В последние годы на вступительных экзаменах, на итоговом тестировании в форме ЕГЭ предлагаются задачи с параметрами. Эти задачи позволяют диагностировать уровень математического и, главное, логического мышления абитуриентов, способность осуществлять исследовательскую деятельность, а также просто знание основных разделов школьного курса математики.

Взгляд на параметр как на равноправную переменную находит своё отражение в графических методах. В самом деле, поскольку параметр “равен в правах” с переменной, то ему, естественно, можно “выделить” и свою координатную ось. Таким образом, возникает координатная плоскость . Отказ от традиционного выбора букв и для обозначения осей, определяет один из эффективнейших методов решения задач с параметрами – “метод областей”. Наряду с другими методами, применяемыми при решении задач с параметрами, я знакомлю своих учеников и с графическими приёмами, обращая внимание на то, как распознать “такие” задачи и как выглядит процесс решения задачи.

Самые общие признаки, которые помогут узнавать задачи, подходящие под рассматриваемый метод:

Задача 1. “При каких значениях параметра неравенство выполняется при всех ?”

Решение. 1). Раскроем модули с учётом знака подмодульного выражения:

2). Запишем все системы получившихся неравенств:

а)

б) в)

г)

3). Покажем множество точек, удовлетворяющих каждой системе неравенств (рис.1а).

4). Объединяя все области, показанные на рисунке штриховкой, можно заметить, что неравенству не удовлетворяют точки , лежащие внутри парабол.

На рисунке видно, что при любом значении параметра можно найти область, где лежат точки, координаты которых удовлетворяют исходному неравенству. Неравенство выполняется при всех , если . Ответ: при .

Рассмотренный пример представляет собой “открытую задачу” - можно рассмотреть решение целого класса задач, не изменяя рассмотренное в примере выражение, в которых технические трудности построения графиков уже преодолены.

Задача. При каких значениях параметра уравнение не имеет решений? Ответ: при .

Задача. При каких значениях параметра уравнение имеет два решения? Запишите оба найденных решения.

Ответ: , тогда , ;

Тогда ; , тогда , .

Задача. При каких значениях параметра уравнение имеет один корень? Найдите этот корень. Ответ: при при .

Задача. Решите неравенство .

(“Работают” точки, лежащие внутри парабол).

, ; , решений нет;

Задача 2.Найдите все значения параметра а , при каждом из которых система неравенств образует на числовой прямой отрезок длины 1.

Решение. Перепишем исходную систему в таком виде

Все решения этой системы (пары вида ) образуют некоторую область, ограниченную параболами и (рис 1).

Очевидно, решением системы неравенств будет отрезок длины 1 при и при . Ответ: ; .

Задача 3.Найдите все значения параметра , при которых множество решений неравенства содержит число , а так же содержит два отрезка длиной , не имеющие общих точек.

Решение. По смыслу неравенства ; перепишем неравенство, умножив обе его части на (), получаем неравенство:

, ,

(1)

Неравенство (1) равносильно совокупности двух систем:

(рис. 2).

Очевидно, интервал не может содержать отрезка длины . Значит, два непересекающихся отрезка длины содержатся в интервале Это возможно при , т.е. при . Ответ: .

Задача 4.Найдите все значения параметра , при каждом из которых множество решений неравенства содержит отрезок длиной 4 и при этом содержится в некотором отрезке длиной 7.

Решение. Проведём равносильные преобразования, учитывая, что и .

, ,

; последнее неравенство равносильно совокупности двух систем:

Покажем области, которые соответствуют этим системам (рис. 3).

1) При множество решений – это интервал длиной, меньшей 4. При множество решений – это объединение двух интервалов .Содержать отрезок длиной 4 может только интервал . Но тогда , и объединение уже не содержится ни в каком отрезке длиной 7. Значит, такие не удовлетворяют условию.

2) множество решений – это интервал . Он содержит отрезок длиной 4, только если его длина больше 4, т.е. при . Он содержится в отрезке длиной 7, только если его длина не больше 7, т. е. при , тогда . Ответ: .

Задача 5. Найдите все значения параметра , при которых множество решений неравенства содержит число 4, а также содержит два непересекающихся отрезка длиной 4 каждый.

Решение. По условия . Домножим обе части неравенства на (). Получим равносильное неравенство, в котором сгруппируем все члены в левой части и преобразуем её в произведение:

, ,

, .

Из последнего неравенства следует:

1) 2)

Покажем области, которые соответствуют этим системам (рис. 4).

а) При получаем интервал , не содержащий числа 4. При получаем интервал , также не содержащий числа 4.

б) При получаем объединение двух интервалов. Непересекающиеся отрезки длиной 4 могут располагаться только в интервале . Это возможно только в том случае, если длина интервала больше 8, т. е. если . При таких выполнено и другое условие: . Ответ: .

Задача 6. Найдите все значения параметра , при которых множество решений неравенства содержит какой-нибудь отрезок длиной 2, но не содержит никакого отрезка длиной 3.

Решение. По смыслу задания , умножим обе части неравенства на , сгруппируем все члены в левой части неравенства и преобразуем её в произведение:

, . Из последнего неравенства следует:

1) 2)

Покажем область, которая соответствует первой системе (рис. 5).

Очевидно, что условие задачи выполняется, если . Ответ: .

Задача 7. Найдите все значения параметра , при которых множество решений неравенства 1+ содержится в некотором отрезке длиной 1 и при этом содержит какой-нибудь отрезок длиной 0,5.

Решение. 1). Укажем ОДЗ переменной и параметра:

2). Перепишем неравенство в виде

, ,

(1). Неравенство (1) равносильно совокупности двух систем:

1)

2)

С учётом ОДЗ решения систем выглядят так:

а) б)

(рис. 6).

а) б)

Покажем область, соответствующую системе а) (рис. 7). Ответ: .

Задача 8. Шесть чисел образуют возрастающую арифметическую прогрессию. Первый, второй и четвертый члены этой прогрессии являются решениями неравенства , а остальные

не являются решениями этого неравенства. Найдите множество всех возможных значений первого члена таких прогрессий.

Решение. I. Найдём все решения неравенства

а). ОДЗ:
, т.е.

(учли в решении, что функция возрастает на ).

б). На ОДЗ неравенство равносильно неравенству , т.е. , что даёт:

1).

2).

Очевидно, решением неравенства служит множество значений .

II. Проиллюстрируем вторую часть задачи о членах возрастающей арифметической прогрессии рисунком (рис. 8 , где - первый член, - второй и т.д.). Заметим, что:

Или имеем систему линейных неравенств:

решим её графическим способом. Строим прямые и , а также прямые

То, .. Первый, второй и шестой члены этой прогрессии являются решениями неравенства , а остальные не являются решениями этого неравенства. Найдите множество всех возможных значений разности этой прогрессии.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.
  • 1. Системы линейных уравнений с параметром

    Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

    Пример 1.

    Найти все значения для параметра а, при которых система уравнений не имеет решений.

    {х + (а 2 – 3)у = а,
    {х + у = 2.

    Решение.

    Рассмотрим несколько способов решения данного задания.

    1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

    1/1 = (а 2 – 3)/1 ≠ а/2 или систему

    {а 2 – 3 = 1,
    {а ≠ 2.

    Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

    Ответ: а = -2.

    2 способ . Решаем методом подстановки.

    {2 – у + (а 2 – 3)у = а,
    {х = 2 – у,

    {(а 2 – 3)у – у = а – 2,
    {х = 2 – у.

    После вынесения в первом уравнении общего множителя у за скобки, получим:

    {(а 2 – 4)у = а – 2,
    {х = 2 – у.

    Система не имеет решений, если первое уравнение не будет иметь решений, то есть

    {а 2 – 4 = 0,
    {а – 2 ≠ 0.

    Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

    Ответ: а = -2.

    Пример 2.

    Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

    {8х + ау = 2,
    {ах + 2у = 1.

    Решение.

    По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

    Ответ: а = 4.

    2. Системы рациональных уравнений с параметром

    Пример 3.

    {3|х| + у = 2,
    {|х| + 2у = a.

    Решение.

    Умножим первое уравнение системы на 2:

    {6|х| + 2у = 4,
    {|х| + 2у = a.

    Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

    Ответ: а = 4.

    Пример 4.

    Найти все значения параметра а, при которых система уравнений имеет единственное решение.

    {х + у = а,
    {у – х 2 = 1.

    Решение.

    Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

    1,25 = 0,5 + а;

    Ответ: а = 0,75.

    Пример 5.

    Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

    {ах – у = а + 1,
    {ах + (а + 2)у = 2.

    Решение.

    Из первого уравнения выразим у и подставим во второе:

    {у = ах – а – 1,
    {ах + (а + 2)(ах – а – 1) = 2.

    Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

    ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

    а 2 х + 3ах = 2 + а 2 + 3а + 2.

    Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

    (а + 2)(а + 1), а слева вынесем х за скобки:

    (а 2 + 3а)х = 2 + (а + 2)(а + 1).

    Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

    а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

    Ответ: а ≠ 0; ≠ -3.

    Пример 6.

    Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

    {х 2 + у 2 = 9,
    {у – |х| = а.

    Решение.

    Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

    х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

    Ответ: а = 3.

    Остались вопросы? Не знаете, как решать системы уравнений?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.