Нужно познакомиться со свойствами этой операции, что мы и сделаем в настоящем параграфе.

Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Доказательство. Введем следующие обозначения: Нам надо доказать, что для неотрицательных чисел х, у, z выполняется равенство х-уz.
Так как
Итак, Но если степени двух неотрицательных чисел равны и показатели степеней равны, то равны и основания степеней ; значит, из равенства x n =(уz) п следует, что х-уz, а это и требовалось доказать.

Приведем краткую запись доказательства теоремы.

Замечания:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.
2. Теорему 1 можно сформулировать, используя конструкцию "если...то» (как это принято для теорем в математике). Приведем соответствующую формулировку: если а иb - неотрицательные числа, то справедливо равенство Следующую теорему мы именно так и оформим.



Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Доказательство. Приведем краткую запись доказательства теоремы 2, а вы попробуйте сделать соответствующие комментарии, аналогичные тем, что были приведены при доказательстве теоремы 1.

ВЫ, конечно, обратили внимание на то, что доказанные два свойства корней п-й степени представляют собой обобщение известных вам из курса алгебры 8-го класса свойств квадратных корней. И если бы других свойств корней п-й степени не было, то как бы все было просто (и не очень интересно). На самом деле есть еще несколько интересных и важных свойств, которые мы обсудим в этом параграфе. Но сначала рассмотрим несколько примеров на использование теорем 1 и 2.

Пример 1. Вычислить
Решение. Воспользовавшись первым свойством корней (теорема 1), получим:

Замечание 3. Можно, конечно, этот пример решить по-другому, особенно если у вас под рукой есть микрокалькулятор: перемножить числа 125, 64 и27,а затем извлечь кубический корень из полученного произведения. Но, согласитесь, предложенное решение «интеллигентнее».
Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2), получим:


Пример 3. Вычислить:
Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления:

Пример 4. Выполнить действия:
Решение , а) Имеем:
б) Теорема 1 позволяет нам перемножать только корни одинаковой степени, т.е. только корни с одинаковым показателем. Здесь же предлагается умножить корень 2-й степени из числа а на корень 3-й степени из того же числа. Как это делать, мы пока не знаем. Вернемся к этой проблеме позднее.
Продолжим изучение свойств радикалов.

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это - следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,
Доказательство. Как и в теореме 2, приведем краткую запись доказательства, а вы попробуйте самостоятельно сделать соответствующие комментарии, аналогичные тем, что были приведены при доказательстве теоремы 1.


Замечание 4. Давайте переведем дух. Чему мы научились благодаря доказанным теоремам? Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак. Об этом мы говорили еще в 8-м классе по поводу операции извлечения квадратного корня.

Например, вместо нельзя написать В самом деле, Но ведь очевидно, что Будьте внимательны!
Самое, пожалуй, интересное свойство корней - это то, о котором пойдет речь в следующей теореме. Учитывая особую значимость этого свойства, мы позволим себе нарушить определенный стиль формулировок и доказательств, выработанный в этом параграфе, с тем чтобы формулировка теоремы 5 была немного «мягче», а ее доказательство - понятнее.

Например:

(показатели корня и подкоренного выражения разделили на 4);

(показатели корня и подкоренного выражения разделили на 3);

(показатели корня и подкоренного выражения умножили на 2).

Доказательство. Обозначим левую часть доказываемого равенства буквой Тогда по определению корня должно выполняться равенство

Обозначим правую часть доказываемого тождества буквой у:

Тогда по определению корня должно выполняться равенство

Возведем обе части последнего равенства в одну и ту же степень р; получим:

Итак (см. равенства (1) и (2)),


Сопоставляя эти два равенства, приходим к выводу, что х nр = у nр, а значит, х =у, что и требовалось доказать.
Доказанная теорема позволит нам решить ту проблему, с которой мы столкнулись выше при решении примера 5, где требовалось выполнить умножение корней с разными показателями:

Вот как обычно рассуждают в подобных случаях.
1) По теореме 5 в выражении можно и показатель корня (т.е. число 2) и показатель подкоренного выражения (т.е. число 1) умножить на одно и то же натуральное число. Воспользовавшись этим, умножим оба показателя на 3; получим:
2) По теореме 5 в выражении можно и показатель корня (т.е. число 3) и показатель подкоренного выражения (т.е. число 1) умножить на одно и то же натуральное число. Воспользовавшись этим, умножим оба показателя на 2; получим:

3) Поскольку получили корни одной и той же 6-й степени, то можно их перемножить:

Замечание 5. Вы не забыли, что все свойства корней, которые мы обсуждали в этом параграфе, рассмотрены нами только для случая, когда переменные принимают лишь неотрицательные значения? Почему пришлось сделать такое ограничение? Потому, что корень п-й степени из отрицательного числа не всегда имеет смысл - он определен только для нечетных значений п. Для таких значений показателя корня рассмотренные свойства корней верны и в случае отрицательных подкоренных выражений.

А.Г. Мордкович Алгебра 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Чтобы успешно использовать на практике операцию извлечения корня, нужно познакомиться со свойствами этой операции.
Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Теорема 1. Корень n-й степени (n=2, 3, 4,...) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел:

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если , и n - натуральное число, большее 1, то справедливо равенство


Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Теорема 1 позволяет нам перемножать только корни одинаковой степени , т.е. только корни с одинаковым показателем.

Теорема 3.Если , k - натуральное число и n - натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это - следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4.Если , k, n - натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо нельзя написать В самом деле, Но ведь очевидно, что

Теорема 5.Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е.



Примеры решения заданий


Пример 1. Вычислить

Решение.
Воспользовавшись первым свойством корней (теорема 1), получим:

Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2 ), получим:


Пример 3. Вычислить:

Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления.

Урок и презентация на тему: "Свойства корня n-ой степени. Теоремы"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Свойства корня n-ой степени. Теоремы

Ребята, мы продолжаем изучать корни n-ой степени из действительного числа. Как практически все математические объекты, корни n-ой степени обладают некоторыми свойствами, сегодня мы будем их изучать.
Все свойства, которые мы рассмотрим, формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаком корня.
В случае нечетного показателя корня они выполняются и для отрицательных переменных.

Теорема 1. Корень n-ой степени из произведения двух неотрицательных чисел равен произведению корней n-ой степени этих чисел: $\sqrt[n]{a*b}=\sqrt[n]{a}*\sqrt[n]{b}$ .

Давайте докажем теорему.
Доказательство. Ребята, для доказательства теоремы давайте введем новые переменные, обозначим:
$\sqrt[n]{a*b}=x$.
$\sqrt[n]{a}=y$.
$\sqrt[n]{b}=z$.
Нам надо доказать, что $x=y*z$.
Заметим, что выполняются и такие тождества:
$a*b=x^n$.
$a=y^n$.
$b=z^n$.
Тогда выполняется и такое тождество: $x^n=y^n*z^n=(y*z)^n$.
Степени двух неотрицательных чисел и их показатели равны, тогда и сами основания степеней равны. Значит $x=y*z$, что и требовалось доказать.

Теорема 2. Если $а≥0$, $b>0$ и n – натуральное число, которое большее 1, тогда выполняется следующее равенство: $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ .

То есть корень n-ой степени частного равен частному корней n-ой степени.

Доказательство.
Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Примеры вычисления корня n-ой степени

Пример.
Вычислить: $\sqrt{16*81*256}$.
Решение. Воспользуемся теоремой 1: $\sqrt{16*81*256}=\sqrt{16}*\sqrt{81}*\sqrt{256}=2*3*4=24$.

Пример.
Вычислить: $\sqrt{7\frac{19}{32}}$.
Решение. Представим подкоренное выражение в виде неправильной дроби: $7\frac{19}{32}=\frac{7*32+19}{32}=\frac{243}{32}$.
Воспользуемся теоремой 2: $\sqrt{\frac{243}{32}}=\frac{\sqrt{243}}{\sqrt{32}}=\frac{3}{2}=1\frac{1}{2}$.

Пример.
Вычислить:
а) $\sqrt{24}*\sqrt{54}$.
б) $\frac{\sqrt{256}}{\sqrt{4}}$.
Решение:
а) $\sqrt{24}*\sqrt{54}=\sqrt{24*54}=\sqrt{8*3*2*27}=\sqrt{16*81}=\sqrt{16}*\sqrt{81}=2*3=6$.
б) $\frac{\sqrt{256}}{\sqrt{4}}=\sqrt{\frac{256}{4}}=\sqrt{64}=24$.

Теорема 3. Если $a≥0$, k и n – натуральные числа больше 1, то справедливо равенство: $(\sqrt[n]{a})^k=\sqrt[n]{a^k}$.

Чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.

Доказательство.
Давайте рассмотрим частный случай для $k=3$. Воспользуемся теоремой 1.
$(\sqrt[n]{a})^k=\sqrt[n]{a}*\sqrt[n]{a}*\sqrt[n]{a}=\sqrt[n]{a*a*a}=\sqrt[n]{a^3}$.
Так же можно доказать и для любого другого случая. Ребята, докажите сами для случая, когда $k=4$ и $k=6$.

Теорема 4. Если $a≥0$ b n,k – натуральные числа большие 1, то справедливо равенство: $\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$.

Чтобы извлечь корень из корня, достаточно перемножить показатели корней.

Доказательство.
Докажем опять кратко, используя таблицу. Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Пример.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.

Теорема 5. Если показатели корня и подкоренного выражения умножить на одно и тоже натуральное число, то значение корня не изменится: $\sqrt{a^{kp}}=\sqrt[n]{a}$.

Доказательство.
Принцип доказательства нашей теоремы такой же, как и в других примерах. Введем новые переменные:
$\sqrt{a^{k*p}}=x=>a^{k*p}=x^{n*p}$ (по определению).
$\sqrt[n]{a^k}=y=>y^n=a^k$ (по определению).
Последнее равенство возведем в степень p
$(y^n)^p=y^{n*p}=(a^k)^p=a^{k*p}$.
Получили:
$y^{n*p}=a^{k*p}=x^{n*p}=>x=y$.
То есть $\sqrt{a^{k*p}}=\sqrt[n]{a^k}$, что и требовалось доказать.

Примеры:
$\sqrt{a^5}=\sqrt{a}$ (разделили показатели на 5).
$\sqrt{a^{22}}=\sqrt{a^{11}}$ (разделили показатели на 2).
$\sqrt{a^4}=\sqrt{a^{12}}$ (умножили показатели на 3).

Пример.
Выполнить действия: $\sqrt{a}*\sqrt{a}$.
Решение.
Показатели корней - это разные числа, поэтому мы не можем воспользоваться теоремой 1, но применив теорему 5, мы можем получить равные показатели.
$\sqrt{a}=\sqrt{a^3}$ (умножили показатели на 3).
$\sqrt{a}=\sqrt{a^4}$ (умножили показатели на 4).
$\sqrt{a}*\sqrt{a}=\sqrt{a^3}*\sqrt{a^4}=\sqrt{a^3*a^4}=\sqrt{a^7}$.

Задачи для самостоятельного решения

1. Вычислить: $\sqrt{32*243*1024}$.
2. Вычислить: $\sqrt{7\frac{58}{81}}$.
3. Вычислить:
а) $\sqrt{81}*\sqrt{72}$.
б) $\frac{\sqrt{1215}}{\sqrt{5}}$.
4. Упростить:
а) $\sqrt{\sqrt{a}}$.
б) $\sqrt{\sqrt{a}}$.
в) $\sqrt{\sqrt{a}}$.
5. Выполнить действия: $\sqrt{a^2}*\sqrt{a^4}$.