Цель урока: дать понятие напряжённости электрического поля и ее определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r 2 в решении несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно судить только по ее действию. Экспериментально доказано, что существуют два рода зарядов, вокруг которых существуют электрические поля, характеризующиеся силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.

Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая обозначается буквой Е и имеет единицы измерения или . Напряженность является векторной величиной, так как определяется отношением силы Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности имеем зависимость напряженности поля от расстояния, на котором она определяется относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда.

В системе СИ Н·м 2 /Кл 2 ,

где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2 ;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна геометрической сумме векторов напряженности, в чем и заключается принцип суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный положительный заряд между ними, тогда в данной точке будут действовать два вектора напряженности, направленные в одну сторону:

Согласно принципу суперпозиции полей общая напряженность поля в данной точке равна геометрической сумме векторов напряженности Е 31 и Е 32 .

Напряженность в данной точке определяется по формуле:

Е = kq 1 /x 2 + kq 2 /(r – x) 2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной на расстояние а от второго заряда. Если учесть, что поле первого заряда больше, чем поле второго заряда, то напряженность в данной точке поля равна геометрической разности напряженности Е 31 и Е 32 .

Формула напряженности в данной точке равна:

Е = kq1/(r + a) 2 – kq 2 /a 2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в некоторой удаленности и от первого и от второго заряда, в данном случае на расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные заряды отталкиваются, а разноименные притягиваются, имеем два вектора напряженности исходящие из одной точки, то для их сложения можно применить метод противоположному углу параллелограмма будет являться суммарным вектором напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е 31 2 +Е 32 2) 1/2

Следовательно:

Е = ((kq 1 /r 2) 2 + (kq 2 /b 2) 2) 1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно определить, зная величины взаимодействующих зарядов, расстояние от каждого заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

Задачи на дом:

1. Два заряда q 1 = +3·10 -7 Кл и q 2 = −2·10 -7 Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите напряженность поля в точке С, расположенной на линии, соединяющей заряды, на расстоянии 0,05 м вправо от заряда q 2 .

2. В некоторой точке поля на заряд 5·10 -9 Кл действует сила 3·10 -4 Н. Найти напряженность поля в этой точке и определите величину заряда, создающего поле, если точка удалена от него на 0,1 м.

Электрическое поле, которое окружает заряд, это реальность, независящая от нашего желания что-либо изменить и как-то повлиять на это. Отсюда можно сделать вывод, что электрическое поле является одной из форм существования материи, так же как и вещество.

Электрическое поле зарядов, находящихся в состоянии покоя, называют электростатическим . Чтобы обнаружить электростатическое поле определенного заряда нужно внести в его поле другой заряд, на который будет действовать определенная сила в . Однако без наличия второго заряда электростатическое поле первого заряда существует, но никак себя не проявляет.

Напряженностью Е характеризуют электростатическое поле. Напряженность в некоторой точке электрического поля – физическая величина, которая равна силе, действующей на помещенный в определенную точку поля единичный положительный покоящийся заряд, и направленная в сторону действия силы.

Если в электрическое поле, создаваемое зарядом q, внести «пробный» положительный точечный заряд q пр, то по закону Кулона на него будет действовать сила:

Если в одну точку поля помещать различные пробные заряды q / пр, q // пр и так далее, то на каждый из них будут действовать различные силы, пропорциональные величине заряда. Отношение F/q пр для всех зарядов, вносимых в поле, будет идентичным, а также будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Данную величину можно выразить формулой:

Если предположить, что q пр = 1, то E = F. Отсюда делаем вывод, что напряженность электрического поля является его силовой характеристикой. Из формулы (2) с учетом выражения кулоновской силы (1) следует:

Из формулы (2) видно, что за единицу напряженности принимается напряженность в определенной точке поля, где на единицу заряда будет действовать единица силы. Поэтому в системе СГС единицей напряженности является дин/СГС q , а в системе СИ будет Н/Кл. Соотношение между приведенными единицами называют абсолютной электростатической единицей напряженности (СГС Е):

Вектор напряженности направлен от заряда вдоль радиуса при образующем поле положительном заряде q+, а при отрицательном – q – по направлению к заряду вдоль радиуса.

Если электрическое поле образовано несколькими зарядами, то силы, которые будут действовать на пробный заряд, складываются по правилу сложения векторов. Поэтому напряженность системы, состоящей из нескольких зарядов, в данной точке поля будет равна векторной сумме напряженностей каждого заряда в отдельности:

Данное явление носит название принцип суперпозиции (наложения) электрических полей.

Напряженность в любой точке электрического поля двух точечных зарядов – q 2 и +q 1 можно найти использовав принцип суперпозиции:

По правилу параллелограмма будет происходить сложение векторов Е 1 и Е 2 . Направление результирующего вектора Е определяется построением, а его абсолютная величина может быть вычислена с использованием формулы ниже:

Где α – угол между векторами Е 1 и Е 2 .

Давайте рассмотрим электрическое поле, которое создает диполь. Электрический диполь – это система равных по величине (q = q 1 = q 2), но противоположных по знаку зарядов, расстояние между которыми очень мало, если сравнивать с расстоянием до рассматриваемых точек электрического поля.

Электрический дипольный момент p, являющийся основной характеристикой диполя и определяемый как вектор, направленный от отрицательного заряда к положительному, и равный произведению плеча диполя l на заряд q:

Также вектором является плечо диполя l, направленным от отрицательного заряда к положительному, и определяет расстояние между зарядами. Линия, которая проходит через оба заряда, носит название – ось диполя .

Давайте определим напряженность электрического поля в точке, которая лежит на оси диполя по середине (рисунок ниже а)):

В точке В напряженность Е будет равна векторной сумме напряженностей Е / и Е // , которые создаются положительными и отрицательными зарядами но отдельности. Между зарядами –q и +q векторы напряженностей Е / и Е // направлены в одну сторону, поэтому по абсолютной величине результирующая напряженность Е будет равна их сумме.

Если же нам необходимо найти Е в точке A, лежащей на продолжении оси диполя, то в разные стороны будут направлены вектора Е / и Е // , соответственно по абсолютной величине результирующая напряженность будет равна их разности:

Где r – расстояние между точкой, которая лежит на оси диполя и в которой происходит определение напряженности, и средней точкой диполя.

В случае r>>l, величиной (l/2) в знаменателе можно пренебречь, тогда получим следующее соотношение:

Где p – момент электрический диполя.

Данная формула в системе СГС примет вид:

Теперь нужно вычислить напряженность электрического поля в точке С (рисунок выше б)), лежащей на перпендикуляре, восстановленном из средней точки диполя.

Так как r 1 = r 2 , то будет иметь место равенство:

Напряженность диполя в произвольной точке можно определить по формуле:

Где α – угол между плечом диполя l и радиус-вектором r, r – расстояние от точки, в которой определяется напряженность поля, до центра диполя, р – электрический момент диполя.

Пример

На расстоянии R = 0,06 м друг от друга находятся два одинаковых точечных заряда q 1 = q 2 = 10 -6 Кл (рисунок ниже):

Необходимо определить напряженность электрического поля в точке А, которая расположена на перпендикуляре, восстановленном в центре отрезка, который соединяет заряды, на расстоянии h = 4 см от этого отрезка. Также нужно определить напряженность и в точке В, находящейся на середине отрезка, который соединяет заряды.

Решение

По принципу суперпозиции (наложением полей) определяется напряженность поля Е. Таким образом, векторной (геометрической) суммой определяется Е, создаваемых каждым зарядом в отдельности: Е = Е 1 + Е 2 .

Напряженность электрического поля первого точечного заряда равна:

Где q 1 и q 2 – заряды, образующие электрическое поле; r – расстояние от точки, в которой вычисляется напряженность, до заряда; ε 0 – электрическая постоянная; ε – относительная диэлектрическая проницаемость среды.

Для определения напряженности в точке В сначала нужно построить векторы напряженности электрических полей от каждого заряда. Поскольку заряды положительны, то векторы Е / и Е // будут направлены от точки В в разные стороны. По условию q 1 = q 2:

Это значит, что в средине отрезка напряженность поля равна нулю.

В точке А необходимо произвести геометрическое сложение векторов Е 1 и Е 2 . В точке А напряженность будет равна:

Наряду с законом Кулона возможно и другое описание взаимодействия электрических зарядов.

Дальнодействие и близкодействие. Закон Кулона, подобно закону всемирного тяготения, трактует взаимодействие зарядов как «действие на расстоянии», или «дальнодействие». Действительно, кулоновская сила зависит лишь от величины зарядов и от расстояния между ними. Кулон был убежден, что промежуточная среда, т. е. «пустота» между зарядами, никакого участия во взаимодействии не принимает.

Такая точка зрения, несомненно, была навеяна впечатляющими успехами ньютоновской теории тяготения, блестяще подтверждавшейся астрономическими наблюдениями. Однако еще сам Ньютон писал: «Непонятно, каким образом неодушевленная косная материя, без посредства чего-либо иного, что нематериально, могла бы действовать на другое тело без взаимного прикосновения». Тем не менее концепция дальнодействия, основанная на представлении о мгновенном действии одного тела на другое на расстоянии без участия какой-либо промежуточной среды, еще долго доминировала в научном мировоззрении.

Идея поля как материальной среды, посредством которой осуществляется любое взаимодействие пространственно удаленных тел, была введена в физику в 30-е годы XIX века великим английским естествоиспытателем М. Фарадеем, который считал, что «материя присутствует везде, и нет промежуточного пространства, не занятого

ею». Фарадей развил последовательную концепцию электромагнитного поля, основанную на идее конечной скорости распространения взаимодействия. Законченная теория электромагнитного поля, облеченная в строгую математическую форму, была впоследствии развита другим великим английским физиком Дж. Максвеллом.

По современным представлениям электрические заряды наделяют окружающее их пространство особыми физическими свойствами - создают электрическое поле. Основным свойством поля является то, что на находящуюся в этом поле заряженную частицу действует некоторая сила, т. е. взаимодействие электрических зарядов осуществляется посредством создаваемых ими полей. Поле, создаваемое неподвижными зарядами, не изменяется со временем и называется электростатическим. Для изучения поля необходимо найти его физические характеристики. Рассматривают две такие характеристики - силовую и энергетическую.

Напряженность электрического поля. Для экспериментального изучения электрического поля в него нужно поместить пробный заряд. Практически это будет какое-то заряженное тело, которое, во-первых, должно иметь достаточно малые размеры, чтобы можно было судить о свойствах поля в определенной точке пространства, и, во-вторых, его электрический заряд должен быть достаточно малым, чтобы можно было пренебречь влиянием этого заряда на распределение зарядов, создающих изучаемое поле.

На пробный заряд, помещенный в электрическое поле, действует сила, которая зависит как от поля, так и от самого пробного заряда. Эта сила тем больше, чем больше пробный заряд. Измеряя силы, действующие на разные пробные заряды, помещенные в одну и ту же точку, можно убедиться, что отношение силы к пробному заряду уже не зависит от величины заряда. Значит, это отношение характеризует само поле. Силовой характеристикой электрического поля является напряженность Е - векторная величина, равная в каждой точке отношению силы действующей на пробный заряд помещенный в эту точку, к заряду

Другими словами, напряженность поля Е измеряется силой, действующей на единичный положительный пробный заряд. В общем случае напряженность поля разная в разных точках. Поле, в котором напряженность во всех точках одинакова как по модулю, так и по направлению, называется однородным.

Зная напряженность электрического поля, можно найти силу, действующую на любой заряд помещенный в данную точку. В соответствии с (1) выражение для этой силы имеет вид

Как же найти напряженность поля в какой-либо точке?

Напряженность электрического поля, создаваемого точечным зарядом, можно рассчитать с помощью закона Кулона. Будем рассматривать точечный заряд как источник электрического поля. Этот заряд действует на расположенный на расстоянии от него пробный заряд с силой, модуль которой равен

Поэтому в соответствии с (1), разделив это выражение на получаем модуль Е напряженности поля в точке, где расположен пробный заряд, т. е. на расстоянии от заряда

Таким образом, напряженность поля точечного заряда убывает с расстоянием обратно пропорционально квадрату расстояния или, как говорят, по закону обратных квадратов. Такое поле называют кулоновским. При приближении к создающему поле точечному заряду напряженность поля точечного заряда неограниченно возрастает: из (4) следует, что при

Коэффициент к в формуле (4) зависит от выбора системы единиц. В СГСЭ к = 1, а в СИ . Соответственно формула (4) записывается в одном из двух видов:

Единица напряженности в СГСЭ специального названия не имеет, а в СИ она называется «вольт на метр»

Вследствие изотропности пространства, т. е. эквивалентности всех направлений, электрическое поле уединенного точечного заряда сферически-симметрично. Это обстоятельство проявляется в формуле (4) в том, что модуль напряженности поля зависит только от расстояния до заряда, создающего поле. Вектор напряженности Е имеет радиальное направление: он направлен от создающего поле заряда если это положительный заряд (рис. 6а, а), и к создающему поле заряду если этот заряд отрицательный (рис. 6б).

Выражение для напряженности поля точечного заряда можно записать в векторном виде. Начало координат удобно поместить в точку, где находится заряд, создающий поле. Тогда напряженность поля в любой точке, характеризуемой радиусом-вектором дается выражением

В этом можно убедиться, сопоставив определение (1) вектора напряженности поля с формулой (2) § 1, либо отталкиваясь

непосредственно от формулы (4) и учитывая сформулированные выше соображения о направлении вектора Е.

Принцип суперпозиции. Как найти напряженность электрического поля, создаваемого произвольным распределением зарядов?

Опыт показывает, что электрические поля удовлетворяют принципу суперпозиции. Напряженность поля, создаваемого несколькими зарядами, равна векторной сумме напряженностей полей, создаваемых каждым зарядом в отдельности:

Принцип суперпозиции фактически означает, что присутствие других электрических зарядов никак не сказывается на поле, создаваемом данным зарядом. Такое свойство, когда отдельные источники действуют независимо и их действия просто складываются, присуще так называемым линейным системам, и само такое свойство физических систем называется линейностью. Происхождение этого названия связано с тем, что такие системы описываются линейными уравнениями (уравнениями первой степени).

Подчеркнем, что справедливость принципа суперпозиции для электрического поля не является логической необходимостью или чем-то само собой разумеющимся. Этот принцип представляет собой обобщение опытных фактов.

Принцип суперпозиции позволяет рассчитать напряженность поля, создаваемого любым распределением неподвижных электрических зарядов. В случае нескольких точечных зарядов рецепт расчета результирующей напряженности очевиден. Любой неточечный заряд можно мысленно разбить на такие малые части, чтобы каждую из них можно было рассматривать как точечный заряд. Напряженность электрического поля в произвольной точке находится как

векторная сумма напряженностей, создаваемых этими «точечными» зарядами. Соответствующие расчеты значительно упрощаются в тех случаях, коща в распределении создающих поле зарядов имеется определенная симметрия.

Линии напряженности. Наглядное графическое изображение электрических полей дают линии напряженности или силовые линии.

Рис. 7. Линии напряженности поля положительного и отрицательного точечных зарядов

Эти линии электрического поля проводятся таким образом, чтобы в каждой точке касательная к линии совпадала по направлению с вектором напряженности в этой точке. Иначе говоря, в любом месте вектор напряженности направлен по касательной к силовой линии, проходящей через эту точку. Силовым линиям приписывают направление: они выходят из положительных зарядов или приходят из бесконечности. Они либо оканчиваются на отрицательных зарядах, либо уходят в бесконечность. На рисунках это направление указывают стрелками на силовой линии.

Силовую линию можно провести через любую точку электрического поля.

Линии проводят гуще в тех местах, где напряженность поля больше, и реже там, где она меньше. Таким образом, густота силовых линий дает представление о модуле напряженности.

Рис. 8. Линии напряженности поля разноименных одинаковых зарядов

На рис. 7 показаны силовые линии поля уединенного положительного и отрицательного точечных зарядов. Из симметрии очевидно, что это радиальные прямые, распределенные с одинаковой густотой по всем направлениям.

Более сложный вид имеет картина линий поля, создаваемого двумя зарядами противоположных знаков. Такое поле, очевидно,

обладает осевой симметрией: вся картина остается неизменной при повороте на любой угол вокруг оси, проходящей через заряды. Когда модули зарядов одинаковы, картина линий также симметрична относительно плоскости, проходящей перпендикулярно соединяющему их отрезку через его середину (рис. 8). В этом случае силовые линии выходят из положительного заряда и все они оканчиваются на отрицательном, хотя на рис. 8 нельзя показать, как замыкаются уходящие далеко от зарядов линии.


Определение

Вектор напряженности – это силовая характеристика электрического поля. В некоторой точке поля, напряженность равна силе, с которой поле действует на единичный положительный заряд, размещенный в указанной точке, при этом направление силы и напряженности совпадают. Математическое определение напряженности записывается так:

где – сила, с которой электрическое поле действует на неподвижный, «пробный», точечный заряд q, который размещают в рассматриваемой точке поля. При этом считают, что «пробный» заряд мал на столько, что не искажает исследуемого поля.

Если поле является электростатическим, то его напряженность от времени не зависит.

Если электрическое поле является однородным, то его напряженность во всех точках поля одинакова.

Графически электрические поля можно изображать при помощи силовых линий. Силовыми линиями (линиями напряженности) называют линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности в этой точке поля.

Принцип суперпозиции напряженностей электрических полей

Если поле создано несколькими электрическими полями, то напряженность результирующего поля равна векторной сумме напряженностей отдельных полей:

Допустим, что поле создается системой точечных зарядов и их распределение непрерывно, тогда результирующая напряженность находится как:

интегрирование в выражении (3) проводят по всей области распределения заряда.

Напряженность поля в диэлектрике

Напряженность поля в диэлектрике равна векторной сумме напряженностей полей, создаваемых свободными зарядами и связанными (поляризационными зарядами) :

В том случае, если вещество, которое окружает свободные заряды однородный и изотропный диэлектрик, то напряженность равна:

где – относительная диэлектрическая проницаемость вещества в исследуемой точке поля. Выражение (5) обозначает то, что при заданном распределении зарядов напряженность электростатического поля в однородном изотропном диэлектрике меньше, чем в вакууме в раз.

Напряженность поля точечного заряда

Напряженность поля точечного зарядаq равна:

где Ф/м (система СИ) - электрическая постоянная.

Связь напряженности и потенциала

В общем случае напряженность электрического поля связана с потенциалом как:

где – скалярный потенциал, – векторный потенциал.

Для стационарных полей выражение (7) трансформируется в формулу:

Единицы измерения напряженности электрического поля

Основной единицей измерения напряженности электрического поля в системе СИ является: [E]=В/м(Н/Кл)

Примеры решения задач

Пример

Задание. Каков модуль вектора напряженности электрического поля в точке, которая определена радиус- вектором (в метрах), если электрическое поле создает положительный точечный заряд (q=1Кл), который лежит в плоскости XOY и его положение задает радиус вектор , (в метрах)?

Решение. Модуль напряжения электростатического поля, которое создает точечный заряд, определяется формулой:

r- расстояние от заряда, создающего поле до точки в которой ищем поле.

Из формулы (1.2) следует, что модуль равен:

Подставим в (1.1) исходные данные и полученное расстояние r, имеем:

Ответ.

Пример

Задание. Запишите выражение для напряженности поля в точке, которая определена радиус – вектором , если поле создается зарядом, который распределен по объему V с плотностью .

Цель урока: дать понятие напряжённости электрического поля и ее определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r 2 в решении несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно судить только по ее действию. Экспериментально доказано, что существуют два рода зарядов, вокруг которых существуют электрические поля, характеризующиеся силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.

Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая обозначается буквой Е и имеет единицы измерения или . Напряженность является векторной величиной, так как определяется отношением силы Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности имеем зависимость напряженности поля от расстояния, на котором она определяется относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда.

В системе СИ Н·м 2 /Кл 2 ,

где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2 ;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна геометрической сумме векторов напряженности, в чем и заключается принцип суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный положительный заряд между ними, тогда в данной точке будут действовать два вектора напряженности, направленные в одну сторону:

Согласно принципу суперпозиции полей общая напряженность поля в данной точке равна геометрической сумме векторов напряженности Е 31 и Е 32 .

Напряженность в данной точке определяется по формуле:

Е = kq 1 /x 2 + kq 2 /(r – x) 2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной на расстояние а от второго заряда. Если учесть, что поле первого заряда больше, чем поле второго заряда, то напряженность в данной точке поля равна геометрической разности напряженности Е 31 и Е 32 .

Формула напряженности в данной точке равна:

Е = kq1/(r + a) 2 – kq 2 /a 2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в некоторой удаленности и от первого и от второго заряда, в данном случае на расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные заряды отталкиваются, а разноименные притягиваются, имеем два вектора напряженности исходящие из одной точки, то для их сложения можно применить метод противоположному углу параллелограмма будет являться суммарным вектором напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е 31 2 +Е 32 2) 1/2

Следовательно:

Е = ((kq 1 /r 2) 2 + (kq 2 /b 2) 2) 1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно определить, зная величины взаимодействующих зарядов, расстояние от каждого заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

Задачи на дом:

1. Два заряда q 1 = +3·10 -7 Кл и q 2 = −2·10 -7 Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите напряженность поля в точке С, расположенной на линии, соединяющей заряды, на расстоянии 0,05 м вправо от заряда q 2 .

2. В некоторой точке поля на заряд 5·10 -9 Кл действует сила 3·10 -4 Н. Найти напряженность поля в этой точке и определите величину заряда, создающего поле, если точка удалена от него на 0,1 м.