А свои корни они извлекли из латинского слова «ratio», что означает «разум». Исходя из дословного перевода:

  • Рациональное число — это «разумное число».
  • Иррациональное число, соответственно, «неразумное число».

Общее понятие рационального числа

Рациональным числом считается то число, которое можно записать в виде:

  1. Обыкновенной положительной дроби.
  2. Отрицательной обыкновенной дроби.
  3. В виде числа нуль (0).

Иными словами, к рациональному число подойдет следующие определения:

  • Любое натуральное число является по своей сути рациональным, так как любое натуральное число можно представить в виде обыкновенной дроби.
  • Любое целое число, включительно число нуль, так как любое целое число можно записать как ввиде положительной обыкновенной дроби, в виде отрицательной обыкновенной дроби, так и ввиде числа нуль.
  • Любая обыкновенная дробь, и здесь не имеет значение положительная она или отрицательная, тоже напрямую подходит к определению рационального числа.
  • Так же в определение можно отнести и смешанное число, конечную десятичную дробь либо бесконечную периодическую дробь.

Примеры рационального числа

Рассмотрим примеры рациональных чисел:

  • Натуральные числа — «4», «202», «200».
  • Целые числа — «-36», «0», «42».
  • Обыкновенные дроби.

Из вышеперечисленных примеров совершенно очевидно, что рациональные числа могут быть как положительными так и отрицательными . Естественно, число 0 (нуль), которое тоже в свою очередь является рациональным числом, в тоже время не относится к категории положительного или отрицательного числа.

Отсюда, хотелось бы напомнить общеобразовательную программу с помощью следующего определения: «Рациональными числами» — называются те числа, которые можно записать в виде дроби х/у, где х (числитель) — целое число, а у (знаменатель) — натуральное число.

Общее понятие и определение иррационального числа

Помимо «рациональных чисел» нам известны и так называемые «иррациональные числа». Вкратце попробуем дать определение данным числам.

Еще древние математики, желая вычислить диагональ квадрата по его сторонам, узнали о существовании иррационального числа.
Исходя из определения о рациональных числах, можно выстроить логическую цепь и дать определение иррациональному числу.
Итак, по сути, те действительные числа, которые не являются рациональными, элементарно и есть иррациональными числами.
Десятичные дроби же, выражающие иррациональные числа, не периодичны и бесконечны.

Примеры иррационального числа

Рассмотрим для наглядности небольшой пример иррационально числа. Как мы уже поняли, бесконечные десятичные непериодические дроби называются иррациональными, к примеру:

  • Число «-5,020020002… (прекрасно видно, что двойки разделены последовательностью из одного, двух, трех и т.д. нулей)
  • Число «7,040044000444… (здесь ясно, что число четверок и количество нулей каждый раз цепочкой увеличивается на единицу).
  • Всем известное число Пи (3,1415…). Да, да — оно тоже является иррациональным.

Вообще все действительные числа являются как рациональными так и иррациональными. Говоря простыми словами, иррациональное число нельзя представить ввиде обыкновенной дроби х/у.

Общее заключение и краткое сравнение между числами

Мы рассмотрели каждое число по отдельности, осталось отличие между рациональным числом и иррациональным:

  1. Иррациональное число встречается при извлечении квадратного корня, при делении окружности на диаметр и т.д.
  2. Рациональное число представляет обыкновенную дробь.

Заключим нашу статью несколькими определениями:

  • Арифметическая операция, произведенная над рациональным числом, кроме деления на 0 (нуль), в конечном результате приведет тоже к рациональному числу.
  • Конечный результат же, при совершении арифметической операции над иррациональным числом, может привести как к рациональному так и к иррациональному значению.
  • Если же в арифметической операции принимают участие и те и другие числа (кроме деления или умножения на нуль), то результат нам выдаст иррациональное число.

Дробь m/n будем считать несократимой (ведь сократимую дробь всегда можно привести к несократимому виду). Возведя обе части равенства в квадрат, получим m ^2=2n ^2. Отсюда заключаем, что m^2, а следом за этим и число m - чётное. т.е. m = 2k . Поэтому m ^2 = 4k ^2 и, следовательно, 4k ^2 =2n ^2, или 2k ^2 = n ^2. Но тогда получается, что и n также чётное число, а этого быть не может, поскольку дробь m/n несократима. Возникает противоречие. Остаётся сделать вывод: наше предположение неверно и рационального числа m/n , равного √2, не существует.»

Вот и всё их доказательство.

Критическая оценка доказательства древних греков


Но…. посмотрим на такое доказательство древних греков несколько критично. И если быть более аккуратным в простой математике, то в нём можно увидеть следующее:

1) В принятом у греков рациональном числе m/n числа m и n – целые, но неизвестные (то ли они чётные , то ли они нечётные ). И это так! А чтобы как-то установить между ними какую-либо зависимость, надо точно определиться с их назначением;

2) Когда древние определились с тем, что число m – чётное, то в принятом ими равенстве m = 2k они (умышленно или по незнанию!) не совсем «корректно» охарактеризовали число «k ». А ведь здесь число k – это целое (ЦЕЛОЕ!) и вполне известное число, вполне чётко определяющее найденное чётное число m . И не будь этого найденного числа «k » древние не могли бы в дальнейшем «использовать » и число m ;

3) А когда из равенства 2k ^2 = n ^2 древние получили число n ^2 чётное, а вместе с тем и n – чётное, то им надо было бы не спешить с выводом о «возникшем противоречии », а лучше удостовериться в предельной точности принятого ими «выбора » числа «n ».

А как это можно было им сделать? Да, просто!
Смотрите: из полученного ими равенства 2k ^2 = n ^2 можно было элементарно получить и такое равенство k √2 = n . И здесь никак нет ничего предосудительного – ведь получили же они из равенства m/n =√2 другое адекватное ему равенство m ^2=2n ^2 ! И никто им не перечил!

Но зато в новом равенстве k √2 = n при очевидных ЦЕЛЫХ числах k и n видно, что из него всегда получают число √2 - рациональное . Всегда! Поскольку в нём числа k и n - известные ЦЕЛЫЕ!

А вот чтобы из их равенства 2k ^2 = n ^2 и, как следствие этого, из k √2 = n получить число √2 – иррациональное (как того «пожелали » древние греки!), то в них необходимо иметь, как минимум , число «k » в виде нецелого (!!!) числа. А этого у древних греков как раз и НЕТ!

Отсюда и ВЫВОД: вышеприведённое доказательство иррациональности числа √2, сделанное древними греками 2400 лет тому назад, откровенно неверное и математически некорректно, если не сказать грубо – оно просто фальшивое .

В показанной выше небольшой брошюрке Ф-6 (см. фото выше), выпущенной в г. Краснодар (Россия) в 2015 году общим тиражом 15000 экз. (очевидно, со спонсорским вложением) приведено новое, предельно-корректное с точки зрения математики и предельно-верное ]доказательство иррациональности числа √2, которое давно могло бы состояться, не будь жёстких "препо н" к изучению древностей Истории.

Само понятие иррационального числа так устроено, что оно определяется через отрицание свойства "быть рациональным", поэтому доказательство от противного является здесь наиболее естественным. Можно, однако предложить вот какое рассуждение.

Чем отличаются принципиально рациональные числа от иррациональных? Как те, так и другие, можно приблизить рациональными числами с любой заданной точностью, но для рациональных чисел имеется приближение с "нулевой" точностью (самим этим числом), а для иррациональных чисел это уже не так. Попытаемся на этом "сыграть".

Прежде всего, отметим такой простой факт. Пусть $%\alpha$%, $%\beta$% -- два положительных числа, которые приближают друг друга с точностью $%\varepsilon$%, то есть $%|\alpha-\beta|=\varepsilon$%. Что произойдёт, если мы заменим числа на обратные? Как при этом изменится точность? Легко видеть, что $$\left|\frac1\alpha-\frac1\beta\right|=\frac{|\alpha-\beta|}{\alpha\beta}=\frac{\varepsilon}{\alpha\beta},$$ что будет строго меньше $%\varepsilon$% при $%\alpha\beta>1$%. Это утверждение можно рассматривать в качестве самостоятельной леммы.

Теперь положим $%x=\sqrt{2}$%, и пусть $%q\in{\mathbb Q}$% -- рациональное приближение числа $%x$% с точностью $%\varepsilon$%. Мы знаем, что $%x>1$%, а насчёт приближения $%q$% потребуем выполнения неравенства $%q\ge1$%. У всех чисел, меньших $%1$%, точность приближения будет хуже, чем у самой $%1$%, и потому мы не будем их рассматривать.

К каждому из чисел $%x$%, $%q$% прибавим по $%1$%. Очевидно, точность приближения останется той же. Теперь у нас есть числа $%\alpha=x+1$% и $%\beta=q+1$%. Переходя к обратным числам и применяя "лемму", мы придём к выводу, что точность приближения у нас улучшилась, став строго меньше $%\varepsilon$%. Требуемое условие $%\alpha\beta>1$% у нас соблюдено даже с запасом: на самом деле мы знаем, что $%\alpha>2$% и $%\beta\ge2$%, откуда можно сделать вывод, что точность улучшается как минимум в $%4$% раза, то есть не превосходит $%\varepsilon/4$%.

И вот здесь -- основной момент: по условию, $%x^2=2$%, то есть $%x^2-1=1$%, а это значит, что $%(x+1)(x-1)=1$%, то есть числа $%x+1$% и $%x-1$% обратны друг другу. А это означает, что $%\alpha^{-1}=x-1$% будет приближением к (рациональному) числу $%\beta^{-1}=1/(q+1)$% c точностью строго меньше $%\varepsilon$%. Осталось прибавить по $%1$% к этим числам, и окажется, что у числа $%x$%, то есть у $%\sqrt{2}$%, появилось новое рациональное приближение, равное $%\beta^{-1}+1$%, то есть $%(q+2)/(q+1)$%, с "улучшенной" точностью. Это завершает доказательство, так как у рациональных чисел, как мы отмечали выше, существует "абсолютно точное" рациональное приближение с точностью $%\varepsilon=0$%, где точность в принципе повысить нельзя. А мы сумели это сделать, что говорит об иррациональности нашего числа.

Фактически, это рассуждение показывает, как строить конкретные рациональные приближения для $%\sqrt{2}$% со всё улушающейся точностью. Надо сначала взять приближение $%q=1$%, и далее применять одну и ту же формулу замены: $%q\mapsto(q+2)/(q+1)$%. В ходе этого процесса получается следующее: $$1,\frac32,\frac75,\frac{17}{12},\frac{41}{29},\frac{99}{70}$$ и так далее.

Что такое иррациональные числа? Почему они так называются? Где они используются и что собой представляют? Немногие могут без раздумий ответить на эти вопросы. Но на самом деле ответы на них довольно просты, хоть нужны не всем и в очень редких ситуациях

Сущность и обозначение

Иррациональные числа представляют собой бесконечные непериодические Необходимость введения этой концепции обусловлена тем, что для решения новых возникающих задач уже было недостаточно ранее имеющихся понятий действительных или вещественных, целых, натуральных и рациональных чисел. Например, для того, чтобы вычислить, квадратом какой величины является 2, необходимо использовать непериодические бесконечные десятичные дроби. Кроме того, многие простейшие уравнения также не имеют решения без введения концепции иррационального числа.

Это множество обозначается как I. И, как уже ясно, эти значения не могут быть представлены в виде простой дроби, в числителе которой будет целое, а в знаменателе -

Впервые так или иначе с этим явлением столкнулись индийские математики в VII веке когда было обнаружено, что квадратные корни из некоторых величин не могут быть обозначены явно. А первое доказательство существования подобных чисел приписывают пифагорейцу Гиппасу, который сделал это в процессе изучения равнобедренного прямоугольного треугольника. Серьезный вклад в изучение этого множества привнесли еще некоторые ученые, жившие до нашей эры. Введение концепции иррациональных чисел повлекло за собой пересмотр существовавшей математической системы, вот почему они так важны.

Происхождение названия

Если ratio в переводе с латыни - это "дробь", "отношение", то приставка "ир"
придает этому слову противоположное значение. Таким образом, название множества этих чисел говорит о том, что они не могут быть соотнесены с целым или дробным, имеют отдельное место. Это и вытекает из их сущности.

Место в общей классификации

Иррациональные числа наряду с рациональными относится к группе вещественных или действительных, которые в свою очередь относятся к комплексным. Подмножеств нет, однако различают алгебраическую и трансцендентную разновидность, о которых речь пойдет ниже.

Свойства

Поскольку иррациональные числа - это часть множества действительных, то к ним применимы все их свойства, которые изучаются в арифметике (их также называют основными алгебраическими законами).

a + b = b + a (коммутативность);

(a + b) + c = a + (b + c) (ассоциативность);

a + (-a) = 0 (существование противоположного числа);

ab = ba (переместительный закон);

(ab)c = a(bc) (дистрибутивность);

a(b+c) = ab + ac (распределительный закон);

a x 1/a = 1 (существование обратного числа);

Сравнение также проводится в соответствии с общими закономерностями и принципами:

Если a > b и b > c, то a > c (транзитивность соотношения) и. т. д.

Разумеется, все иррациональные числа могут быть преобразованы с помощью основных арифметических действий. Никаких особых правил при этом нет.

Кроме того, на иррациональные числа распространяется действие аксиомы Архимеда. Она гласит, что для любых двух величин a и b справедливо утверждение, что, взяв a в качестве слагаемого достаточное количество раз, можно превзойти b.

Использование

Несмотря на то что в обычной жизни не так уж часто приходится сталкиваться с ними, иррациональные числа не поддаются счету. Их огромное множество, но они практически незаметны. Нас повсюду окружают иррациональные числа. Примеры, знакомые всем, - это число пи, равное 3,1415926..., или e, по сути являющееся основанием натурального логарифма, 2,718281828... В алгебре, тригонометрии и геометрии использовать их приходится постоянно. Кстати, знаменитое значение "золотого сечения", то есть отношение как большей части к меньшей, так и наоборот, также

относится к этому множеству. Менее известное "серебряное" - тоже.

На числовой прямой они расположены очень плотно, так что между любыми двумя величинами, отнесенными к множеству рациональных, обязательно встречается иррациональная.

До сих пор существует масса нерешенных проблем, связанных с этим множеством. Существуют такие критерии, как мера иррациональности и нормальность числа. Математики продолжают исследовать наиболее значительные примеры на предмет принадлежности их к той или иной группе. Например, считается, что е - нормальное число, т. е. вероятность появления в его записи разных цифр одинакова. Что же касается пи, то относительно его пока ведутся исследования. Мерой иррациональности же называют величину, показывающую, насколько хорошо то или иное число может быть приближено рациональными числами.

Алгебраические и трансцендентные

Как уже было упомянуто, иррациональные числа условно разделяются на алгебраические и трансцендентные. Условно, поскольку, строго говоря, эта классификация используется для деления множества C.

Под этим обозначением скрываются комплексные числа, которые включают в себя действительные или вещественные.

Итак, алгебраическим называют такое значение, которое является корнем многочлена, не равного тождественно нулю. Например, квадратный корень из 2 будет относиться к этой категории, поскольку он является решением уравнения x 2 - 2 = 0.

Все же остальные вещественные числа, не удовлетворяющие этому условию, называются трансцендентными. К этой разновидности относятся и наиболее известные и уже упомянутые примеры - число пи и основание натурального логарифма e.

Что интересно, ни одно, ни второе не были изначально выведены математиками в этом качестве, их иррациональность и трансцендентность были доказаны через много лет после их открытия. Для пи доказательство было приведено в 1882 году и упрощено в 1894, что положило конец спорам о проблеме квадратуры круга, которые длились на протяжении 2,5 тысяч лет. Оно до сих пор до конца не изучено, так что современным математикам есть над чем работать. Кстати, первое достаточно точное вычисление этого значения провел Архимед. До него все расчеты были слишком приблизительными.

Для е (числа Эйлера или Непера), доказательство его трансцендентности было найдено в 1873 году. Оно используется в решении логарифмических уравнений.

Среди других примеров - значения синуса, косинуса и тангенса для любых алгебраических ненулевых значений.

Понимание чисел, особенно натуральных чисел, является одним из старейших математических "умений". Многие цивилизации, даже современные, приписывали числам некие мистические свойства ввиду их огромной важности в описании природы. Хотя современная наука и математика не подтверждают эти "волшебные" свойства, значение теории чисел неоспоримо.

Исторически сначала появилось множество натуральных чисел, затем довольно скоро к ним добавились дроби и положительные иррациональные числа. Ноль и отрицательные числа были введены после этих подмножеств множества действительных чисел. Последнее множество, множество комплексных чисел, появилось только с развитием современной науки.

В современной математике числа вводят не в историческом порядке, хотя и в довольно близком к нему.

Натуральные числа $\mathbb{N}$

Множество натуральных чисел часто обозначается как $\mathbb{N}=\lbrace 1,2,3,4... \rbrace $, и часто его дополняют нулем, обозначая $\mathbb{N}_0$.

В $\mathbb{N}$ определены операции сложения (+) и умножения ($\cdot$) со следующими свойствами для любых $a,b,c\in \mathbb{N}$:

1. $a+b\in \mathbb{N}$, $a\cdot b \in \mathbb{N}$ множество $\mathbb{N}$ замкнуто относительно операций сложения и умножения
2. $a+b=b+a$, $a\cdot b=b\cdot a$ коммутативность
3. $(a+b)+c=a+(b+c)$, $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ ассоциативность
4. $a\cdot (b+c)=a\cdot b+a\cdot c$ дистрибутивность
5. $a\cdot 1=a$ является нейтральным элементом для умножения

Поскольку множество $\mathbb{N}$ содержит нейтральный элемент для умножения, но не для сложения, добавление нуля к этому множеству обеспечивает включение в него нейтрального элемента для сложения.

Кроме этих двух операций, на множестве $\mathbb{N}$ определены отношения "меньше" ($

1. $a b$ трихотомия
2. если $a\leq b$ и $b\leq a$, то $a=b$ антисимметрия
3. если $a\leq b$ и $b\leq c$, то $a\leq c$ транзитивность
4. если $a\leq b$, то $a+c\leq b+c$
5. если $a\leq b$, то $a\cdot c\leq b\cdot c$

Целые числа $\mathbb{Z}$

Примеры целых чисел:
$1, -20, -100, 30, -40, 120...$

Решение уравнения $a+x=b$, где $a$ и $b$ - известные натуральные числа, а $x$ - неизвестное натуральное число, требует введения новой операции - вычитания(-). Если существует натуральное число $x$, удовлетворяющее этому уравнению, то $x=b-a$. Однако, это конкретное уравнение не обязательно имеет решение на множестве $\mathbb{N}$, поэтому практические соображения требуют расширения множества натуральных чисел таким образом, чтобы включить решения такого уравнения. Это приводит к введению множества целых чисел: $\mathbb{Z}=\lbrace 0,1,-1,2,-2,3,-3...\rbrace$.

Поскольку $\mathbb{N}\subset \mathbb{Z}$, логично предположить, что введенные ранее операции $+$ и $\cdot$ и отношения $ 1. $0+a=a+0=a$ существует нейтральный элемент для сложения
2. $a+(-a)=(-a)+a=0$ существует противоположное число $-a$ для $a$

Свойство 5.:
5. если $0\leq a$ и $0\leq b$, то $0\leq a\cdot b$

Множество $\mathbb{Z} $ замкнуто также и относительно операции вычитания, то есть $(\forall a,b\in \mathbb{Z})(a-b\in \mathbb{Z})$.

Рациональные числа $\mathbb{Q}$

Примеры рациональных чисел:
$\frac{1}{2}, \frac{4}{7}, -\frac{5}{8}, \frac{10}{20}...$

Теперь рассмотрим уравнения вида $a\cdot x=b$, где $a$ и $b$ - известные целые числа, а $x$ - неизвестное. Чтобы решение было возможным, необходимо ввести операцию деления ($:$), и решение приобретает вид $x=b:a$, то есть $x=\frac{b}{a}$. Опять возникает проблема, что $x$ не всегда принадлежит $\mathbb{Z}$, поэтому множество целых чисел необходимо расширить. Таким образом вводится множество рациональных чисел $\mathbb{Q}$ с элементами $\frac{p}{q}$, где $p\in \mathbb{Z}$ и $q\in \mathbb{N}$. Множество $\mathbb{Z}$ является подмножеством, в котором каждый элемент $q=1$, следовательно $\mathbb{Z}\subset \mathbb{Q}$ и операции сложения и умножения распространяются и на это множество по следующим правилам, которые сохраняют все вышеперечисленные свойства и на множестве $\mathbb{Q}$:
$\frac{p_1}{q_1}+\frac{p_2}{q_2}=\frac{p_1\cdot q_2+p_2\cdot q_1}{q_1\cdot q_2}$
$\frac{p-1}{q_1}\cdot \frac{p_2}{q_2}=\frac{p_1\cdot p_2}{q_1\cdot q_2}$

Деление вводится таким образом:
$\frac{p_1}{q_1}:\frac{p_2}{q_2}=\frac{p_1}{q_1}\cdot \frac{q_2}{p_2}$

На множестве $\mathbb{Q}$ уравнение $a\cdot x=b$ имеет единственное решение для каждого $a\neq 0$ (деление на ноль не определено). Это значит, что существует обратный элемент $\frac{1}{a}$ or $a^{-1}$:
$(\forall a\in \mathbb{Q}\setminus\lbrace 0\rbrace)(\exists \frac{1}{a})(a\cdot \frac{1}{a}=\frac{1}{a}\cdot a=a)$

Порядок множества $\mathbb{Q}$ можно расширить таким образом:
$\frac{p_1}{q_1}

Множество $\mathbb{Q}$ имеет одно важное свойство: между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, следовательно, не существует двух соседних рациональных чисел, в отличие от множеств натуральных и целых чисел.

Иррациональные числа $\mathbb{I}$

Примеры иррациональных чисел:
$\sqrt{2} \approx 1.41422135...$
$\pi \approx 3.1415926535...$

Ввиду того, что между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, легко можно сделать ошибочный вывод, что множество рациональных чисел настолько плотное, что нет необходимости в его дальнейшем расширении. Даже Пифагор в свое время сделал такую ошибку. Однако, уже его современники опровергли этот вывод при исследовании решений уравнения $x\cdot x=2$ ($x^2=2$) на множестве рациональных чисел. Для решения такого уравнения необходимо ввести понятие квадратного корня, и тогда решение этого уравнения имеет вид $x=\sqrt{2}$. Уравнение типа $x^2=a$, где $a$ - известное рациональное число, а $x$ - неизвестное, не всегда имеет решение на множестве рациональных чисел, и опять возникает необходимость в расширении множества. Возникает множество иррациональных чисел, и такие числа как $\sqrt{2}$, $\sqrt{3}$, $\pi$... принадлежат этому множеству.

Действительные числа $\mathbb{R}$

Объединением множеств рациональных и иррациональных чисел является множество действительных чисел. Поскольку $\mathbb{Q}\subset \mathbb{R}$, снова логично предположить, что введенные арифметические операции и отношения сохраняют свои свойства на новом множестве. Формальное доказательство этого весьма сложно, поэтому вышеупомянутые свойства арифметических операций и отношения на множестве действительных чисел вводятся как аксиомы. В алгебре такой объект называется полем, поэтому говорят, что множество действительных чисел является упорядоченным полем.

Для того, чтобы определение множества действительных чисел было полным, необходимо ввести дополнительную аксиому, различающую множества $\mathbb{Q}$ и $\mathbb{R}$. Предположим, что $S$ - непустое подмножество множества действительных чисел. Элемент $b\in \mathbb{R}$ называется верхней границей множества $S$, если $\forall x\in S$ справедливо $x\leq b$. Тогда говорят, что множество $S$ ограничено сверху. Наименьшая верхняя граница множества $S$ называется супремум и обозначается $\sup S$. Аналогично вводятся понятия нижней границы, множества, ограниченного снизу, и инфинума $\inf S$ . Теперь недостающая аксиома формулируется следующим образом:

Любое непустое и ограниченное сверху подмножество множества действительных чисел имеет супремум.
Также можно доказать, что поле действительных чисел, определенное вышеуказанным образом, является единственным.

Комплексные числа$\mathbb{C}$

Примеры комплексных чисел:
$(1, 2), (4, 5), (-9, 7), (-3, -20), (5, 19),...$
$1 + 5i, 2 - 4i, -7 + 6i...$ где $i = \sqrt{-1}$ или $i^2 = -1$

Множество комплексных чисел представляет собой все упорядоченные пары действительных чисел, то есть $\mathbb{C}=\mathbb{R}^2=\mathbb{R}\times \mathbb{R}$, на котором операции сложения и умножения определены следующим образом:
$(a,b)+(c,d)=(a+b,c+d)$
$(a,b)\cdot (c,d)=(ac-bd,ad+bc)$

Существует несколько форм записи комплексных чисел, из которых самая распространенная имеет вид $z=a+ib$, где $(a,b)$ - пара действительных чисел, а число $i=(0,1)$ называется мнимой единицей.

Легко показать, что $i^2=-1$. Расширение множества $\mathbb{R}$ на множество $\mathbb{C}$ позволяет определить квадратный корень из отрицательных чисел, что и послужило причиной введения множества комплексных чисел. Также легко показать, что подмножество множества $\mathbb{C}$, заданное как $\mathbb{C}_0=\lbrace (a,0)|a\in \mathbb{R}\rbrace$, удовлетворяет всем аксиомам для действительных чисел, следовательно $\mathbb{C}_0=\mathbb{R}$, или $R\subset\mathbb{C}$.

Алгебраическая структура множества $\mathbb{C}$ относительно операций сложения и умножения имеет следующие свойства:
1. коммутативность сложения и умножения
2. ассоциативность сложения и умножения
3. $0+i0$ - нейтральный элемент для сложения
4. $1+i0$ - нейтральный элемент для умножения
5. умножение дистрибутивно по отношению к сложению
6. существует единственный обратный элемент как для сложения, так и для умножения.