Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любогох из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство. Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называютподынтегральным выражением , а f(x) подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

Геометрический смысл неопределенного интеграла. График первообразной Д(х) называют интегральной кривой. В системе координат х0у графики всех первообразных от данной функции представляют семейство кривых, зависящих от величины постоянной С и получаемых одна из другой путем параллельного сдвига вдоль оси 0у. Для примера, рассмотренного выше, имеем:

J 2 х^х = х2 + C.

Семейство первообразных (х + С) геометрически интерпретируется совокупностью парабол.

Если из семейства первообразных нужно найти одну, то задают дополнительные условия, позволяющие определить постоянную С. Обычно с этой целью задают начальные условия: при значении аргумента х = х0 функция имеет значение Д(х0) = у0.

Пример. Требуется найти ту из первообразных функции у = 2 х, которая принимает значение 3 при х0 = 1.

Искомая первообразная: Д(х) = х2 + 2.

Решение. ^2х^х = х2 + C; 12 + С = 3; С = 2.

2. Основные свойства неопределенного интеграла

1. Производная неопределенного интеграла равна подинтегральной функции:

2. Дифференциал неопределенного интеграла равен подинтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме самой этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной, который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

3. Метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (или выражения) и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием . При сведении данного интеграла к табличному часто используются следующие преобразования дифференциала (операция «подведения под знак дифференциала »):

Вообще, f’(u)du = d(f(u)). эта (формула очень часто используется при вычислении интегралов.

Найти интеграл

Решение. Воспользуемся свойствами интегралаи приведем данный интеграл к нескольким табличным.

4. Интегрирование методом подстановки.

Суть метода заключается в том, что мы вводим новую переменную, выражаем подынтегральную функцию через эту переменную, в результате приходим к табличному (или более простому) виду интеграла.

Очень часто метод подстановки выручает при интегрировании тригонометрических функций и функций с радикалами.

Пример.

Найти неопределенный интеграл .

Решение.

Введем новую переменную . Выразимх через z :

Выполняем подстановку полученных выражений в исходный интеграл:

Из таблицы первообразных имеем .

Осталось вернуться к исходной переменной х :

Ответ:

Цель:

  1. Знать определение первообразной, основное свойство первообразной, правила нахождения первообразной;
  2. Уметь находить общий вид первообразной;
  3. Развивать навыки самоконтроля, интерес к предмету;
  4. Воспитывать волю и настойчивость для достижения конечных результатов при выполнении заданий.

Ход урока

I. Организационный момент.

II. Проверка усвоения изученного материала.

1. Опрос по карточкам:

А) Сформулируйте определение первообразной?
Б) Сформулируйте признак постоянства функции?
В) Сформулируйте основное свойство первообразных?
Г) Продолжи фразу «Дифференцирование – это ….»
Д) Интегрирование – это …..
Е) Графики любых двух первообразных для функции f получаются друг из друга …….
Ж) В этом заключается?…

2. Найти общий вид первообразных для функции:

А) f(x) = 1
Б) g(x) = x +1
В) f (x) = сos (3x + 4)
Г) g (x) = 2 cosx + 4
Д) g (x) =sin x + cos x
Е) F (x) = (x + 1)³

3. Среди заданных функций выберите первообразную для функций у = - 7х ³

III. Работа в группах

1-я группа – играет в пасьянс. На столах разрезные карточки. Составьте все формулы, которые вам известны. Сколько раз вам выпала удача?

2-я и 3-я группы - работают с лото. Записать получившееся ключевое слово.

f (x) = (x + 1)4

f (x) = 2x5- 3x2

f(x) = cos (3x +4)

f(x) = (7x – 2)8

f(x) = x4-x2+x-1

f(x) = 1 – cos3x

(ключевое слово – первообразная)

4-я группа – работает с кроссвордом.

Кроссворд.

Вопросы:

2. Что является графиком функции у = ах + b.

4. Какой урок обычно проходит перед зачетом.

5. Синоним слова дюжина.

6. Есть в каждом слове, у уравнений и может быть у уравнений.

7. Что можно вычислить по формуле a b.

8. Одно из важнейших понятий математики.

9. Форма урока, на котором проводится проверка знаний.

10. Немецкий ученый, который ввел интегральное исчисление.

11. Множество точек плоскости с координатами (х; у), где х пробегает область определения функции f.

12. Соответствия между множествами Х и У, при котором каждому значению множества Х поставлено в соответствие единственное значение из множества У, носит название…

При правильном разгадывании кроссворда под цифрой 1 по вертикали прочитайте ключевое слово.

IV. Разбор задания из ЕГЭ по данной теме из прошлых лет.

Укажите первообразную F функции f(x) = 3sin x, если известно, что F(П) = 1.

V. Самостоятельная работа.

1-я и 2-я группа – выполняют тест.

Часть А

А1. Среди данных функций выберите ту, производная которой равна f(x) = 20x4.

1). F(x) = 4x5
2). F(x) =5x5
3).F(x) = x5
4). F(x) = 80x3

A2. Найдите общий вид первообразных для функции f(x) = 4x3 – 6

1). F(x) = x4 -6x + 5
2).F(x) = x4 - 6x + C
3).F(x) = 12x2 + C
4). F(x) = 12x2 – 6

A3.Для функции f(x) =8x – 3 найдите первообразную, график которой проходит через точку М (1; 4).

1) F(x) = 4x2 – 3x
2) F(x) = 4x2 – 3x -51
3) F(x) = 4x2 – 3x + 4
4) F(x) = 4x2 - 3x +3

A4. Найдите общий вид первообразных для функции f(x) = 2/x3

1) F(x) = 1/x +C
2) F(x) = - 2/x + C
3) F(x) = - 1/x2 + C
4) F(x) = 2/x2+ C

A5. Первообразной для функции f(x) = sin x + 3x2 является функция

1) F(x) = sin x +x3 – 5
2) F(x) = -cos x – x2 -1
3) F(x) = -cos x + x3 -2
4) F(x) = -x3cos x -3

A6. Первообразной для функции f(x) = 3sin x является функция

1) F(x) = - 3xcos 3x
2) F(x) = - cos 3x
3) F(x) = - 3cos 3x
4) F(x) = - 3cos x

A7. Первообразной для функции f(x) = cos 2x является функция

1) F(x) = 0,5sin 2x
2) F(x) = 0,5sin x
3) F(x) = 2 sin 2x
4) F(x) = 2sin x

A8. Первообразная для функции f(x) = 2 sinx cosx для функции

1) F(x) = 0,5 sin2x
2) F(x) = 0,5sinx
3) F(x) = 2 sin2x
4) F(x) = 2 sin x

A9. Для функции f(x) = 6/cos23x + 1найддите первообразную, график которой проходит через точку М (П/3; П/3).

1) F(x) = 2 tg 3x + x +П/3
2) F(x) = 2 tg 3x + x
3) F(x) = - 6tg 3x + x + П/3
4) F(x) = 6 tg 3x + x

Часть В

В1. Функция F(x) является первообразной для функции f(x) = x5 – 3x2 – 2. Найдите F(1), если F(- 1) = 0.

3-я и 4-я группы – исправить ошибку.

а) F(x) = x5, a f(x) = 1/6x6
б) F(x) = 4x – х3 , a f(x) = 1/6x6
в) F(x) = sin x, a f(x) = - cos x
г) F(x) = 15 cos x, a f(x) = - 15 cos x
д) F(x) = x/3 + 6/x – 1, a f(x) = 1/3 – 6/x2 на (0 ; +)
ж) Для функции f(x) = 10 sin 2x найдите первообразную, график которой проходит через точку М (-3/2П; 0)

VI. Итог урока.

Д/З.№ 348, индивидуальное задание: Составить презентацию по теме.

Конспект урока по алгебре и началам анализа для учащихся 11 класса средних общеобразовательных учреждений

На тему: «Правила нахождения первообразных»

Цель урока:

Образовательная: ввести правила нахождения первообразных с помощью их табличных значений и использовать их при решении задач.

Задачи:

    ввести определение операции интегрирования;

    познакомить учащихся с таблицей первообразных;

    познакомить учащихся с правилами интегрирования;

    научить учащихся применять таблицу первообразных и правила интегрирования при решении задач.

Развивающая: способствовать развитию у учащихся умения анализировать, сопоставлять данные, делать выводы.

Воспитательная: способствовать формированию навыков коллективной и самостоятельной работы, формировать умения аккуратно и грамотно выполнять математические записи.

Методы обучения: индуктивно-репродуктивный, дедуктивно-репродук-

тивный.

Тип урока: усвоение новых знаний.

Требования к ЗУН:

Учащиеся должны знать:

- определение операции интегрирования;

Таблицу первообразных;

учащиеся должны уметь:

Применять таблицу первообразных при решении задач;

Решать задачи, в которых необходимо находить первообразные.

Оборудование: компьютер, экран, мультимедиа проектор, презентация.

Литература:

1. А.Г. Мордкович и др. «Алгебра и начала анализа. Задачник для 10-11 класса» М.: Мнемозина, 2001.

2. Ш.А. Алимов «Алгебра и начала анализа. 10-11 класс. Учебник» М.: Просвещение, 2004. - 384с.

3. Методика и технология обучения математике. М.: Дрофа, 2005. – 416 с.

Структура урока:

I . Организационный момент (2 мин.)

II . Актуализация знаний (7 мин.)

III . Изучение нового материала (15 мин.)

VI . Закрепление изученного материала (17 мин.)

V . Подведение итогов и Д/З (4 мин.)

Ход урока

I . Организационный момент

Приветствие учащихся, проверка отсутствующих и готовности помещения к уроку.

II . Актуализация знаний

Запись на доске (в тетрадях)

Дата.

Классная работа

Правила нахождения первообразных.

Учитель: Тема сегодняшнего урока: «Правила нахождения первообразных» (слайд 1). Но прежде, чем перейти к изучению новой темы вспомним пройденный материал.

К доске вызываются двое учеников, каждому дается индивидуальное задание (если ученик справился с заданием без ошибок, то он получает отметку «5»).

Карточки с заданиями

№ 1

у = 6х – 2х 3 .

f ( x )=3 x 2 +4 x –1 в точке x =3.

№ 2

2) Найдите значение производной функции f ( x )=5 x 2 +5 x 5 в точке x =1.

Решение

Карточка № 1

1) Найти интервалы возрастания и убывания функции у = 6х – 2х 3 .

; Пусть , тогда , сдедовательно ; х 1 и х 2 стационарные точки;

2. Стационарные точки разбивают координатную прямую на три интервала. В тех интервалах, где производная функции положительна сама функция возрастает, где отрицательна – убывает.

- + -

у -1 1

Следовательно у убывает при х (- ;-1) (1; ) и возрастает при х (-1;1).

2) f ( x )=3 x 2 +4 x –1 ; ; .

Карточка № 2

1) Найти точки экстремума функции .

1. Найдем стационарные точки, для этого найдем производную данной функции, затем приравняем её к нулю и решим полученное уравнение, корнями которого и будут являться стационарные точки.

; Пусть , тогда , следовательно, , и .

2. Стационарные точки разбивают координатную прямую на четыре интервала. Те точки, при переходе через которые производная функции меняет знак, являются точками экстремума.

+ - - +

у -3 0 3

Значит - точки экстремума, причем - точка максимума, а - точка минимума.

2) f ( x )=5 x 2 +5 x 5; ; .

Пока, вызванные к доске ученики решают примеры остальному классу задаются теоретические вопросы. В процессе опроса учитель следит, справились ученики с заданием или нет.

Учитель: Итак, давайте ответим на несколько вопросов. Вспомним, какая функция называется первообразной? (слайд 2)

Ученик: Функция F ( x ) называется первообразной функции f ( x ) на некотором промежутке, если для всех x из этого промежутка .

(слайд 2).

Учитель: Верно. А как называется процесс нахождения производной функции? (слайд 3)

Ученик: Дифференцированием.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 3).

Учитель: Каким образом показать, что функция F ( x ) является первообразной для функции f ( x ) ? (слайд 4).

Ученик: Найти производную функции F ( x ) .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 4).

Учитель: Хорошо. Тогда скажите, является ли функция F ( x )=3 x 2 +11 x первообразной для функции f ( x )=6х+10 ? (слайд 5)

Ученик: Нет, т.к. производная функции F ( x )=3 x 2 +11 x равна 6х+11 , а не 6х+10 .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 5).

Учитель: Какое количество первообразных можно найти для некоторой функции f ( x ) ? Ответ обоснуйте. (слайд 6)

Ученик: Бесконечно много, т.к. к полученной функции мы всегда прибавляем константу, которая может быть любым вещественным числом.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 6).

Учитель: Верно. Сейчас давайте вместе проверим решение учеников работавших у доски.

Ученики совместно с учителем проверяют решение.

III . Изучение нового материала

Учитель: Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова integrare – восстанавливать). Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что , получаем , откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Запись на доске (в тетрадях)

получаем ,

откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Учитель: Откройте учебники на странице 290. Здесь приведена таблица первообразных. Также она представлена на слайде. (слайд 7)

Учитель: Правила интегрирования можно получить с помощью правил дифференцирования. Рассмотрим следующие правила интегрирования: пусть F ( x ) и G ( x ) – первообразные соответственно функций f ( x ) и g ( x ) на некотором промежутке. Тогда:

1) Функция ;

2) Функция является первообразной функции . (слайд 8)

Запись на доске (в тетрадях)

1) Функция является первообразной функции ;

2) Функция является первообразной функции .

VI . Закрепление изученного материала

Учитель: Переходим к практической части урока. Найти одну из первообразных функции Решаем у доски.

Ученик: Чтобы найти первообразную данной функции нужно использовать правило интегрирования: функция является первообразной функции .

Учитель: Верно, что еще необходимо знать для нахождения первообразной данной функции?

Ученик: Также будем использовать таблицу первообразных для функций , при p =2 и для является функция ;

2) Функция является первообразной функции .

Учитель: Все правильно.

Домашнее задание

§55, № 988 (2, 4, 6), № 989 (2, 4, 6, 8), № 990 (2, 4, 6), № 991 (2, 4, 6, 8). (слайд 9)

Выставление отметок.

Учитель: Урок окончен. Можете быть свободны.

Существует три основных правила нахождения первообразных функций. Они очень похожи на соответствующие правила дифференцирования.

Правило 1

Если F есть первообразная дл некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g.

По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь:

(F + G)’ = F’ + G’ = f + g.

Правило 2

Если F есть первообразная для некоторой функции f, а k - некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции.

Имеем: (k*F)’ = k*F’ = k*f.

Правило 3

Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b).

Данное правило следует из правила вычисления производной сложной функции:

((1/k)*F*(k*x+b))’ = (1/k)*F’(k*x+b)*k = f(k*x+b).

Рассмотрим несколько примеров применения этих правил:

Пример 1 . Найти общий вид первообразных для функции f(x) = x^3 +1/x^2. Для функции x^3 одной из первообразных будет функция (x^4)/4, а для функции 1/x^2 одной из первообразных будет являться функция -1/x. Используя первое правило, имеем:

F(x) = x^4/4 - 1/x +C.

Пример 2 . Найдем общий вид первообразных для функции f(x) = 5*cos(x). Для функции cos(x) одна из первообразных будет являться функция sin(x). Если теперь воспользоваться вторым правилом, то будем иметь:

F(x) = 5*sin(x).

Пример 3. Найти одну из первообразных для функции y = sin(3*x-2). Для функции sin(x) одной из первообразных будет являться функция -cos(x). Если теперь воспользоваться третьим правилом, то получим выражение для первообразной:

F(x) = (-1/3)*cos(3*x-2)

Пример 4 . Найти первообразную для функции f(x) = 1/(7-3*x)^5

Первообразной для функции 1/x^5 будет являться функция (-1/(4*x^4)). Теперь воспользовавшись третьим правилом, получим.

Понятие первообразной. Таблица первообразных. Правила нахождения первообразных. МБОУ г. Мурманска гимназия 3 Шахова Татьяна Александровна http://aida.ucoz.ru


Http://aida.ucoz.ru Необходимо знать и уметь: -знать и уметь использовать формулы и правила дифференцирования; - уметь выполнять преобразования алгебраических и тригонометрических выражений.


Формулы дифференцирования Правила дифференцирования Назад


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Воспользуемся определением 1) Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). Найдем F"(x) Если Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка 2)2) Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка 3)3) Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). 4)4) Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). 5)5) Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). 6)6) Формулы и правила дифференцирования


10 Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Формулы и правила дифференцирования Воспользовавшись формулами дифференцирования и определением первообразной можно легко составить таблицу первообразных для некоторых функций. Убедитесь в правильности составленной таблицы. Найдите F"(x).


11 Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Воспользовавшись формулами дифференцирования и определением первообразной можно легко составить таблицу первообразных для некоторых функций. Назад




3) Если F(x) – первообразная для функции f(x), а k и b- константы, причем k0, то - первообразная для функции 2) Если F(x)– первообразная для функции f(x), а а –константа, то аF(x)– первообразная для функции аf(x) http://aida.ucoz.ru Для нахождения первообразных нам понадобятся кроме таблицы правила нахождения первообразных. 1) Если F(x)– первообразная для функции f(x), а G(x)– первообразная для функции g(x), то F(x)+G(x)– первообразная для функции f(x)+g(x). Первообразная суммы равна сумме первообразных Постоянный множитель можно выносить за знак первообразной Назад


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) В таблице такой функции нет. 1) Проверка: Преобразуем f(x): Таблица первообразных Формулы и правила дифференцирования Используем таблицу и второе правило. Правила Табличная функция Коэффициент


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) В таблице такой функции нет. 2)2) Проверка: Преобразуем f(x): Формулы и правила дифференцирования Используем таблицу и второе правило. Табличная функция Коэффициент Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 3)3) Проверка: Формулы и правила дифференцирования Используем таблицу и первое правило. Табличная функция Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 4)4) Проверка: Формулы и правила дифференцирования Используем таблицу, первое и второе правило. Табличная функция Коэффициент Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) В таблице таких функций нет. 5)5) Проверка: Преобразуем f(x): Формулы и правила дифференцирования Используем таблицу, первое и второе правило. Табличная функция Коэффициент Табличная функция Таблица первообразных Правила Коэффициент


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 6)6) Проверка: Формулы и правила дифференцирования Синус – табличная функция. Табличная функция Аргумент – линейная функция Используем таблицу и третье правило. Таблица первообразных Правила (k=3).


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 7)7) Формулы и правила дифференцирования В таблице такой функции нет. Преобразуем f(x): Линейная функция Коэффициент Используем таблицу, первое и третье правило. Таблица первообразных Правила табличная функция


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 7)7) Формулы и правила дифференцирования Проверка: Таблица первообразных Правила


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 8)8) Формулы и правила дифференцирования В таблице такой функции нет. Преобразуем f(x): Линейная функция Коэффициент Используем первое и третье правило. Таблица первообразных Правила табличная функция


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 8)8) Формулы и правила дифференцирования Проверка: Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 9)9) Проверка: Формулы и правила дифференцирования В таблице таких функций нет. Коэффициент Преобразуем f(x): Используем таблицу и второе правило: Таблица первообразных Правила Табличная функция


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 9)9) Формулы и правила дифференцирования В таблице такой функции нет. Преобразуем f(x), воспользуемся формулой понижения степени: Табличная функция Используем таблицу и все три правила: Табличная функция Коэффициент Таблица первообразных Правила Линейная функция


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 9)9) Проверка: Формулы и правила дифференцирования Таблица первообразных Правила


Http://aida.ucoz.ru Для тренировки используй аналогичные упражнения задачника.