УДК 517.17+517,51

ПЕРИОД СУММЫ ДВУХ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ

А/О. Эвнин

В работе полностью решен вопрос, каким может быть основной период периодической функции, являющейся суммой двух периодических функций с известными основными периодами. Изучается также случай отсутствия основного периода у периодической суммы периодических функций.

Мы рассматриваем действительнозначные функции действительного переменного. В энциклопедическом издании в статье «Периодические функции» можно прочитать: «Сумма периодических функций с разными периодами является периодической только тогда, когда их периоды соизмеримы». Это утверждение справедливо для непрерывных функций1, но не имеет места в общем случае. Контрпример весьма общего вида был построен в . В данной статье мы выясняем, каким может быть основной период периодической функции, являющейся суммой двух периодических функций с известными основными периодами.

Предварительные сведения

Напомним, что функция / называется периодической, если для некоторого числа Т Ф О при любом х из области определения D(f) числа х + Т и х - Т принадлежат D(f) и выполняются равенства f(x + T) =f(x) =f(x ~ Т). При этом число Г называют периодом функции.

Наименьший положительный период функции (если, конечно, он существует) будем называть основным периодом. Известен следующий факт.

Теорема 1. Если у функции есть основной период То, то любой период функции имеет вид пТо, где п Ф 0 - целое число.

Числа Т\ и Т2 называют соизмеримыми, если существует такое число Т0, которое целое число раз «укладывается» и в Т\, и в Т2: Т\ = Т2 = п2Т0, щ,п2е Z. В противном случае числа Т\ и Т2 называют несоизмеримыми. Соизмеримость (несоизмеримость) периодов означает, таким образом, что их отношение есть число рациональное (иррациональное).

Из теоремы 1 следует, что у функции, имеющей основной период, любые два периода соизмеримы.

Классическим примером функции, не имеющей наименьшего периода, является функция Дирихле, равная 1 в рациональных точках, и нулю - в иррациональных. Любое рациональное число, отличное от нуля, является периодом функции Дирихле, а любое иррациональное число не является ее периодом. Как видим, и здесь любые два периода соизмеримы.

Приведем пример непостоянной периодической функции, имеющей несоизмеримые периоды.

Пусть функция /(х) в точках вида /и + ла/2, m, п е Z, равна 1, а в остальных точках равна

нулю. Среди периодов этой функции есть 1 и л

Период суммы функций с соизмеримыми периодами

Теорема 2. Пусть fug- периодические функции с основными периодами тТ0 и «То, где тип

Взаимно простые числа. Тогда основной период их суммы (если он существует), равен -

где к - натуральное число, взаимно простое с числом тп.

Доказательство. Пусть h = / + g. Очевидно, что число тпТ0 является периодом h. В силу

теоремы 1 основной период h имеет вид-где к- некоторое натуральное число. Предполо-

жим, что к не является взаимно простым с числом m, то есть к - dku m = dm\, где d> 1 - наи-

1 Красивое доказательство того, что сумма любого конечного числа непрерывных функций с попарно несоизмеримыми периодами непериодична, содержится в статье См. также .

больший общий делитель чисел т и к. Тогда период функции к равен

а функция f=h-g

имеет период mxnTо, не являющийся кратным ее основного периода mTQ. Получено противоречие с теоремой 1. Значит, к взаимно просто с т. Аналогично, взаимно простыми являются числа к и п. Таким образом, А: взаимно просто с тп. □

Теорема 3. Пусть т, п и к ~ попарно взаимно простые числа, а Т0 - положительное число. Тогда существуют такие периодические функции fug, что основные периоды f, g и (f + g) рае-

ны соответственно тТ$, nTQ и-

Доказательство. Доказательство теоремы будет конструктивным: мы просто построим соответствующий пример. Предварительно сформулируем следующий результат. Утверждение. Пусть т - взаимно простые числа. Тогда функции

fx - cos- + cos--- и f2= cos- m n m

cos- имеют основным периодом число 2ктп. п

Доказательство утверждения. Очевидно, что число 2птп является периодом обеих функций. Легко можно проверить, что этот период основной для функции Найдем ее точки максимума.

х = 2лМ, te Z.

Имеем = п!. Из взаимной простоты тип следует, что 5 кратно /г, т.е. я = I е Ъ. Значит, /х(х) = 2 о х = 2тстп1,1 е 2, а расстояние между соседними точками максимума функции /\ равно 2ктп, и положительный период/1 не может быть меньше числа 2 шпп.

Для функции^ применим рассуждения другого рода (которые подходят и для функции/ь но

менее элементарны). Как показывает теорема 1, основной период Г функции/2 имеет вид -,

где к- некоторое натуральное число, взаимно простое с тип. Число Гбудет и периодом функции

(2 ^ 2 хп г т т /2 + /2 = - -1 cos

все периоды которой имеют вид 2пп1. Итак,

2nnl, т.е. т = kl. Так как т и к взаимно про-

сты, отсюда следует, что к= 1.

Теперь для доказательства теоремы 3 можно построить искомый пример. Пример. Пусть т, п и к - попарно взаимно простые числа и хотя бы одно из чисел п или к отлично от 1. Тогда пф к ив силу доказанного утверждения функции

/ (х) = cos--- + cos- т к

И g(x) = cos-cos - п к

имеют основные периоды 2 лтк и 2 тк соответственно, а у их суммы

к(х) = f(x) + = cos- + cos-

основной период равен 2 ттп.

Если же п = к = 1, то подойдет пара функций

f{x)-2 cos- + COS X и g(x) - COS X. m

Их основные периоды, а также период функции к(х) - 2 равны соответственно 2лм, 2/ги 2тип.

как легко проверить.

Математика

Обозначим Т = 2лк. Для произвольных попарно взаимно простых чисел тп, п и к указаны функции/и £ такие, что основные периоды функций/, g и/ + g равны соответственно тТ, пТ и

Условию теоремы удовлетворяют функции / - л;

Период суммы функций с несоизмеримыми периодами

Следующее утверждение почти очевидно.

Теорема 4. Пусть fug- периодические функции с несоизмеримыми основными периодами Т} и Т2, а сумма этих функций h = f + g периодична и имеет основной период Т. Тогда число Т несоизмеримо ни с Т], ни с Т2.

Доказательство. С одной стороны, если числа ТнТ} соизмеримы, то функция g = h-f имеет период, соизмеримый с Г]. С другой стороны, в силу теоремы 1 любой период функции g кратен числу Т2. Получаем противоречие с несоизмеримостью чисел Т\ и Т2. Несоизмеримость чисел Т и Т2 доказывается аналогично, d

Замечательным, и даже в некотором роде удивительным, является тот факт, что справедливо и утверждение, обратное к теореме 4. Широко распространено заблуждение о том, что сумма двух периодических функций с несоизмеримыми периодами не может быть функцией периодической. На самом же деле это не так. Более того, период суммы может быть любым положительным числом, удовлетворяющим утверждению теоремы 4.

Теорема 5. Пусть Т\, Т2иТ~ попарно несоизмеримые положительные числа. Тогда существуют такие периодические функции fug, что их сумма h =/+ g периодична, а основные периоды функцииf guhравны соответственно Th Т2 и Т.

Доказательство. Доказательство вновь будет конструктивным. Наши построения будут существенно зависеть от того, представимо или не представимо число Т в виде рациональной комбинации Т = аТ\ + рТ2 (а и Р - рациональные числа) периодов Т\ и Т2.

I. Т не является рациональной комбинацией Тг и J2-

Пусть А = {mT\ + пТ2 + kT\m,n, k е Z} - множество целых линейных комбинаций чисел Гь Т2 и Т. Отметим сразу, что если число представимо в виде пгТ\ + пТ2 + кТ, то такое представление единственно. Действительно, если тхТ\ + п\Тг + к\Т- m2Tx + п2Т2 + к2Т9 то

(к} - к2)Т- (от2 - т\)Т] + (п2 - щ)Тъ и при к\ * к2 получаем, что Т рационально выражается через Т] и Т2. Значит, к\ = к2. Теперь из несоизмеримости чисел Т\ и Т2 непосредственно получаются равенства т\ = т2 и щ = п2.

Важным является тот легко проверяемый факт, что множества А и дополнение к нему А замкнуты относительно прибавления чисел из А: если х е А и у е А, то х + у е А; если х е А и у е А, тох + у е А.

Положим, что во всех точках множества А функции/и g равны нулю, а на множестве А зададим эти функции следующим образом:

f(mTi + пТ2 + кТ) = пТ2 + кТ g(mT1 + пТ2 + кТ) - гпТ\ - кТ.

Поскольку, как было показано, по числу х е А коэффициенты т,пик линейной комбинации периодов Гь Т2 и Г восстанавливаются однозначно, указанные задания функций/и g корректны.

Функция h =/ + g на множестве А равна нулю, а в точках множества А равна

h(mT\ + пТ2 + кТ) - тТ\ + пТ2.

Непосредственной подстановкой легко убедиться, что число Т\ - период функции f число Т2 - период g, а Т~ период h. Покажем, что эти периоды - основные.

Сначала отметим, что любой период функции /принадлежит множеству А. Действительно,

если 0 фх в А,у е А, т ох + у е А и f(x + у) = 0 *f(x). Значит, у е А - не период функции /

Пусть теперь не равные друг другу числах\, х2 принадлежат^ и f(x 1) ~f(x2). Из определения функции / отсюда получаем, что х\ - х2 = 1ТЬ где I- некоторое ненулевое целое число. Стало быть, любой период функции/кратен Т\. Таким образом, Тх - действительно основной период/

Точно так же проверяются утверждения относительно Т2 и Т.

Замечание. В книге на с. 172-173 приводится другая общая конструкция для случая I.

II. Т- рациональная комбинация Т\ и Т2.

Представим рациональную комбинацию периодов Т\ и Т2 в виде Г = - (кхТх + к2Т2), где кх и

к2 ™ взаимно простые целые числа, к{Г\ + к2Т2 > 0, а/? и д - натуральные числа. Введем в рассмотри, лeZ>.

рение множество В----

Положим, что во всех точках множества В функцииfиg равны нулю, а на множестве В зададим эти функции следующим образом:

^ тТ\ + пТ2 Л Я

^ mTx + пТ2 Л

Здесь, как обычно, [х] и {х} обозначают соответственно целую и дробную часть числах. Функция к =/+ д на множестве В равна нулю, а в точках множества В равна

fmTx +пТ: л Ч

Непосредственной подстановкой несложно проверить, что число Тх - период функции/, число Т2 - период g, а Т- период h. Покажем, что эти периоды - основные.

Любой период функции / принадлежит множеству В. Действительно, если 0 * х е В, у е В, то f(x) Ф 0, j{x + у) = 0 */(*)■ Значит, у е В _ Не период функции/

Итак, всякий период функции / имеет вид Ту =

Где 5i и 52 - целые числа. Пусть

х =-7] 4- -Г2, х е 5. Если я = 0, то /(я) - рациональное число. Теперь из рациональности числа /(х + 7}) вытекает равенство -I - I - 0. Значит, имеем равенство 52 = Хр, где X - некоторое целое

число. Соотношение/(х + 7}) = /(х) принимает вид

^ П + I + I ш +

Данное равенство должно выполняться при всех целых тип. При т-п~ 0 правая часть (1) рав-

на нулю. Поскольку дробные части неотрицательны, получаем отсюда, что -<0, а при

т = п = д - ] сумма дробных частей в правой части равенства (1) не меньше суммы дробных час-X

тей слева. Значит, - >0. Таким образом, X = 0 и 52 = 0. Поэтому период функции / имеет вид

а равенство (1) переходит в

п\ | и 52 - целые числа. Из соотношений

й(0) = 0 = й(ГА) =

получаем, что числа 51 и ^ должны быть кратны р, т.е. при некоторых целых Лх и Л2 имеем 51 = Л\р, Э2 = Л2р. Тогда соотношение (3) можно переписать в виде

Из равенства Л2кх = к2Л\ и взаимной простоты чисел к\ и к2, вытекает, что Л2 делится на к2. Отсюда

для некоторого целого числа t справедливы равенства Л2 = k2t и Лх ~ kxt, т.е. Th ~-{кхТх + к2Т2).

Показано, что любой период функции h кратен периоду Т = - (к{Гх + к2Т2)9 который, таким обра-

зом, является основным. □

Отсутствие основного периода

Теорема 6. Пусть Тх и Т2~- произвольные положительные числа. Тогда существуют такие периодические функции fug, что их основные периоды равны соответственно Т\ и Т2, а их сумма h=f+g периодична, но не имеет основного периода.

Доказательство. Рассмотрим два возможных случая.

I. Периоды Тх и Т2 несоизмеримы.

Пусть A = + пТ2 +kT\ . Как и выше, легко показать, что если число

представимо в виде тТх + пТ2 + кТ, то такое представление единственно.

Положим, что во всех точках множества А функции / и g равны нулю, а на множестве А зададим эти функции следующим образом:

/от; + пТ2 + кТ) = пТ2 + кТ, g(mTx + пТ2 + кТ) = тТх - кТ.

Несложно убедиться в том, что число Тх - основной период функции / , число Т2 - основной период g , и при любом рациональном к число кТ - период функции h - f + g, у которой, таким образом, нет наименьшего периода.

II. Периоды Тх и Т2 соизмеримы.

Пусть Тх =тТ0,Т2 = пТ0, где Т0 > О, m и п - натуральные числа. Введем в рассмотрение множество Я = + .

Положим, что во всех точках множества В функции fug равны нулю, а на множестве В зададим эти функции так:

/((/ + ЩТ0) = Щ + Jit, g((/ + 4lk)T0) - Щ - 42к.

Функция h ~ / + g на множестве В равна нулю, а в точках множества В равна

Нетрудно проверить, что число 7j = mTQ - основной период функции / , число Т2 ~ пТ0 - основной период g, в то время как среди периодов функции h~ f + g есть все числа вида л/2кТ0, где к - произвольное рациональное число. □

В основе конструкций, доказывающих теорему 6, лежит несоизмеримость периодов функции h~ / + g с периодами функций / и g . Приведем в заключение пример таких функций fug, что все периоды функций /, g и / + g соизмеримы между собой, но у / и g есть основные периоды, а у f + g - нет.

Пусть m - некоторое фиксированное натуральное число, М - множество несократимых нецелых дробей, числители которых кратны m . Положим

1, если хеМ; 1

еслихе mZ;

EcnuxeZXmZ; 2

О в остальных случаях; 1, если хеМU

~,еслихе2 2

[О в противном случае.

Легко видеть, что основные периоды функций fug равны соответственно m и 1, в то время как сумма / + g имеет периодом любое число вида m/n, где п - произвольное натуральное число, взаимно простое с m .

Литература

1. Математический энциклопедический словарь/Гл. ред. Ю.В. Прохоров - М.: Сов. энциклопедия, 1988.

2. Микаэлян Л.В., Седракян Н.М. О периодичности суммы периодических функций// Математическое образование. - 2000. - № 2(13). - С. 29-33.

3. Геренштейн A.B., Эвнин А.Ю. О сумме периодических функций// Математика в школе. -2002. - № 1. - С. 68-72.

4. Ивлев Б.М. и др. Сборник задач по алгебре и началам анализа для 9 и 10 кл. - М.: Просвещение, 1978.

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

Ход урока

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

Вопросы теории.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+180º)
y=ctg(x) = ctg(x+180º)

tg(x+π n)=tgx, n € Z
ctg(x+π n)=ctgx, n € Z

sin(x+2π n)=sinx, n € Z
cos(x+2π n)=cosx, n € Z

5) Как построить график периодической функции?

Устные упражнения.

1) Доказать следующие соотношения

a) sin(740º ) = sin(20º )
b) cos(54º ) = cos(-1026º)
c) sin(-1000º) = sin(80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg375º
b) ctg530º
c) sin1268º
d) cos(-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

Ответ : Т=2; Т=2; Т=4; Т=8.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим, а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+3{x+q>5}

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

1+3{x+T+0,25}=1+3{x+0,25}
{x+T+0,25}={x+0.25}

Положим x=-0,25 получим

{T}=0 <=> T=n, n € Z

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1 . Проверим, не будет ли оно и на самом деле периодом 1 .

f(x+1) =3{x+1+0,25}+1

Так как {T+1}={T} при любом Т, то f(x+1)=3{(x+0.25)+1}+1=3{x+0,25}+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

f(x)=sin(1,5x)+5cos(0,75x)

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin1,5(x+T)+5cos0,75(x+T)=sin(1,5x)+5cos(0,75x)

Если х=0, то

sin(1,5T)+5cos(0,75T)=sin0+5cos0

sin(1,5T)+5cos(0,75T)=5

Если х=-Т, то

sin0+5cos0=sin(-1,5Т)+5cos0,75(-Т)

5= – sin(1,5Т)+5cos(0,75Т)

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

Сложив, получим:

10cos(0,75Т)=10

2π n, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4π )+5cos(0,75x+2π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

sin|x+Т|=sin|x|

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т=π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin|π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т=π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

f(x)=cos(2x)+2sin(2x)

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Рефлексия.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

b). f(x)=x 2 -2x+4

c). f(x)=2tg(3x+5)

2). Функция y=f(x) имеет период Т=2 и f(x)=x 2 +2x при х € [-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5)

Литература/

  1. Мордкович А.Г. Алгебра и начала анализа с углубленным изучением.
  2. Математика. Подготовка к ЕГЭ. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.
  3. Шереметьева Т.Г. , Тарасова Е.А. Алгебра и начала анализа для 10-11 классов.

В обычных школьных задачах доказать периодичность той или иной функции обычно нетрудно: так, чтобы убедиться, что функция $y=sin\frac34 x+sin\frac27 x$ является периодической, достаточно просто отметить, что произведение $T=4\times7\times 2\pi$ является ее периодом: если мы прибавим к х число Т, то это произведение «съест» оба знаменателя и под знаком синуса окажутся лишними только целые кратные числа $2\pi$, которые «съест» сам синус.

Но доказательство непериодичности той или иной функции непосредственно по определению может оказаться совсем не простым. Так, для доказательства непериодичности рассмотренной выше функции $y=\sin x^2$ можно выписать равенство $sin(x+T)^2=\sin x^2$, но не решать по привычке это тригонометрическое уравнение, а догадаться подставить в него х=0, после чего дальнейшее получится почти автоматически: $\sin T^2=0$, $T^2=k\pi$, где k - некоторое целое число, большее 0, т.е. $T=\sqrt {k\pi}$, а если теперь догадаться подставить в него $x=\sqrt {\pi}$, то получится, что $\sin(\sqrt{\pi}+\sqrt{k\pi})=0$, откуда $\sqrt{\pi}+\sqrt{k\pi}=n\pi$, $1+\sqrt{k}=n\sqrt{\pi}$, $1+k+2\sqrt{k}=n^2\pi$, $2\sqrt{k}=n^2\pi-1-k=n^2\pi=m$, $4k=n^4{\pi}^2+2mn^2x+m^2$, и таким образом, число р является корнем уравнения $n^4x^2+2mn^2\pi+m^2-4k=0$, т.е. является алгебраическим, что неверно: $\pi$ является, как мы знаем, трансцендентным, т.е. не является корнем никакого алгебраич­ской уравнения с целыми коэффициентами. Впрочем, в будущем мы получим гораздо более простое доказательство этого утверждения - но уже с помощью средств математического анализа.

При доказательстве непериодичности функций часто помогает элементарный логический трюк: если все периодические функции обладают некоторым свойством, а данная функция им не обладает, то она, естественно, не является периодической . Так, периодическая функция всякое свое значение принимает бесконечно много раз, и поэтому, например, функция $y=\frac{3x^2-5x+7}{4x^3-x+2}$ не является периодической, так как значение 7 она принимает только в двух точках. Часто для доказательства непериодичности удобно использовать особенности ее области определения , а для нахождения нужного свойства периодических функций иногда приходится проявлять определенную фантазию.

Заметим еще, что очень часто на вопрос, что же такое непериодическая функция, приходится слышать ответ в стиле, о котором мы говорили в связи с четными и нечетными функциями , - это когда $f(x+T)\neq f(x)$, что, конечно же, недопустимо.

А правильный ответ зависит от конкретного определения периодической функции, и, исходя из данного выше определения, можно, конечно, сказать, что функция является непериодической, если она не имеет ни одного периода, но это будет «плохое» определение, которое не дает направления доказательства непериодичности . А если его расшифровать далее, описав, что значит предложение «функция f не имеет ни одного периода», или, что то же самое, «никакое число $T \neq 0$ не является периодом функции f», то получим, что функция f не является периодической в том и только в том случае, когда для всякого $T \neq 0$ существует число $x\in D(f)$ такое, что либо хотя бы одно из чисел $x+T$ и $x-T$ не принадлежит D(f), либо $f(x+T)\neq f(x)$.

Можно сказать и иначе: «Существует число $x\in D(f)$ такое, что равенство $f(x+T) = f(x)$ не выполняется» - это равенство может не выполняться по двум причинам: или оно не имеет смысла , т.е. одна из его частей не оп­ределена, или - в противном случае, быть неверным. Для интереса добавим, что языковой эффект, о котором мы говорили выше, здесь проявляется тоже: для равенства «не быть верным» и «быть неверным» - не одно и то же - равенство еще может не иметь смысла.

Детальное выяснение причин и последствий этого языкового эффекта в действительности является предметом не математики, а теории языка, лингвистики, точнее, ее особого раздела: семантики - науки о смысле, где, впрочем, эти вопросы являются весьма сложными и не имеют однозначного решения. А математика, в том числе и школьная, вынуждена мириться с этими трудностями и преодолевать языковые «неурядицы» - пока и поскольку она использует, наряду с символическим, и естественный язык.

Аргумента x, то она называется периодической, если есть число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Классический пример периодических функций - тригонометрические: синус, косинус и тангенс. Их период одинаков и равен 2π, то есть sin(x) = sin(x + 2π) = sin(x + 4π) и так далее. Однако, разумеется, тригонометрические функции - не единственные периодические.

Относительно простых, базовых функций единственный способ установить их периодичность или непериодичность - вычисления. Но для сложных функций уже есть несколько простых правил.

Если F(x) - с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) - тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C - нет.

Если F(x) - периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k - константы и k не равно нулю - тоже периодическая функция, и ее период равен T/k. Например sin(2x) - периодическая функция, и ее период равен π. Наглядно это можно представить так: умножая x на какое-нибудь число, вы как бы сжимаете график функции по горизонтали именно в столько раз

Если F1(x) и F2(x) - периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 - рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй - 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Однако если соотношение периодов иррационально, то суммарная функция не будет периодической вовсе. Например, пусть F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 здесь будет равен 2, а T2 равен 2π. Соотношение периодов равняется π - иррациональному числу. Следовательно, функция sin(x) + x mod 2 не является периодической.