Определение: Пусть в каждой точки гладкой кривой L = AB в плоскости Oxy задана непрерывная функция двух переменных f(x,y) . Произвольно разобьем кривую L на n частей точками A = М 0 , М 1 , М 2 , ... М n = B. Затем на каждой из полученых частей \(\bar{{M}_{i-1}{M}_{i}}\) выберем любую точку \(\bar{{M}_{i}}\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\)и составим сумму $${S}_{n}=\sum_{i=1}^{n}f\left(\bar{{x}_{i}},\bar{{y}_{i}}\right)\Delta {l}_{i}$$ где \(\Delta{l}_{i}={M}_{i-1}{M}_{i}\) - дуга дуги \(\bar{{M}_{i-1}{M}_{i}}\). Полученная сумма называется интегральной суммой первого рода для функции f(x,y) , заданой на кривой L.

Обозначим через d наибольшую из длин дуг \(\bar{{M}_{i-1}{M}_{i}}\) (таким образом, d = \(max_{i}\Delta{l}_{i}\)). Если при d ? 0 существует предел интегральных сумм S n (не зависящих от способа разбиения кривой L на части и выбора точек \(\bar{{M}_{i}}\)), то этот предел называется криволинейным интегралом первого порядка от функции f(x,y) по кривой L и обозначается $$\int_{L}f(x,y)dl$$

Можно доказать, что если функция f(x,y) непрерывна, то криволинейный интеграл \(\int_{L}f(x,y)dl\) существует.

Свойства криволинейного интеграла 1 рода

Криволинейный интеграл первого рода обладает свойствами, аналогичными соответствующим свойства определеннного интеграла:

  • аддитивность,
  • линейность,
  • оценка модуля,
  • теорема о среднем.

Однако есть отличие: $$\int_{AB}f(x,y)dl=\int_{BA}f(x,y)dl$$ т.е. криволинейный интеграл первого рода не зависит от направления интегрирования.

Вычисление криволинейных интегралов первого рода

Вычисление криволинейного интеграла первого рода сводится к вычислению определенного интеграла. А именно:

  1. Если кривая L задана непрерывно дифференцируемой функцией y=y(x), x \(\in \) , то $${\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_a^b {f\left({x,y\left(x \right)} \right)\sqrt {1 + {{\left({y"\left(x \right)} \right)}^2}} dx} ;}$$ при этом выражение \(dl=\sqrt{{1 + {{\left({y"\left(x \right)} \right)}^2}}} dx \) называется дифференциалом длины дуги.
  2. Если крива L задана параметрически, т.е. в виде x=x(t), y=y(t), где x(t), y(t) - непрерывно дифференцируемые функции на некотором отрезке \(\left [ \alpha ,\beta \right ]\), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left ({x\left(t \right),y\left(t \right)} \right)\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2}} dt}} $$ Это равенство распространяется на случай пространственной кривой L, заданной параметрически: x=x(t), y=y(t), z=z(t), \(t\in \left [ \alpha ,\beta \right ]\). В этом случае, если f(x,y,z) - непрерывная функция вдоль кривой L, то $$ {\int\limits_L {f\left({x,y,z} \right)dl} } = {\int\limits_\alpha ^\beta {f\left [ {x\left(t \right),y\left(t \right),z\left(t \right)} \right ]\sqrt {{{\left({x"\left(t \right)} \right)}^2} + {{\left({y"\left(t \right)} \right)}^2} + {{\left({z"\left(t \right)} \right)}^2}} dt}} $$
  3. Если плоская кривая L задана полярным уравнением r=r(\(\varphi \)), \(\varphi \in\left [ \alpha ,\beta \right ] \), то $$ {\int\limits_L {f\left({x,y} \right)dl} } = {\int\limits_\alpha ^\beta {f\left({r\cos \varphi ,r\sin \varphi } \right)\sqrt {{r^2} + {{{r}"}^2}} d\varphi}} $$

Криволинейные интегралы 1 рода - примеры

Пример 1

Вычислить криволинейный интеграл первого рода

$$ \int_{L}\frac{x}{y}dl $$ где L дуга параболы y 2 =2x, заключенная между точками (2,2) и (8,4).

Решение: Найдем дифференциал дуги dl для кривой \(y=\sqrt{2x}\). Имеем:

\({y}"=\frac{1}{\sqrt{2x}} \) $$ dl=\sqrt{1+\left ({y}" \right)^{2}} dx= \sqrt{1+\left (\frac{1}{\sqrt{2x}} \right)^{2}} dx = \sqrt{1+ \frac{1}{2x}} dx $$ Следовательно данный интеграл равен: $$\int_{L}\frac{x}{y}dl=\int_{2}^{8}\frac{x}{\sqrt{2x}}\sqrt{1+\frac{1}{2x}}dx= \int_{2}^{8}\frac{x\sqrt{1+2x}}{2x}dx= $$ $$ \frac{1}{2}\int_{2}^{8}\sqrt{1+2x}dx = \frac{1}{2}.\frac{1}{3}\left (1+2x \right)^{\frac{3}{2}}|_{2}^{8}= \frac{1}{6}(17\sqrt{17}-5\sqrt{5}) $$

Пример 2

Вычислить криволинейный интеграл первого рода \(\int_{L}\sqrt{x^2+y^2}dl \), где L - окружность x 2 +y 2 =ax (a>0).

Решение: Введем полярные координаты: \(x = r\cos \varphi \), \(y=r\sin \varphi \). Тогда поскольку x 2 +y 2 =r 2 , уравнение окружности имеет вид: \(r^{2}=arcos\varphi \), то есть \(r=acos\varphi \), а дифференциал дуги $$ dl = \sqrt{r^2+{2}"^2}d\varphi = $$ $$ =\sqrt{a^2cos^2\varphi=a^2sin^2\varphi }d\varphi=ad\varphi $$.

При этом \(\varphi\in \left [- \frac{\pi }{2} ,\frac{\pi }{2} \right ] \). Следовательно, $$ \int_{L}\sqrt{x^2+y^2}dl=a\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}}acos\varphi d\varphi =2a^2 $$

На случай, когда областью интегрирования является отрезок некоторой кривой, лежащий в плоскости. Общая запись криволинейного интеграла следующая:

где f (x , y ) - функция двух переменных, а L - кривая, по отрезку AB которой происходит интегрирование. Если подынтегральная функция равна единице, то криволинейный интеграл равен длине дуги AB .

Как всегда в интегральном исчислении, криволинейный интеграл понимается как предел интегральных сумм каких-то очень маленьких частей чего-то очень большого. Что же суммируется в случае криволинейных интегралов?

Пусть на плоскости расположен отрезок AB некоторой кривой L , а функция двух переменных f (x , y ) определена в точках кривой L . Пусть мы выполняем с этим отрезком кривой следующий алгоритм.

  1. Разделить кривую AB на части точками (рисунки ниже).
  2. В каждой части свободно выбрать точку M .
  3. Найти значение функции в выбранных точках.
  4. Значения функции умножить на
    • длины частей в случае криволинейного интеграла первого рода ;
    • проекции частей на ось координат в случае криволинейного интеграла второго рода .
  5. Найти сумму всех произведений.
  6. Найти предел найденной интегральной суммы при условии, что длина самой длинной части кривой стремится к нулю.

Если упомянутый предел существует, то этот предел интегральной суммы и называется криволинейным интегралом от функции f (x , y ) по кривой AB .


первого рода

Случай криволинейного интеграла
второго рода

Введём следующие ообозначения.

M i (ζ i ; η i ) - выбранная на каждом участке точка с координатами.

f i (ζ i ; η i ) - значение функции f (x , y ) в выбранной точке.

Δs i - длина части отрезка кривой (в случае криволинейного интеграла первого рода).

Δx i - проекция части отрезка кривой на ось Ox (в случае криволинейного интеграла второго рода).

d = maxΔs i - длина самой длинной части отрезка кривой.

Криволинейные интегралы первого рода

Исходя из вышеизложенного о пределе интегральных сумм, криволинейный интеграл первого рода записывается так:

.

Криволинейный интеграл первого рода обладает всеми свойствами, которыми обладает определённый интеграл . Однако есть одно важное различие. У определённого интеграла при перемене местами пределов интегрирования знак меняется на противоположный:

В случае же криволинейного интеграла первого рода не имеет значения, какую из точек кривой AB (A или B ) считать началом отрезка, а какую концом, то есть

.

Криволинейные интегралы второго рода

Исходя из изложенного о пределе интегральных сумм, криволинейный интеграл второго рода записывается так:

.

В случае криволинейного интеграла второго рода при перемене местами начала и конца отрезка кривой знак интеграла меняется:

.

При составлении интегральной суммы криволинейного интеграла второго рода значения функции f i (ζ i ; η i ) можно умножать также на проекции частей отрезка кривой на ось Oy . Тогда получим интеграл

.

На практике обычно используется объединение криволинейных интегралов второго рода, то есть две функции f = P (x , y ) и f = Q (x , y ) и интегралы

,

а сумма этих интегралов

называется общим криволинейным интегралом второго рода .

Вычисление криволинейных интегралов первого рода

Вычисление криволинейных интегралов первого рода сводится к вычислению определённых интегралов. Рассмотрим два случая.

Пусть на плоскости задана кривая y = y (x ) и отрезку кривой AB соответствует изменение переменной x от a до b . Тогда в точках кривой подынтегральная функция f (x , y ) = f (x , y (x )) ("игрек" должен быть выражен через "икс"), а дифференциал дуги и криволинейный интеграл можно вычислить по формуле

.

Если интеграл проще интегрировать по y , то из уравнения кривой нужно выразить x = x (y ) ("икс" через "игрек"), где и интеграл вычисляем по формуле

.

Пример 1.

где AB - отрезок прямой между точками A (1; −1) и B (2; 1) .

Решение. Составим уравнение прямой AB , используя формулу (уравнение прямой, проходящей через две данные точки A (x 1 ; y 1 ) и B (x 2 ; y 2 ) ):

Из уравнения прямой выразим y через x :

Тогда и теперь можем вычислять интеграл, так как у нас остались одни "иксы":

Пусть в пространстве задана кривая

Тогда в точках кривой функцию нужно выразить через параметр t () а дифференциал дуги , поэтому криволинейный интеграл можно вычислить по формуле

Аналогично, если на плоскости задана кривая

,

то криволинейный интеграл вычисляется по формуле

.

Пример 2. Вычислить криволинейный интеграл

где L - часть линии окружности

находящаяся в первом октанте.

Решение. Данная кривая - четверть линии окружности, расположенная в плоскости z = 3 . Она соответствует значениям параметра . Так как

то дифференциал дуги

Подынтегральную функцию выразим через параметр t :

Теперь, когда у нас всё выражено через параметр t , можем свести вычисление данного криволинейного интеграла к определённому интегралу:

Вычисление криволинейных интегралов второго рода

Так же, как и в случае криволинейных интегралов первого рода, вычисление интегралов второго рода сводится к вычислению определённых интегралов.

Кривая дана в декартовых прямоугольных координатах

Пусть дана кривая на плоскости уравнением функции "игрек", выраженной через "икс": y = y (x ) и дуге кривой AB соответствует изменение x от a до b . Тогда в подынтегральную функцию подставим выражение "игрека" через "икс" и определим дифференциал этого выражения "игрека" по "иксу": . Теперь, когда всё выражено через "икс", криволинейный интеграл второго рода вычисляется как определённый интеграл:

Аналогично вычисляется криволинейный интеграл второго рода, когда кривая дана уравнением функции "икс", выраженной через "игрек": x = x (y ) , . В этом случае формула для вычисления интеграла следующая:

Пример 3. Вычислить криволинейный интеграл

, если

а) L - отрезок прямой OA , где О (0; 0) , A (1; −1) ;

б) L - дуга параболы y = x ² от О (0; 0) до A (1; −1) .

а) Вычислим криволинейный интеграл по отрезку прямой (на рисунке - синяя). Напишем уравнение прямой и выразим "игрек" через "икс":

.

Получаем dy = dx . Решаем данный криволинейный интеграл:

б) если L - дуга параболы y = x ² , получим dy = 2xdx . Вычисляем интеграл:

В только что решённом примере получили в двух случаях один и тот же результат. И это не совпадение, а результат закономерности, так как данный интеграл удовлетворяет условиям следующей теоремы.

Теорема . Если функции P (x ,y ) , Q (x ,y ) и их частные производные , - непрерывные в области D функции и в точках этой области частные производные равны, то криволинейный интеграл не зависит от пути интегрирования по линии L , находящейся в области D .

Кривая дана в параметрической форме

Пусть в пространстве дана кривая

.

а в подынтегральные функции подставим

выражения этих функций через параметр t . Получаем формулу для вычисления криволинейного интеграла:

Пример 4. Вычислить криволинейный интеграл

,

если L - часть эллипса

отвечающая условию y ≥ 0 .

Решение. Данная кривая - часть эллипса, находящаяся в плоскости z = 2 . Она соответствует значению параметра .

можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:

Если дан криволинейный интеграл и L - замкнутая линия, то такой интеграл называется интегралом по замкнутому контуру и его проще вычислить по формуле Грина .

Больше примеров вычисления криволинейных интегралов

Пример 5. Вычислить криволинейный интеграл

где L - отрезок прямой между точками её пересечения с осями координат.

Решение. Определим точки пересечения прямой с осями координат. Подставив в уравнение прямой y = 0 , получим , . Подставив x = 0 , получим , . Таким образом, точка пересечения с осью Ox - A (2; 0) , с осью Oy - B (0; −3) .

Из уравнения прямой выразим y :

.

, .

Теперь можем представить криволинейный интеграл в виде определённого интеграла и начать вычислять его:

В подынтегральном выражении выделяем множитель , выносим его за знак интеграла. В получившемся после этого подынтегральном выражении применяем подведение под знак дифференциала и окончательно получаем.

Вычисление объема удобнее вести в цилиндрических координатах. Уравнение окружности, ограничивающей областьD , конуса и параболоида

соответственно принимают вид ρ = 2, z = ρ , z = 6 − ρ 2 . С учетом того, что данное тело симметрично относительно плоскостей xOz и yOz . имеем

6− ρ 2

V = 4 ∫ 2 dϕ ∫ ρ dρ ∫ dz = 4 ∫ 2 dϕ ∫ ρ z

6 ρ − ρ 2 d ρ =

4 ∫ d ϕ∫ (6 ρ − ρ3 − ρ2 ) d ρ =

2 d ϕ =

4 ∫ 2 (3 ρ 2 −

∫ 2 d ϕ =

32π

Если не учитывать симметрию, то

6− ρ 2

32π

V = ∫

dϕ ∫ ρ dρ ∫ dz =

3. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

Обобщим понятие определенного интеграла на случай, когда областью интегрирования является некоторая кривая. Интегралы такого рода называются криволинейными. Различают два типа криволинейных интегралов: криволинейные интегралы по длине дуги и криволинейные интегралы по координатам.

3.1. Определение криволинейного интеграла первого типа (по длине дуги). Пусть функция f (x, y) определена вдоль плоской кусочно-

гладкой1 кривой L , концами которой будут точки A и B . Разобьем кривую L произвольным образом на n частей точками M 0 = A , M 1 ,... M n = B . На

каждой из частичных дуг M i M i + 1 выберем произвольную точку (x i , y i ) и вычислим значения функции f (x, y) в каждой из этих точек. Сумма

1 Кривая называется гладкой, если в каждой ее точке существует касательная, непрерывно изменяющаяся вдоль кривой. Кусочногладкой кривой называется кривая, состоящая из конечного числа гладких кусков.

n− 1

σ n = ∑ f (x i , y i ) ∆ l i ,

i = 0

где∆ l i – длина частичной дуги M i M i + 1 , называется интегральной суммой

для функции f (x , y ) по кривой L . Обозначим наибольшую из длин

частичных дуг M i M i + 1 , i =

0 ,n − 1 черезλ , то есть λ = max ∆ l i .

0 ≤i ≤n −1

Если существует конечный предел I интегральной суммы (3.1)

стремлении к нулю наибольшей из длин частичных дугM i M i + 1 ,

зависящий ни от способа разбиения кривой L на частичные дуги, ни от

выбора точек (x i , y i ) , то этот предел называется криволинейным интегралом первого типа (криволинейным интегралом по длине дуги) от функции f (x , y ) по кривой L и обозначается символом ∫ f (x , y ) dl .

Таким образом, по определению

n− 1

I = lim ∑ f (xi , yi ) ∆ li = ∫ f (x, y) dl.

λ → 0 i = 0

Функция f (x , y ) называется в этом случае интегрируемой вдоль кривой L ,

кривая L = AB - контуром интегрирования, А – начальной, а В - конечной точками интегрирования, dl - элементом длины дуги.

Замечание 3.1. Если в (3.2) положить f (x , y ) ≡ 1 для (x , y ) L , то

получим выражение длины дуги L в виде криволинейного интеграла первого типа

l = ∫ dl.

Действительно, из определения криволинейного интеграла следует,

dl = lim n − 1

∆l

Lim l = l .

λ → 0 ∑

λ→ 0

i = 0

3.2. Основные свойства криволинейного интеграла первого типа

аналогичны свойствам определенного интеграла:

1 о . ∫ [ f1 (x, y) ± f2 (x, y) ] dl = ∫ f1 (x, y) dl ± ∫ f2 (x, y) dl.

2 о . ∫ cf (x , y ) dl = c ∫ f (x , y ) dl , где с - константа.

и L , не

3 о . Если контур интегрирования L разбит на две части L

имеющие общих внутренних точек, то

∫ f (x, y)dl = ∫ f (x, y)dl + ∫ f (x, y)dl.

4 о .Отметим особо, что величина криволинейного интеграла первого типа не зависит от направления интегрирования, так как в формировании интегральной суммы (3.1) участвуют значения функции f (x , y ) в

произвольных точках и длины частичных дуг ∆ l i , которые положительны,

независимо от того, какую точку кривой AB считать начальной, а какую – конечной, то есть

f (x, y) dl = ∫ f (x, y) dl .

3.3. Вычисление криволинейного интеграла первого типа

сводится к вычислению определенных интегралов.

x= x(t)

Пусть кривая L задана параметрическими уравнениями

y= y(t)

Пустьα и β – значения параметра t , соответствующие началу (точка А ) и

концу (точка В )

[α , β ]

x (t ), y (t ) и

производные

x (t), y (t)

Непрерывны,

f (x , y ) -

непрерывна вдоль кривой L . Из курса дифференциального исчисления

функций одной переменной известно, что

dl = (x (t))

+ (y (t ))

∫ f (x, y) dl = ∫ f (x(t), y(t))

(x (t )

+ (y (t ))

∫ x2 dl,

Пример 3.1.

Вычислить

окружности

x= a cos t

0 ≤ t ≤

y= a sin t

Решение. Так как x (t ) = − a sin t , y (t ) = a cos t , то

dl =

(− a sin t) 2 + (a cos t) 2 dt = a2 sin 2 t + cos 2 tdt = adt

и по формуле (3.4) получаем

Cos 2t )dt =

sin 2t

∫ x2 dl = ∫ a2 cos 2 t adt = a

3 ∫

πa 3

sin π

L задана

уравнением

y = y(x) ,

a ≤ x ≤ b

y(x)

непрерывна вместе со своей производной y

(x ) при a ≤ x ≤ b , то

dl =

1+ (y (x ))

и формула (3.4) принимает вид

∫ f (x, y) dl = ∫ f (x, y(x))

(y (x ))

L задана

x = x(y), c ≤ y ≤ d

x (y )

уравнением

непрерывна вместе со своей производной x (y ) при c ≤ y ≤ d , то

dl =

1+ (x (y ))

и формула (3.4) принимает вид

∫ f (x, y) dl = ∫ f (x(y), y)

1 + (x (y ))

Пример 3.2. Вычислить ∫ ydl, где L – дуга параболы

2 x от

точки А (0,0) до точки В (2,2).

Решение . Вычислим интеграл двумя способами, применяя

формулы (3.5) и(3.6)

1)Воспользуемся формулой (3.5). Так как

2x (y ≥ 0), y ′

2 x =

2 x ,

dl =

1+ 2 x dx ,

3 / 2 2

1 (5

3 2 − 1) .

∫ ydl = ∫

2 x + 1 dx = ∫ (2 x + 1) 1/ 2 dx =

1 (2x + 1)

2)Воспользуемся формулой (3.6). Так как

x = 2 , x

Y, dl

1 + y

y 1 + y 2 dy =

(1 + y

/ 2 2

∫ ydl = ∫

3 / 2

1 3 (5 5 − 1).

Замечание 3.2. Аналогично рассмотренному, можно ввести понятие криволинейного интеграла первого типа от функции f (x , y , z ) по

пространственной кусочно-гладкой кривой L :

Если кривая L задана параметрическими уравнениями

α ≤ t ≤ β , то

dl =

(x (t ))

(y (t ))

(z (t ))

∫ f (x, y, z) dl =

= ∫

dt .

f (x (t ), y (t ), z (t )) (x (t ))

(y (t ))

(z (t ))

x= x(t) , y= y(t)

z= z(t)

Пример 3.3. Вычислить∫ (2 z − x 2 + y 2 ) dl , где L – дуга кривой

x= t cos t

0 ≤ t ≤ 2 π.

y = t sin t

z = t

x′ = cost − t sint, y′ = sint + t cost, z′ = 1 ,

dl =

(cos t − t sin t)2 + (sin t + t cos t)2 + 1 dt =

Cos2 t − 2 t sin t cos t + t2 sin2 t + sin2 t + 2 t sin t cos t + t2 cos2 t + 1 dt =

2 + t2 dt .

Теперь по формуле (3.7) имеем

∫ (2z −

x2 + y2 ) dl = ∫ (2 t −

t 2 cos 2 t + t 2 sin 2 t )

2 + t 2 dt =

T 2 )

= ∫

t 2 + t

dt =

4 π

− 2 2

цилиндрической

поверхности,

которая составлена из перпендикуляров к

плоскости xOy ,

восстановленных в точках

(x , y )

L = AB

и имеющих

представляет собой массу кривой L , имеющей переменную линейную плотность ρ (x , y )

линейная плотность которой меняется по закону ρ (x , y ) = 2 y .

Решение. Для вычисления массы дуги AB воспользуемся формулой (3.8). Дуга AB задана параметрически, поэтому для вычисления интеграла (3.8) применяем формулу (3.4). Так как

1+ t

dt ,

x (t) = 1, y (t) = t , dl =

3/ 2 1

1 (1+ t

m = ∫ 2 ydl = ∫

1 2 + t2 dt = ∫ t 1 + t2 dt =

(2 3 / 2 −

1) =

2 2 − 1.

3.4. Определение криволинейного интеграла второго типа (по

координатам ). Пусть функция

f (x , y ) определена вдоль плоской

кусочно-гладкой кривойL , концами которой будут точки А и В . Опять

произвольным

разобьем

кривую L

M 0 = A , M 1 ,... M n = B Так же выберем в пределах

каждой частичной

дуги M i M i + 1

произвольную точку

(xi , yi )

и вычислим

16.3.2.1. Определение криволинейного интеграла первого рода. Пусть в пространстве переменных x,y,z задана кусочно-гладкая кривая , на которой определена функция f (x ,y ,z ).Разобьём кривую точками на частей, на каждой из дуг выберем произвольную точку , найдём и длину дуги , и составим интегральную сумму . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения кривой на дуги , ни от выбора точек , то функция f (x ,y ,z ) называется интегрируемой по кривой , а значение этого предела называется криволинейным интегралом первого рода, или криволинейным интегралом по длине дуги от функции f (x ,y ,z ) по кривой , и обозначается (или ).

Теорема существования. Если функция f (x ,y ,z ) непрерывна на кусочно-гладкой кривой , то она интегрируема по этой кривой.

Случай замкнутой кривой. В этом случае в качестве начальной и конечной точки можно взять произвольную точку кривой. Замкнутую кривую в дальнейшем будем называть контуром и обозначать буквой С . То, что кривая, по которой вычисляется интеграл, замкнута, принято обозначать кружочком на знаке интеграла: .

16.3.2.2. Свойства криволинейного интеграла первого рода. Для этого интеграла имеют место все шесть свойств, справедливых для определённого, двойного, тройного интеграла, от линейности до теоремы о среднем . Сформулировать и доказать их самостоятельно . Однако для этого интеграла справедливо и седьмое, персональное свойство:

Независимость криволинейного интеграла первого рода от направления прохождения кривой: .

Доказательство. Интегральные суммы для интегралов, стоящих в правой и левой частях этого равенства, при любом разбиении кривой и выборе точек совпадают (всегда длина дуги ), поэтому равны их пределы при .

16.3.2.3. Вычисление криволинейного интеграла первого рода. Примеры. Пусть кривая задана параметрическими уравнениями , где - непрерывно дифференцируемые функции, и пусть точкам , которые задают разбиение кривой, соответствуют значения параметра , т.е. . Тогда (см. раздел 13.3. Вычисление длин кривых) . По теореме о среднем, существует точка такая, что . Выберем точки , получающиеся при этом значении параметра: . Тогда интегральная сумма для криволинейного интеграла будет равна интегральной сумме для определенного интеграла . Так как , то, переходя к пределу при в равенстве , получим

Таким образом, вычисление криволинейного интеграла первого рода сводится к вычислению определённого интеграла по параметру. Если кривая задана параметрически, то этот переход не вызывает трудностей; если дано качественное словесное описание кривой, то основной трудностью может быть введение параметра на кривой. Ещё раз подчеркнём, что интегрирование всегда ведётся в сторону возрастания параметра.



Примеры. 1. Вычислить , где - один виток спирали

Здесь переход к определённому интегралу проблем не вызывает: находим , и .

2. Вычислить тот же интеграл по отрезку прямой, соединяющей точки и .

Здесь прямого параметрического задания кривой нет, поэтому на АВ необходимо ввести параметр. Параметрические уравнения прямой имеют вид где - направляющий вектор, - точка прямой. В качестве точки берем точку , в качестве направляющего вектора - вектор : . Легко видеть, что точка соответствует значению , точка - значению , поэтому .

3. Найти, где - часть сечения цилиндра плоскостью z =x +1, лежащая в первом октанте.

Решение: Параметрические уравнения окружности - направляющей цилиндра имеют вид x =2cosj, y =2sinj, и так как z=x +1, то z = 2cosj+1. Итак,

поэтому

16.3.2.3.1. Вычисление криволинейного интеграла первого рода. Плоский случай. Если кривая лежит на какой-либо координатной плоскости, например, плоскости Оху , и задаётся функцией , то, рассматривая х как параметр, получаем следующую формулу для вычисления интеграла: . Аналогично, если кривая задаётся уравнением , то .

Пример. Вычислить , где - четверть окружности , лежащая в четвёртом квадранте.

Решение. 1. Рассматривая х как параметр, получаем , поэтому

2. Если за параметр взять переменную у , то и .

3. Естественно, можно взять обычные параметрические уравнения окружности : .

Если кривая задана в полярных координатах , то , и .

1 рода.

1.1.1. Определение криволинейного интеграла 1 рода

Пусть на плоскости Оxy задана кривая (L). Пусть для любой точки кривой (L) определена непрерывная функция f(x;y). Разобьем дугу АВ линии (L) точками А=P 0 , P 1 , P n = В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.27)

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму

Пусть , где .

λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L )на элементарные части, ни от выбора точек M i криволинейным интегралом 1 рода от функции f(x;y) (криволинейным интегралом по длине дуги) и обозначают:

Замечание . Аналогично вводиться определение криволинейного интеграла от функции f(x;y;z) по пространственной кривой (L).

Физический смысл криволинейного интеграла 1 рода:

Если (L)- плоская кривая с линейной плоскостью , то массу кривой находят по формуле:

1.1.2. Основные свойства криволинейного интеграла 1 рода:

3. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то .

4. Криволинейный интеграл 1 рода не зависит от направления интегрирования:

5. , где - длина кривой.

1.1.3. Вычисление криволинейного интеграла 1 рода.

Вычисление криволинейного интеграла сводят к вычислению определенного интеграла.

1. Пусть кривая (L) задана уравнением . Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Вычислить массу отрезка прямой от точки А(1;1) до точки В(2;4), если .

Решение

Уравнение прямой проходящей через две точки: .

Тогда уравнение прямой (АВ ): , .

Найдём производную .

Тогда . = .

2. Пусть кривая (L) задана параметрически : .

Тогда , то есть дифференциал дуги вычисляют по формуле .

Для пространственного случая задания кривой: .Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Найти длину дуги кривой , .

Решение

Длину дуги найдём по формуле : .

Для этого найдём дифференциал дуги .

Найдём производные , , .Тогда и длина дуги: .

3. Пусть кривая (L) задана в полярной системе координат: . Тогда

То есть дифференциал дуги вычислют по формуле .

Пример

Вычислить массу дуги линии , 0≤ ≤ , если .

Решение

Массу дуги найдём по формуле:

Для этого найдёмдифференциал дуги .

Найдём производную .

1.2. Криволинейный интеграл 2 рода

1.2.1. Определение криволинейного интеграла 2 рода


Пусть на плоскости Оxy задана кривая (L) . Пусть на (L) задана непрерывная функция f (x;y). Разобьем дугу АВ линии (L) точками А = P 0 ,P 1 , P n = В в направлении от точки А к точке В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.28).

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму , где - длина проекции дуги P i -1 P i на ось Оx . Если направление движения вдоль проекции совпадает с положительным направлением оси Оx , то проекцию дуг считают положительной , иначе - отрицательной .

Пусть , где .

Если существует предел интегральной суммы при λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L) на элементарные части, ни от выбора точек M i в каждой элементарной части, то этот предел называют криволинейным интегралом 2 рода от функции f(x;y) (криволинейным интегралом по координате х ) и обозначают:

Замечание. Аналогично вводится криволинейный интеграл по координате у:

Замечание. Если (L) - замкнутая кривая, то интеграл по ней обозначают

Замечание. Если на (L ) задано сразу три функции и от этих функций существуют интегралы , , ,

то выражение: + + называют общим криволинейным интегралом 2 рода и записывают:

1.2.2. Основные свойства криволинейного интеграла 2 рода:

3. При изменении направления интегрирования криволинейный интеграл 2 рода изменяет свой знак .

4. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то

5. Если кривая (L ) лежит в плоскости:

Перпендикулярной оси Ох , то =0 ;

Перпендикулярной оси Oy , то ;

Перпендикулярной оси Oz , то =0.

6. Криволинейный интеграл 2 рода по замкнутой кривой не зависит от выбора начальной точки (зависит только от направления обхода кривой).

1.2.3. Физический смысл криволинейного интеграла 2 рода.

Работа А силы при перемещении материальной точки единичной массы из точки М в точку N вдоль (MN ) равна:

1.2.4. Вычисление криволинейного интеграла 2 рода.

Вычисление криволинейного интеграла 2 рода сводят к вычислению определенного интеграла.

1. Пусть кривая (L ) задана уравнением .

Пример

Вычислить, где (L )- ломаная OAB : O(0;0), A(0;2), B(2;4).

Решение

Так как (рис.29), то

1)Уравнение (OA) : , ,

2) Уравнение прямой (AB ): .

2. Пусть кривая (L) задана параметрически: .

Замечание. В пространственном случае:

Пример

Вычислить

Где (АВ)- отрезок от А(0;0;1) до B(2;-2;3).

Решение

Найдём уравнение прямой (АВ ):

Перейдём к параметрической записи уравнения прямой (АВ) . Тогда .

Точке A(0;0;1) соответствует параметр t равный: следовательно, t=0.

Точке B(2;-2;3) соответствует параметр t , равный: следовательно, t=1.

При перемещении от А к В ,параметр t меняется от 0 до 1 .

1.3. Формула Грина . L ) в т. М(х;у;z) с осями Оx, Оy, Oz