметра t:

(3) – параметрическое уравнение линии в ДСК

где функции (t) и (t) непрерывны по параметру t (в некоторой области изменения этого параметра).

Исключая из уравнения (3) параметр t, получим уравнение (1).

Рассмотрим линию L как путь, пройденный материальной точкой, непрерывно движущейся по определенному закону. Пусть переменная t представляет собой время, отсчитываемое от некоторого начального момента. Тогда задание закона движения представляет собой задание координат х и у движущейся точки как некоторых непрерывных функций х=(t) и у=(t) времени t.

Пример . Выведем параметрическое уравнение окружности радиуса r>0 с центром в начале координат. Пусть М(х,у) – произвольная точка этой окружности, а t – угол между радиус-вектором и осью Ох, отсчитываемый против часовой стрелки.

Тогда x=r cos x y=r sin t. (4)

Уравнения (4) представляют собой параметрические уравнения рассматриваемой окружности. Параметр t может принимать любые значения, но для того, чтобы точка М(х,у) один раз обошла окружность, область изменения параметра ограничивается полусегментом 0t2.

Возведя в квадрат и сложив уравнения (4), получим общее уравнение окружности (2).

2. Полярная система координат (пск).

Выберем на плоскости ось L (полярная ось ) и определим точку этой оси О (полюс ). Любая точка плоскости однозначно задается полярными координатами ρ и φ, где

ρ – полярный радиус , равный расстоянию от точки М до полюса О (ρ≥0);

φ –угол между направлением вектора ОМ и осью L (полярный угол ). М(ρ; φ)

Уравнение линии в ПСК может быть записано:

ρ=f(φ) (5) явное уравнение линии в ПСК

F=(ρ; φ) (6) неявное уравнение линии в ПСК

Связь между декартовыми и полярными координатами точки.

(х;у) (ρ; φ) Из треугольника ОМА:

tg φ=(восстановление угла φ по известному тангенсу производится с учетом того, в каком квадранте находится точка М).(ρ; φ)(х;у). х=ρcos φ, y= ρsin φ

Пример . Найти полярные координаты точек М(3;4) и Р(1;-1).

Для М:=5, φ=arctg (4/3). Для Р: ρ=; φ=Π+arctg(-1)=3Π/4.

Классификация плоских линий.

Определение 1. Линия называется алгебраической, если в некоторой декартовой прямоугольной системе координат, если она определяется уравнением F(x;y)=0 (1), в котором функция F(x;y) представляет собой алгебраический многочлен.

Определение 2. Всякая не алгебраическая линия называется трансцендентной .

Определение 3 . Алгебраическая линия называется линией порядка n , если в некоторой декартовой прямоугольной системе координат эта линия определяется уравнением (1), в котором функция F(x;y) представляет собой алгебраический многочлен n-й степени.

Т.о., линией n-го порядка называется линия, определяемая в некоторой декартовой прямоугольной системе алгебраическим уравнением степени n с двумя неизвестными.

Установлению корректности определений 1,2,3 способствует следующая теорема.

Теорема (док-во на с.107). Если линия в некоторой декартовой прямоугольной системе координат определяется алгебраическим уравнением степени n, то эта линия и в любой другой декартовой прямоугольной системе координат определяется алгебраическим уравнением той же степени n.

1. Уравнение линии на плоскости

Как известно, любая точка на плоскости определяется двумя координатами в какойлибо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линии называется соотношение y = f (x ) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t. Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

2. Уравнение прямой на плоскости

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка Ax + By + C = 0 , причем постоянные A , B не равны нулю одновременно, т.е.

A 2 + B 2 ≠ 0 . Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

– прямая проходит через начало координат

C = 0, A ≠ 0, B ≠ 0{ By + C = 0} - прямая параллельна оси Ох

B = 0, A ≠ 0,C ≠ 0{ Ax + C = 0} – прямая параллельна оси Оу

B = C = 0, A ≠ 0 – прямая совпадает с осью Оу

A = C = 0, B ≠ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

3. Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А,В) перпендикулярен прямой, заданной уравнением

Ax + By + C = 0.

Пример. Найти уравнение прямой, проходящей через точку А(1,2) перпендикулярно вектору n (3, − 1) .

Составим при А=3 и В=-1 уравнение прямой: 3x − y + C = 0 . Для нахождения коэффициента

С подставим в полученное выражение координаты заданной точки А. Получаем: 3 − 2 + C = 0 , следовательно С=-1.

Итого: искомое уравнение: 3x − y − 1 = 0 .

4. Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M1 (x1 , y1 , z1 ) и M2 (x2, y2 , z2 ), тогда уравнение прямой,

проходящей через эти точки:

x − x1

y − y1

z − z1

− x

− y

− z

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается: y − y 1 = y 2 − y 1 (x − x 1 ) , если x 2 − x 1

x 1 ≠ x 2 и x = x 1 , если x 1 = x 2 .

Дробь y 2 − y 1 = k называется угловым коэффициентом прямой. x 2 − x 1

5. Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой Ax + By + C = 0 привести к виду:

называется уравнением прямой с угловым коэффициентом k .

6. Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор а (α 1 ,α 2 ) , компоненты которого удовлетворяют условию A α 1 + B α 2 = 0 называется направляющим вектором прямой

Ax + By + C = 0 .

Пример. Найти уравнение прямой с направляющим вектором а (1,-1) и проходящей через точку А(1,2).

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0 . В соответствии с определением, коэффициенты должны удовлетворять условиям: 1A + (− 1) B = 0 , т.е. A = B . Тогда уравнение прямой имеет вид: Ax + Ay + C = 0 , или x + y + C / A = 0 . при х=1, у=2 получаем С/A=-3, т.е. искомое уравнение: x + y − 3 = 0

7. Уравнение прямой в отрезках

Если в общем уравнении прямой Ax + By + C = 0,C ≠ 0 , то, разделив на –С,

получим: −

х−

у = 1 или

1, где a = −

b = −

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

8. Нормальное уравнение прямой

называется нормирующем множителем, то получим x cosϕ + y sinϕ − p = 0 – нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы μ C < 0 .

р – длина перпендикуляра, опущенного из начала координат на прямую, а ϕ - угол, образованный этим перпендикуляром с положительным направлением оси Ох

9. Угол между прямыми на плоскости

Определение. Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны, если k 1 = − 1/ k 2 .

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой

Определение. Прямая, проходящая через точку М1 (х1 ,у1 ) и перпендикулярная к прямой y = kx + b представляется уравнением:

y − y = −

(x − x )

10. Расстояние от точки до прямой

Если задана точка М(х0 , у0 ), то расстояние до прямой Ax + By + C = 0

определяется как d =

Ax0 + By0 + C

Пример. Определить угол между прямыми: y = − 3x + 7, y = 2x + 1.

k = − 3, k

2 tg ϕ =

2 − (− 3)

1;ϕ = π / 4.

1− (− 3)2

Пример. Показать,

что прямые 3 x − 5 y + 7 = 0 и 10 x + 6 y − 3 = 0

перпендикулярны.

Находим: k 1 = 3/ 5, k 2 = − 5 / 3, k 1 k 2 = − 1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0 ; 1) , B (6 ; 5) , C (1 2 ; - 1) .

Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны AB :

x − 0

y − 1

y − 1

; 4x = 6 y − 6

6 − 0

5 − 1

2 x − 3 y + 3 = 0; y = 2 3 x + 1.

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + bk = − 3 2 Тогда

y = − 3 2 x + b . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: − 1 = − 3 2 12 + b , откуда b=17. Итого: y = − 3 2 x + 17 .

Ответ: 3x + 2 y − 34 = 0 .

Уравнение линии на плоскости.

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линии называется соотношение y = f (x ) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t .

Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Уравнение прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Расстояние от точки до прямой.

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

.

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим :

Подставляя эти выражения в уравнение (1), находим:

.

Теорема доказана.

Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

K 1 = -3; k 2 = 2 tg j = ; j = p /4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.