Тромбоциты - форменные элементы крови, количество которых составляет 150-400 109 / л. Это безъядерные, лишены пигментов круглые структуры, имеющие вид дисков диаметром около 3,6 мкм. Они образуются в костном мозге из крупных клеток-мегакариоцитов путем фрагментации цитоплазмы, их количество в крови постоянно. Однако при интенсивном использовании скорость образования новых тромбоцитов может увеличиться в 8 раз. Стимуляцию тромбоцитопоезу вызывает тромбопоэтин, который производится в печени и частично в почках. Активация тромбоцитопоезу может осуществляться и другими гемопоэтическими факторами, в частности интерлейкинами (1 / 1-3, ИЛ-6, ИЛ-11), но этот процесс не является специфичным по сравнению с тромбопоэтина.

Структура и функции тромбоцитов

Плотные гранулы (β) содержат небелковые вещества: АДФ и серотонин; факторы, способствующие агрегации тромбоцитов, а также антиагрегантное АТФ и Са2. Лизосомальные гранулы содержат гидролитические ферменты, а пероксисомы - каталазу. Внешняя оболочка тромбоцитов и ВКС покрытые гликопротеинами, способствующие адгезии и агрегации тромбоцитов.

На мембране тромбоцитов имеются рецепторы для физиологических активаторов тромбоцитов (АТФ, адреналин, серотонин, тромбоксан Aj).

Функции тромбоцитов:

■ тромбоциты быстро запускают систему гемостаза. Благодаря адгезии (прилипание) и агрегации (скопление) тромбоцитов образуется белый тромб в сосудах микроциркуляторного русла

■ местно в поврежденном участке выделяют вещества, сужающие сосуды;

■ активируют начало коагуляционного гемостаза с образованием фибринового тромба,

■ регулируют местные воспалительные реакции.

В состоянии покоя тромбоциты имеют цитоплазматическую мембрану, местами инвагинуе и соединяется с сетью каналов, называются открытой канальцевой системы (ВКС) внутри тромбоцитов. Вторая система внутренней оболочки (плотная тубулярная система) образуется из эндоплазматической сети мегакариоцитов и не соединяется с внеклеточным пространством. В цитоплазме неактивированных тромбоцитов находятся гранулы, среди которых α-гранулы, плотные β-гранулы, гранулы лизосомы и пероксисомы (рис. 9.20).

Больше всего в тромбоците α-гранул, содержащих различные пептиды, участвующих в механизмах коагуляции, воспаление, иммунитета, репарации и модуляции этих процессов.

РИС. 9.20.

Активация тромбоцитов осуществляется только тогда, когда повреждено сосудистый эндотелий и есть контакт с субэндотелиальным матриксом, где находятся коллаген, другие белки, фактор Виллебранда (производится эндотелием). Рецепторы мембраны тромбоцитов связываются с фактором Виллебранда (ФВ), коллагеном, другими белками, что приводит к активации тромбоцитов, их адгезии, изменения формы, необратимой секреции плотных гранул и α-гранул. Изменение формы тромбоцитов обусловлена внутриклеточной системой сократительных микрофиламентов, что приводит к увеличению поверхности их мембраны и выделение через открытые ее канальцы веществ, участвующих в коагуляционном гемостазе.

К поверхности мембраны прикрепляется фибриноген благодаря изменению состояния ее гликопротеинов, способствует агрегации тромбоцитов. В тромбоцитах происходит синтез тромбоксана А2 с арахидоновой кислоты, высвобождается мембраной плотной тубулярной системы, синтез тромбоцитактивуючого фактора (ТАФ), который усиливает агрегацию тромбоцитов и активирует нейтрофилы. Образование тромбина также усиливает агрегацию тромбоцитов.

Известно, что тромбоциты синтезируют и депонированных в α-гранулах факторы свертывания крови V, VIII, XIII, фактор Виллебранда и фибриноген, выходящих наружу методом экзоцитоза.

Липопротеины мембраны тромбоцитов катализируют некоторые факторы при образовании протромбиназы. Активированные тромбоциты связывают тромбин и тромбомодулин (компонент α-гранул), который способствует активации антикоагулянта белка С.

Тромбоциты выделяют факторы роста с α-гранул в зону повреждения, способствует пролиферации фибробластов и репарации поврежденной ткани. Они имеют связь с системой гуморального иммунитета и связывают IgG, который Эндоцитоз попадает в клетку, сохраняется в а-гранулах, чтобы потом секретироваться путем экзоцитоза.

РИС. 9.21. Последовательность этапов сосудисто-тромбоцитарного гомеостаза. ФВ - фактор Виллебранда, ПФ-6 - тромбостенин

Тромбоциты человека – это безъядерные высокодифференцированные и высокоспециализированные клетки, обладающие уникальным строением и функциями.

Проявление тромбоцитами функциональной активности сопровождается кардинальным изменением их внутренней структуры, поэтому при изучении морфологии тромбоцитов принято выделять клетки стадии “покоя” (исходные неактивированные тромбоциты) и клетки, находящиеся на разных стадиях активации.

Тромбоциты стадии “покоя” описывают как мелкие дисковидные клетки диаметром 2-5 мкм. Дисковидную форму тромбоцитов можно отчетливо наблюдать на нефиксированных препаратах с помощью световой микроскопии. На фиксированных препаратах, окрашенных по Романовскому, тромбоциты имеют вид пластинок многоугольной, реже овальной формы, в которых выявляется периферическая часть – гиаломер , и центральная часть – грануломер , содержащая гранулы.

В норме гиаломер имеет базофильную окраску, грануломер – оксифильную. На ультраструктурном уровне в составе гиаломера выявляются элементы цитоскелета – микротрубочки и актин-миозиновые комплексы, определяющие форму тромбоцитов в стадии покоя и при активации. Грануломер содержит очень мелкие митохондрии с 1-2 кристами, скопления гликогена, 2 типа мембранных систем (открытая канальцевая система и плотная канальцевая система), некоторое количество лизосом и пероксисом, а также секреторные везикулы, или гранулы. Элементы вакуолярной системы, участвующие в синтезе и созревании белков (гранулярный эндоплазматический ретикулум и аппарат Гольджи), в тромбоцитах не присутствуют или присутствуют в виде мелких остаточных форм, которые выявляются лишь при определенных патологиях.Считается, что все секреторные тромбоцитарные белки синтезируются еще на стадии мегакариоцитов.

Открытая система канальцев (ОСК) представляет собой сеть, состоящую из одномембранных канальцев и туннелей, которая пронизывают значительную часть объема тромбоцита и имеет контакт с плазматической мембраной. В состав мембран ОСК входят многие рецепторные белки и молекулы адгезии; при активации тромбоцита наблюдается диффузия этих белков из ОСК в сторону плазматической мембраны, а различных мембранных компонентов – в обратном направлении, т.о. ОСК осуществляет перераспределение мембранных компонентов внутри тромбоцитов. Кроме того, ОСК участвует в экзоцитозе секреторных везикул и, по всей видимости, в эндоцитозе некоторых белков плазмы крови (фибронектин, альбумины, иммуноглобулины).

В отличие от ОСК, плотная система канальцев (ПСК) не имеет связи с плазматической мембраной тромбоцитов и является производной гладкого эндоплазматического ретикулума. Основной функцией ПСК является хранение внутриклеточного кальция, также играющего большую роль в процессах активации тромбоцитов. Тромбоциты содержат большое количество секреторных везикул (пузырьков), диаметром от 200 до 600 нм; на гистологических препаратах эти везикулы имеют вид гранул, поэтому в литературе чаще всего используется термин “тромбоцитарные гранулы” или “гранулы тромбоцитов”.

В тромбоцитах выделяют 3 типа гранул:

1. Альфа-гранулы – содержат фактор IV тромбоцитов, бета-тромбоглобулин, тромбоспондин, фибронектин, фибриноген, фактор Виллебранда, различные ростовые факторы (VEGF, PDGF, EGF и др.), а также лизосомальные ферменты. Диаметр альфа-гранул – 300-500 нм;16

2. Бета-гранулы (другое название – плотные гранулы) – содержат АДФ (неметаболический пул), ГДФ, серотонин и ионы кальция. Бета-гранулы несколько меньше альфа-гранул, их диаметр составляет 250-350 нм;

3.Гамма-гранулы (лизосомы) – содержат кислую фосфатазу, р-глюкуронидазу, катепсин и другие лизосомальные ферменты. Наиболее мелкие гранулы, их диаметр составляет 200-250 нм.

Рисунок 1. Схема строения тромбоцита (Быков В.Л. Частная гистология человека. СПб: Сотис, 1999. 301 c.) Масс-спектрометрический анализ показал, что в тромбоцитах содержится более 700 типов белков, из которых на сегодняшний день идентифицированы около 200. Большая часть тромбоцитарных белков хранится в альфа-гранулах, плотных тельцах и лизосомах. Они поступают туда как в ходе мегакариоцитопоэза, так и путем включения из плазмы. В ходе активации тромбоцита происходит выбрасывание содержимого гранул наружу, после чего процесс активации становится необратимым. Считается, что дегрануляция тромбоцитов является необходимым условием для их дальнейшей агрегации, поэтому нарушение функциональной активности тромбоцитов очень часто связано с отсутствием дегрануляции.

В таблице 1 описан химический состав содержимого гранул тромбоцитов.

Таблица 1

Морфологическое исследование фракции плотных гранул, фракции α-гранул, фракции лизосом и пузырьков тромбоцитов человека позволяет адекватно оценить их морфофункциональный статус.

  • 32. Влияние экзо- и эндогенных факторов на развитие. Аномалии развития.
  • 33. Развитие, строение и функциональное значение желточного мешка у животных и человека.
  • 34. Особенности развития человека на 2-21 сутки эмбриогенеза.
  • 35. Образование и значение провизорных органов у зародыша и плода человека.
  • 36. Этапы развития зародыша человека. Критические периоды. Аномалии развития.
  • 37. Характеристика периодов эмбрионального развития животных и человека.
  • 38. Гаструляция у животных и человека.
  • 39. Связь зародыша с материнским организмом (морфологическая, гормональная, иммунологическая). Плацента и матка. Плацентарный барьер.
  • 40. Значение работ Бэра, Ковалевского, Северцова, Иванова, Киорре, Хатова в развитии эмбриологии.
  • 41. Хорион, особенности его закладки у человека. Формирование. Строение пупочного канатика.
  • 42. Развитие, строение и функционирование амниона у животных и человека.
  • 43. Железы, их строение, принципы классификации, типы секреции.
  • 44. Эпителиальные ткани. Общая характеристика. Топография. Генетическая и морфофункциональная классификация. Строение различных эпителиев. Регенерация.
  • 45. Соединительные ткани со специальными свойствами (жировая, пигментная и ретикулярная). Строение и функциональное значение.
  • 46. Классификация и общая характеристика соединительных тканей.
  • 47. Клеточные элементы и межклеточное вещество в различных видах соединительной ткани.
  • 49. Строение рыхлой неоформленной соединительной ткани. Клетки и межклеточное вещество, морфология, физико-химические свойства, функциональное значение.
  • 50. Тромбоциты, развитие, строение, количество и функциональное значение.
  • 51. Понятие о крови и лимфе, как о тканях. Строение и развитие.
  • 52. Эритроциты. Развитие, строение, количество и функциональное значение.
  • 53. Развитие и морфофункциональная характеристика лейкоцитов.
  • 55. Лейкоциты, их классификация. Лейкоцитарная формула и ее особенности на разных этапах развития.
  • 56. Взаимосвязь моноцитов и лимфоцитов в иммуногенезе.
  • 57. Дифференцировка т-лимфоцитов, их функциональное значение.
  • 58. Мезенхима, пути развития, производные, морфофункциональная характеристика.
  • 59. Лимфоциты. Развитие, строение, количество и функция.
  • 50. Тромбоциты, развитие, строение, количество и функциональное значение.

    Тромбоциты, или кровяные пластинки, имеют вид мелких бесцветных телец округлой, овальной или веретеновидной формы размером 2-4 мкм. Они объединяются в маленькие или большие группы.Количество тромбоцитов в крови человека составляет 180-300 * 10*9/л. Живут от 8 до 11 суток. Утилизируются в селезенке. Тромбоциты представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов .В каждом тромбоците выделают 2 части:

    Центральную – грануломер (более темная, зернистая);

    Периферическую – гиаломер (более светлая часть). Гиаломер в молодых пластинках окрашивается в голубой цвет, а в зрелых в розовый.

    В популяции тромбоцитов выделяют 5 видов пластинок: 1) юные 1-5% 2)зрелые 88% 3) старые 4% 4) дегенеративные 2% 5) гигантские формы раздражения (4-6 мкм) 2%.

    Молодые формы тромбоцитов крупнее старых.

    Плазмолемма плазмоцитов покрыта толстым (15-20 нм) гликокаликсом, образует инвагинации в виде канальцев, от­ходящих от цитолеммы. Это открытая система канальцев, через которые из тромбоцитов выделяется их содержимое, а из плазмы крови поступают различные вещества. В плазмолемме имеются гликопротеины - рецепторы. Гпикопротеин PIb захватывает из плазмы фактор фон Виллебранда (vWF). Это один из основных факторов, обеспечивающих свертывание крови. Второй гликопротеин, PIIb-IIIa, является рецептором фибриногена и принимает участие в агрегации тромбоцитов.

    Гиаломер - цитоскелет тромбоцита представлен актиновыми филаментами, расположенными под цитолеммой, и пучками микротубул, прилежащих к цитолемме и располо­женных циркулярно. Актиновые филаменты принимают участие в сокращении объема тромба.

    Плотная тубулярная система тромбоцита состоит из трубочек, сходных с гладкой ЭПС. На поверхности этой си­стемы синтезируются циклооксигеназы и простагландины, в этих трубочках связываются двухвалентные катионы и де­понируются ионы Са 2+ . Кальций способствует адгезии и аг­регации тромбоцитов. Под влиянием циклооксигеназ арахидоновая кислота распадается на простагландины и тромбоксан А-2, которые стимулируют агрегацию тромбоцитов.

    Грануломер включает органеллы (рибосомы, лизосомы, микропероксисомы, митохондрии), компоненты органелл (ЭПС, комплекса Гольджи), гликоген, ферритин и специаль­ные гранулы.

    Специальные гранулы представлены следующими 3 типами:

    1-й тип - альфа-гранулы, имеют диаметр 350-500 нм, со­держат белки (тромбопластин), гликопротеины (тромбоспон- дин, фибронектин), фактор роста и литические ферменты (катепсин).

    2-й тип - бета-гранулы, имеют диаметр 250-300 нм, представляют собой плотные тельца, содержат серотонин, поступающий из плазмы крови, гистамин, адреналин, каль­ций, АДФ, АТФ.

    3-й тип- гранулы диаметром 200-250 нм, представлен­ные лизосомами, содержащими лизосомальные ферменты, и микропероксисомами, содержащими пероксидазу.

    Функции тромбоцитов:

      Участвуют в образовании тромбов при пов­реждении кровеносных сосудов. При образовании тромба происходит: 1) выделение тканя­ми внешнего фактора свертывания крови и адгезии тромбо­цитов; 2) агрегация тромбоцитов и выделение внутреннего фактора свертывания крови и 3) под влиянием тромбопластина протромбин превращается в тромбин, под действием которого фибриноген выпадает в нити фибрина и образуется тромб, который, закупоривая сосуд, прекращает кровотече­ние. При введении в организм аспирина подавляется тромбообразование.

      Участвуют в метаболизме серотонина. Это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.

    При снижении числа кровяных пластинок в крови накапливается тромбопоэтин – ГП, стимулирующий образование пластинок из мегакариоцитов костного мозга.

    Кровяные пластинки

    Кровяные пластинки, или тромбоциты , в свежей крови человека имеют вид мелких бесцветных телец округлой или веретеновидной формы. Они могут объединяться (агглютинировать) в маленькие или большие группы. Количество их колеблется от 200 до 400 x 10 9 в 1 литре крови. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов - гигантских клеток костного мозга.

    Тромбоциты в кровотоке имеют форму двояковыпуклого диска. В них выявляются более светлая периферическая часть - гиаломер и более темная, зернистая часть - грануломер . В популяции тромбоцитов находятся как более молодые, так и более дифференцированные и стареющие формы. Гиаломер в молодых пластинках окрашивается в голубой цвет (базофилен), а в зрелых - в розовый (оксифилен). Молодые формы тромбоцитов крупнее старых.

    Плазмолемма тромбоцитов имеет толстый слой гликокаликса, образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок (т.е. процессах свертывания, или коагуляции, крови).

    Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками микротрубочек, расположенными циркулярно в гиаломере и примыкающими к внутренней части плазмолеммы. Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.

    В кровяных пластинках имеется две системы канальцев и трубочек. Первая - это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая - это так называемая плотная тубулярная система, которая представлена группами трубочек, имеющих сходство с гладкой эндоплазматической сетью. Плотная тубулярная система является местом синтеза циклоксигеназы и простагландинов. Кроме того, эти трубочки селективно связывают двухвалентные катионы и являются резервуаром ионов Са2+. Вышеназванные вещества являются необходимыми компонентами процесса свертывания крови.

    Выход ионов Са 2+ из трубочек в цитозоль необходим для обеспечения функционирования кровяных пластинок. Фермент циклооксигеназа метаболизирует арахидоновую кислоту с образованием из нее простагландинов и тромбоксана A2, которые секретируются из пластинок и стимулируют их агрегацию в процессе коагуляции крови.



    При блокаде циклооксигеназы (например, ацетилсалициловой кислотой) агрегация тромбоцитов тормозится, что используют для профилактики образования тромбов.

    В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами, элементами эндоплазматической сети аппарата Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.

    Специальные гранулы составляют основную часть грануломера и представлены тремя типами.

    Первый тип - крупные альфа-гранулы. Они содержат различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, литические ферменты.

    Второй тип гранул - дельта-гранулы, содержащие серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), ионы Са2+, АДФ, АТФ в высоких концентрациях.

    Третий тип мелких гранул, представленный лизосомами, содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу.



    Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.

    Основная функция кровяных пластинок - участие в процессе свертывания , или коагуляции, крови - защитной реакции организма на повреждение и предотвращение потери крови. В тромбоцитах содержится около 12 факторов, участвующих в свертывании крови. При повреждении стенки сосуда пластинки быстро агрегируют, прилипают к образующимся нитям фибрина, в результате чего формируется тромб, закрывающий дефект. В процессе тромбообразования наблюдается несколько этапов с участием многих компонентов крови.

    На первом этапе происходят скопление тромбоцитов и выход физиологически активных веществ. На втором этапе - собственно коагуляция и остановка кровотечения (гемостаз). Вначале происходит образование активного тромбопластина из тромбоцитов (т.н. внутренний фактор) и из тканей сосуда (т.н. внешний фактор). Затем, под влиянием тромбопластина из неактивного протромбина образуется активнй тромбин. Далее, под влиянием тромбина из фибриногена образуется фибрин . Для всех этих фаз коагуляции крови необходим Са2+.

    Наконец, на последнем третьем этапе наблюдается ретракция кровяного сгустка, связанная с сокращением нитей актина в отростках тромбоцитов и нитей фибрина.

    Таким образом, морфологически на первом этапе происходит адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах поврежденной сосудистой стенки, в результате которой образуются отростки тромбоцитов и на их поверхность из пластинок через систему трубочек выходят гранулы, содержащие тромбопластин. Он активирует реакцию превращения протромбина в тромбин, а последний влияет на образование из фибриногена фибрина.

    Важной функцией тромбоцитов является их участие в метаболизме серотонина . Тромбоциты - это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.

    В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на сосудистую проницаемость и сокращение глад-комышечных клеток сосудов.

    Продолжительность жизни тромбоцитов - в среднем 9-10 дней. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого может потребоваться удаление селезенки (спленэктомия).

    При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин - фактор, стимулирующий образование пластинок из мегакариоцитов костного мозга.

    · гемофилия -- наследственная болезнь, обусловленная недостаточностью факторов VIII или IX свертывания крови; проявляется симптомами повышенной кровоточивости; наследуется по рецессивному сцепленному с полом типу;

    · пурпура -- множественные мелкие кровоизлияния в коже и слизистых оболочках;

    · тромбоцитопеническая пурпура -- общее название группы болезней, характеризующихся тромбоцитопенией и проявляющихся геморрагическим синдромом (напр., болезнь Верльгофа);

    Часть четвертая – Формула крови, лейкоцитарная формула, возрастные изменения крови, характеристика лимфы.

    Гемограмма и лейкограмма

    В медицинской практике анализ крови играет огромную роль. При клинических анализах исследуют химический состав крови (в т.ч. электролитный состав), определяют количество форменных элементов, гемоглобина, резистентность эритроцитов, скорость оседания эритроцитов и многие другие показатели. У здорового человека форменные элементы крови находятся в определенных количественных соотношениях, которые принято называть гемограммой, или формулой крови.

    Важное значение для характеристики состояния организма имеет так называемый дифференциальный подсчет лейкоцитов. Определенные процентные соотношения лейкоцитов называют лейкограммой, или лейкоцитарной формулой.

    Возрастные изменения крови

    Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6.0-7.0 x 10 12 в 1 литре крови. К 10-14 сут оно равно тем же цифрам, что и во взрослом организме. В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3-6-м месяце жизни (т.н. физиологическая анемия). Число эритроцитов возвращается к нормальным значениям в период полового созревания. Для новорожденных характерно наличие анизоцитоза с преобладанием макроцитов, увеличенное содержание ретикулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов.

    Число лейкоцитов у новорожденных увеличено и достигает 30 x 10 9 в 1 литре крови. В течение 2 нед после рождения число их падает до 9-15 x 10 9 в 1 литре (т.н. физиологическая лейкопения). Количество лейкоцитов достигает к 14-15 годам уровня, который сохраняется у взрослого.

    Соотношение числа нейтрофилов и лимфоцитов у новорожденных такое же, как и у взрослых 4.5-9.0 x 10 9 . В последующие сроки содержание лимфоцитов возрастает, а нейтрофилов падает, и к четвертым-пятым суткам количество этих видов лейкоцитов уравнивается - это т.н. первый физиологический перекрест лейкоцитов. Дальнейший рост числа лимфоцитов и падение нейтрофилов приводят к тому, что на 1-2-м году жизни ребенка лимфоциты составляют 65%, а нейтрофилы - 25%. Новое снижение числа лимфоцитов и повышение нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (это второй физиологический перекрест). Постепенное снижение содержания лимфоцитов и повышение нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого.

    Лимфа

    Лимфа представляет собой слегка желтоватую жидкую ткань, протекающую в лимфатических капиллярах и сосудах. Она состоит из лимфоплазмы (plasma lymphae) и форменных элементов. По химическому составу лимфоплазма близка к плазме крови, но содержит меньше белков. Лимфоплазма содержит также нейтральные жиры, простые сахара, соли (NaCl, Na2CO3 и др.), а также различные соединения, в состав которых входят кальций, магний, железо.

    Форменные элементы лимфы представлены главным образом лимфоцитами (98%), а также моноцитами и другими видами лейкоцитов. Лимфа фильтруется из тканевой жидкости в слепые лимфатические капилляры, куда под влиянием различных факторов из тканей постоянно поступают различные компоненты лимфоплазмы. Из капилляров лимфа перемещается в периферические лимфатические сосуды, по ним - в лимфатические узлы, затем в крупные лимфатические сосуды и вливается в кровь.

    Состав лимфы постоянно меняется. Различают лимфу периферическую (т.е. до лимфатических узлов), промежуточную (после прохождения через лимфатические узлы) и центральную (лимфу грудного и правого лимфатического протоков). Процесс лимфообразования тесно связан с поступлением воды и других веществ из крови в межклеточные пространства и образованием тканевой жидкости.

    Некоторые термины из практической медицины:

    · желтуха новорожденных , физиологическая -- транзиторная желтуха (гипербилирубинемия), возникающая у большинства здоровых новорожденных в первые дни жизни;

    Кровяные пластинки, тромбоциты, в свежей крови человека имеют вид мелких бесцветных телец округлой, овальной или веретеновидной формы размером 2-4 мкм. Они могут объединяться (агглютинировать) в маленькие или большие группы (рис. 4.29). Количество их в крови человека колеблется от 2,0×10 9 /л до 4,0×10 9 /л. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов - гигантских клеток костного мозга.

    Тромбоциты в кровотоке имеют форму двояковыпуклого диска. При окраске мазков крови азур-эозином в кровяных пластинках выявляются более светлая периферическая часть - гиаломер и более темная, зернистая часть - грануломер, структура и окраска которых могут варьировать в зависимости от стадии развития кровяных пластинок. В популяции тромбоцитов находятся как, более молодые, так и более дифференцированные и стареющие формы. Гиаломер в молодых пластинках окрашивается в голубой цвет (базофилен), а в зрелых – в розовый (оксифилен). Молодые формы тромбоцитов крупнее старых.

    В популяции тромбоцитов различают 5 основных видов кровяных пластинок:

    1) юные - с голубым (базофильным) гиаломером и единичными азурофильными гранулами в грануломере красновато-фиолетового цвета (1-5 %);

    2) зрелые - со слабо-розовым (оксифильным) гиаломером и хорошо развитой азурофильной зернистостью в грануломере (88%);

    3) старые - с более темным гиаломером и грануломером (4%);

    4) дегенеративные - с серовато-синим гиаломером и плотным темно-фиолетовым грануломером (до 2%);

    5) гигантские формы раздражения - с розовато-сиреневым гиаломером и фиолетовым грануломером, размерами 4-6 мкм (2%).

    При заболеваниях соотношение различных форм тромбоцитов может изменяться, что учитывается при постановке диагноза. Повышение количества юных форм наблюдается у новорожденных. При онкологических заболеваниях увеличивается число старых тромбоцитов.

    Плазмолемма имеет толстый слой гликокаликса (15-20 нм), образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок.

    Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками (по 10-15) микротрубочек, расположенными циркулярно в гиоломере и примыкающими к внутренней части плазмолеммы (рис. 46-48). Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.



    В кровяных пластинках имеется две системы канальцев и трубочек, хорошо видных в гиаломере при электронной микроскопии. Первая – это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая – это так называемая плотная тубулярная система, которая представлена группами трубочек с электронно-плотным аморфным материалом. Она имеет сходство с гладкой эндоплазматической сетью, образуется в аппарате Гольджи. Плотная тубулярная система является местом синтеза циклооксигеназы и простагландинов. Кроме того, эти трубочки селективно связывают двухвалентные катионы и являются резервуаром ионов Са 2+ . Вышеназванные вещества являются необходимыми компонентами процесса свертывания крови.


    А Б В
    Г Д

    Рис. 4.30.Тромбоциты. А – тромбоциты в мазке периферической крови. Б – схема строения тромбоцита. В – ТЭМ. Г – неактивированные (отмечены стрелкой) и активированные (отмечены двумя стрелками) тромбоциты, СЭМ. Д – тромбоциты, прилипшие к стенке аорты в зоне повреждения эндотелиального слоя (Г, Д – по Ю.А. Ровенских).1 – микротрубочки; 2 – митохондрии; 3 – u-гранулы; 4 – система плотных трубочек; 5 – микрофиламенты; 6 – система канальцев, связанных с поверхностью; 7 – гликокаликс; 8 – плотныетельца; 9 – цитоплазматическая сеть.


    Выход Са 2+ из трубочек в цитозоль необходим для обеспечения функционирования кровяных пластинок (адгезия, агрегация и др.).

    В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами (в молодых пластинках), элементами эндоплазматической сети, аппарата Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.

    Специальные гранулы в количестве 60-120 составляют основную часть грарануломера и представлены двумя главными типами – альфа и дельта гранулы.

    Первый тип: a-гранулы – это самые крупные (300-500 нм) гранулы, имеющие мелкозернистую центральную часть, отделенную от окружающей мембраны небольшим светлым пространством. Они содержат различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, гидролитические ферменты.

    К наиболее важным белкам, секретируемым при активации тромбоцитов, относятся фактор пластинок 4, р-тромбоглобин, фактор фон Виллебранда, фибриноген, факторы роста (тромбоцитарный PDGF, трансформирующий TGFp), фактор свертывания - тромбопластин; к гликопротеинам относятся фибронектин, тромбоспондин, играющие важную роль в процессах адгезии тромбоцитов. К белкам, связывающим гепарин (разжижает кровь, препятствует ее свертыванию), относятся фактор 4 и р-тромбоглобулин.

    Второй тип гранул - δ-гранулы (дельта-гранулы) - представлен плотными тельцами размером 250-300 нм, в которых имеется эксцентрично расположенная плотная сердцевина, окруженная мембраной. Между криптами хорошо выражено светлое пространство. Главными компонентами гранул являются серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), Са 2+ , АДФ, АТФ в высоких концентрациях.

    Кроме того, имеется третий тип мелких гранул (200-250 нм), представленный лизосомами (иногда называемыми А-гранулами), содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу. Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.

    Основная функция кровяных пластинок - участие в процессе свертывания крови - защитной реакции организма на повреждение и предотвращение потери крови. В тромбоцитах содержится около 12 факторов, участвующих в свертывании крови. При повреждении стенки сосуда пластинки быстро агрегируют, прилипают к образующимся нитям фибрина, в результате чего формируется тромб, закрывающий рану. В процессе тромбообразования наблюдается несколько этапов с участием многих компонентов крови.

    Важной функцией тромбоцитов является их участие в метаболизме серотонина. Тромбоциты – это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов.

    В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на сосудистую проницаемость и сокращение гладкомышечных клеток сосудов. Серотонин и продукты его метаболизма обладают противоопухолевым и радиозащитным действием. Торможение связывания серотонина тромбоцитами обнаружено при ряде заболеваний крови – злокачественном малокровии, тромбоцитопенической пурпуре, миелозах и др.

    Продолжительность жизни тромбоцитов – в среднем 9-10 дней. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого требуется операция - удаление селезенки (спленэктомия).

    При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин - гликопротеид, стимулирующий образование пластинок из мегакариоцитов костного мозга.