Από τον ορισμό του προκύπτει. Και έτσι ο λογάριθμος του αριθμού σιβασισμένο στο ΕΝΑορίζεται ως ο εκθέτης στον οποίο πρέπει να αυξηθεί ένας αριθμός έναγια να πάρετε τον αριθμό σι(ο λογάριθμος υπάρχει μόνο για θετικούς αριθμούς).

Από τη διατύπωση αυτή προκύπτει ότι ο υπολογισμός x=log a β, ισοδυναμεί με την επίλυση της εξίσωσης a x =b.Για παράδειγμα, ημερολόγιο 2 8 = 3επειδή 8 = 2 3 . Η διατύπωση του λογαρίθμου καθιστά δυνατό να δικαιολογηθεί ότι αν b=a γ, τότε ο λογάριθμος του αριθμού σιβασισμένο στο έναισοδυναμεί Με. Είναι επίσης σαφές ότι το θέμα των λογαρίθμων σχετίζεται στενά με το θέμα των δυνάμεων ενός αριθμού.

Με τους λογάριθμους, όπως και με κάθε αριθμό, μπορείτε να κάνετε πράξεις πρόσθεσης, αφαίρεσηςκαι μεταμορφώνονται με κάθε δυνατό τρόπο. Αλλά λόγω του γεγονότος ότι οι λογάριθμοι δεν είναι εντελώς συνηθισμένοι αριθμοί, εδώ ισχύουν οι δικοί τους ειδικοί κανόνες, οι οποίοι ονομάζονται κύριες ιδιότητες.

Πρόσθεση και αφαίρεση λογαρίθμων.

Ας πάρουμε δύο λογάριθμους με τις ίδιες βάσεις: καταγράψτε ένα xΚαι log a y. Στη συνέχεια, είναι δυνατή η εκτέλεση πράξεων πρόσθεσης και αφαίρεσης:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

κούτσουρο α(Χ 1 . Χ 2 . Χ 3 ... x k) = καταγράψτε ένα x 1 + καταγράψτε ένα x 2 + καταγράψτε ένα x 3 + ... + log a x k.

Από θεώρημα λογαριθμικού πηλίκουΜια ακόμη ιδιότητα του λογάριθμου μπορεί να ληφθεί. Είναι κοινό γνωστό ότι η καταγραφή ένα 1 = 0, επομένως

κούτσουρο ένα 1 /σι= κούτσουρο ένα 1 - κούτσουρο α β= -log α β.

Αυτό σημαίνει ότι υπάρχει ισότητα:

log a 1 / b = - log a b.

Λογάριθμοι δύο αντίστροφων αριθμώνγια τον ίδιο λόγο θα διαφέρουν μεταξύ τους αποκλειστικά ως προς το πρόσημο. Ετσι:

Μητρώο 3 9= - ημερολόγιο 3 1 / 9 ; log 5 1 / 125 = -log 5 125.


Συνεχίζουμε να μελετάμε τους λογάριθμους. Σε αυτό το άρθρο θα μιλήσουμε για υπολογισμός λογαρίθμων, αυτή η διαδικασία ονομάζεται λογάριθμος. Αρχικά θα κατανοήσουμε τον υπολογισμό των λογαρίθμων εξ ορισμού. Στη συνέχεια, ας δούμε πώς βρίσκονται οι τιμές των λογαρίθμων χρησιμοποιώντας τις ιδιότητές τους. Μετά από αυτό, θα επικεντρωθούμε στον υπολογισμό των λογαρίθμων μέσω των αρχικά καθορισμένων τιμών άλλων λογαρίθμων. Τέλος, ας μάθουμε πώς να χρησιμοποιούμε λογαριθμικούς πίνακες. Ολόκληρη η θεωρία παρέχεται με παραδείγματα με λεπτομερείς λύσεις.

Πλοήγηση στη σελίδα.

Υπολογισμός λογαρίθμων εξ ορισμού

Στις πιο απλές περιπτώσεις είναι δυνατό να εκτελεστεί αρκετά γρήγορα και εύκολα βρίσκοντας τον λογάριθμο εξ ορισμού. Ας ρίξουμε μια πιο προσεκτική ματιά στο πώς συμβαίνει αυτή η διαδικασία.

Η ουσία του είναι να αντιπροσωπεύει τον αριθμό b με τη μορφή a c, από τον οποίο, με τον ορισμό ενός λογάριθμου, ο αριθμός c είναι η τιμή του λογαρίθμου. Δηλαδή, εξ ορισμού, η ακόλουθη αλυσίδα ισοτήτων αντιστοιχεί στην εύρεση του λογάριθμου: log a b=log a a c =c.

Έτσι, ο υπολογισμός ενός λογάριθμου εξ ορισμού καταλήγει στην εύρεση ενός αριθμού c τέτοιο ώστε a c = b, και ο ίδιος ο αριθμός c είναι η επιθυμητή τιμή του λογαρίθμου.

Λαμβάνοντας υπόψη τις πληροφορίες στις προηγούμενες παραγράφους, όταν ο αριθμός κάτω από το σύμβολο του λογάριθμου δίνεται από μια ορισμένη ισχύ της βάσης του λογαρίθμου, μπορείτε αμέσως να υποδείξετε με τι ισούται ο λογάριθμος - είναι ίσος με τον εκθέτη. Ας δείξουμε λύσεις σε παραδείγματα.

Παράδειγμα.

Βρείτε το log 2 2 −3 και υπολογίστε επίσης τον φυσικό λογάριθμο του αριθμού e 5,3.

Λύση.

Ο ορισμός του λογάριθμου μας επιτρέπει να πούμε αμέσως ότι το log 2 2 −3 =−3. Πράγματι, ο αριθμός κάτω από το πρόσημο του λογάριθμου είναι ίσος με τη βάση 2 προς την ισχύ −3.

Ομοίως, βρίσκουμε τον δεύτερο λογάριθμο: lne 5.3 =5.3.

Απάντηση:

log 2 2 −3 =−3 και lne 5,3 =5,3.

Εάν ο αριθμός b κάτω από το πρόσημο του λογάριθμου δεν προσδιορίζεται ως δύναμη της βάσης του λογαρίθμου, τότε πρέπει να κοιτάξετε προσεκτικά για να δείτε εάν είναι δυνατόν να καταλήξετε σε μια αναπαράσταση του αριθμού b με τη μορφή a c . Συχνά αυτή η αναπαράσταση είναι αρκετά προφανής, ειδικά όταν ο αριθμός κάτω από το πρόσημο του λογάριθμου είναι ίσος με τη βάση προς τη δύναμη του 1, ή 2, ή 3, ...

Παράδειγμα.

Υπολογίστε τους λογαρίθμους log 5 25 και .

Λύση.

Είναι εύκολο να δούμε ότι 25=5 2, αυτό σας επιτρέπει να υπολογίσετε τον πρώτο λογάριθμο: log 5 25=log 5 5 2 =2.

Ας προχωρήσουμε στον υπολογισμό του δεύτερου λογάριθμου. Ο αριθμός μπορεί να αναπαρασταθεί ως δύναμη 7: (δείτε αν χρειάζεται). Ως εκ τούτου, .

Ας ξαναγράψουμε τον τρίτο λογάριθμο με την παρακάτω μορφή. Τώρα μπορείτε να το δείτε αυτό , από το οποίο συμπεραίνουμε ότι . Επομένως, με τον ορισμό του λογάριθμου .

Εν συντομία, η λύση θα μπορούσε να γραφτεί ως εξής: .

Απάντηση:

log 5 25=2 , και .

Όταν κάτω από το πρόσημο του λογάριθμου υπάρχει ένα αρκετά μεγάλο φυσικός αριθμός, τότε δεν θα ήταν κακό να το συνυπολογίσουμε σε πρωταρχικούς παράγοντες. Συχνά βοηθάει να αναπαραστήσουμε έναν τέτοιο αριθμό ως κάποια δύναμη της βάσης του λογαρίθμου, και επομένως να υπολογίσουμε αυτόν τον λογάριθμο εξ ορισμού.

Παράδειγμα.

Βρείτε την τιμή του λογάριθμου.

Λύση.

Ορισμένες ιδιότητες των λογαρίθμων σας επιτρέπουν να καθορίσετε αμέσως την τιμή των λογαρίθμων. Αυτές οι ιδιότητες περιλαμβάνουν την ιδιότητα του λογάριθμου του ενός και την ιδιότητα του λογάριθμου ενός αριθμού ίσου με τη βάση: log 1 1=log a a 0 =0 και log a a=log a 1 =1. Όταν δηλαδή κάτω από το πρόσημο του λογαρίθμου υπάρχει αριθμός 1 ή αριθμός α ίσος με τη βάση του λογαρίθμου, τότε σε αυτές τις περιπτώσεις οι λογάριθμοι είναι ίσοι με 0 και 1, αντίστοιχα.

Παράδειγμα.

Με τι ισούνται οι λογάριθμοι και το log10;

Λύση.

Αφού , τότε από τον ορισμό του λογάριθμου προκύπτει .

Στο δεύτερο παράδειγμα, ο αριθμός 10 κάτω από το πρόσημο του λογάριθμου συμπίπτει με τη βάση του, άρα ο δεκαδικός λογάριθμος του δέκα είναι ίσος με ένα, δηλαδή lg10=lg10 1 =1.

Απάντηση:

ΚΑΙ lg10=1.

Σημειώστε ότι ο υπολογισμός των λογαρίθμων εξ ορισμού (που συζητήσαμε στην προηγούμενη παράγραφο) συνεπάγεται τη χρήση του log ισότητας a a p =p, που είναι μια από τις ιδιότητες των λογαρίθμων.

Στην πράξη, όταν ένας αριθμός κάτω από το σύμβολο του λογάριθμου και η βάση του λογαρίθμου αναπαρίστανται εύκολα ως δύναμη ενός συγκεκριμένου αριθμού, είναι πολύ βολικό να χρησιμοποιηθεί ο τύπος , που αντιστοιχεί σε μία από τις ιδιότητες των λογαρίθμων. Ας δούμε ένα παράδειγμα εύρεσης ενός λογάριθμου που επεξηγεί τη χρήση αυτού του τύπου.

Παράδειγμα.

Υπολογίστε τον λογάριθμο.

Λύση.

Απάντηση:

.

Οι ιδιότητες των λογαρίθμων που δεν αναφέρονται παραπάνω χρησιμοποιούνται επίσης στους υπολογισμούς, αλλά θα μιλήσουμε για αυτό στις επόμενες παραγράφους.

Εύρεση λογαρίθμων μέσω άλλων γνωστών λογαρίθμων

Οι πληροφορίες σε αυτήν την παράγραφο συνεχίζουν το θέμα της χρήσης των ιδιοτήτων των λογαρίθμων κατά τον υπολογισμό τους. Αλλά εδώ η κύρια διαφορά είναι ότι οι ιδιότητες των λογαρίθμων χρησιμοποιούνται για να εκφράσουν τον αρχικό λογάριθμο με όρους άλλου λογάριθμου, η τιμή του οποίου είναι γνωστή. Ας δώσουμε ένα παράδειγμα για διευκρίνιση. Ας υποθέσουμε ότι γνωρίζουμε ότι το log 2 3≈1.584963, τότε μπορούμε να βρούμε, για παράδειγμα, το log 2 6 κάνοντας έναν μικρό μετασχηματισμό χρησιμοποιώντας τις ιδιότητες του λογαρίθμου: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Στο παραπάνω παράδειγμα, αρκούσε να χρησιμοποιήσουμε την ιδιότητα του λογάριθμου ενός προϊόντος. Ωστόσο, πολύ πιο συχνά είναι απαραίτητο να χρησιμοποιηθεί ένα ευρύτερο οπλοστάσιο ιδιοτήτων των λογαρίθμων προκειμένου να υπολογιστεί ο αρχικός λογάριθμος μέσω των δεδομένων.

Παράδειγμα.

Υπολογίστε τον λογάριθμο του 27 στη βάση του 60 αν γνωρίζετε ότι το log 60 2=a και το log 60 5=b.

Λύση.

Πρέπει λοιπόν να βρούμε το αρχείο καταγραφής 60 27 . Είναι εύκολο να δούμε ότι 27 = 3 3 , και ο αρχικός λογάριθμος, λόγω της ιδιότητας του λογάριθμου της ισχύος, μπορεί να ξαναγραφτεί ως 3·log 60 3 .

Τώρα ας δούμε πώς να εκφράσουμε το log 60 3 με όρους γνωστών λογαρίθμων. Η ιδιότητα του λογάριθμου ενός αριθμού ίσου με τη βάση μας επιτρέπει να γράψουμε το ημερολόγιο ισότητας 60 60=1. Από την άλλη πλευρά, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Ετσι, 2 log 60 2+log 60 3+log 60 5=1. Ως εκ τούτου, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Τέλος, υπολογίζουμε τον αρχικό λογάριθμο: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Απάντηση:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Ξεχωριστά, αξίζει να αναφερθεί η έννοια του τύπου για μετάβαση σε μια νέα βάση του λογάριθμου της φόρμας. Σας επιτρέπει να μετακινηθείτε από λογάριθμους με οποιαδήποτε βάση σε λογάριθμους με συγκεκριμένη βάση, οι τιμές των οποίων είναι γνωστές ή είναι δυνατό να τις βρείτε. Συνήθως, από τον αρχικό λογάριθμο, χρησιμοποιώντας τον τύπο μετάβασης, μετακινούνται σε λογάριθμους σε μία από τις βάσεις 2, e ή 10, αφού για αυτές τις βάσεις υπάρχουν πίνακες λογαρίθμων που επιτρέπουν τον υπολογισμό των τιμών τους με έναν ορισμένο βαθμό ακρίβεια. Στην επόμενη παράγραφο θα δείξουμε πώς γίνεται αυτό.

Πίνακες λογαρίθμων και οι χρήσεις τους

Για τον κατά προσέγγιση υπολογισμό των λογαριθμικών τιμών μπορούν να χρησιμοποιηθούν πίνακες λογαρίθμων. Ο πιο συχνά χρησιμοποιούμενος πίνακας λογαρίθμων βάσης 2 είναι ο πίνακας φυσικούς λογάριθμουςκαι πίνακα δεκαδικών λογαρίθμων. Όταν εργάζεστε στο σύστημα δεκαδικών αριθμών, είναι βολικό να χρησιμοποιείτε έναν πίνακα λογαρίθμων με βάση τη βάση δέκα. Με τη βοήθειά του θα μάθουμε να βρίσκουμε τις τιμές των λογαρίθμων.









Ο παρουσιαζόμενος πίνακας σας επιτρέπει να βρείτε τις τιμές των δεκαδικών λογαρίθμων αριθμών από 1.000 έως 9.999 (με τρία δεκαδικά ψηφία) με ακρίβεια ενός δέκατου χιλιοστού. Θα αναλύσουμε την αρχή της εύρεσης της τιμής ενός λογαρίθμου χρησιμοποιώντας έναν πίνακα δεκαδικών λογαρίθμων χρησιμοποιώντας ένα συγκεκριμένο παράδειγμα - είναι πιο σαφές με αυτόν τον τρόπο. Ας βρούμε το log1.256.

Στην αριστερή στήλη του πίνακα των δεκαδικών λογαρίθμων βρίσκουμε τα δύο πρώτα ψηφία του αριθμού 1,256, δηλαδή βρίσκουμε το 1,2 (αυτός ο αριθμός είναι κυκλωμένος με μπλε για ευκρίνεια). Το τρίτο ψηφίο του αριθμού 1.256 (ψηφίο 5) βρίσκεται στην πρώτη ή την τελευταία γραμμή στα αριστερά της διπλής γραμμής (ο αριθμός αυτός είναι κυκλωμένος με κόκκινο χρώμα). Το τέταρτο ψηφίο του αρχικού αριθμού 1.256 (ψηφίο 6) βρίσκεται στην πρώτη ή την τελευταία γραμμή στα δεξιά της διπλής γραμμής (ο αριθμός αυτός κυκλώνεται με μια πράσινη γραμμή). Τώρα βρίσκουμε τους αριθμούς στα κελιά του πίνακα λογαρίθμων στη διασταύρωση της επισημασμένης γραμμής και των στηλών (αυτοί οι αριθμοί επισημαίνονται πορτοκάλι). Το άθροισμα των σημειωμένων αριθμών δίνει την επιθυμητή τιμή δεκαδικός λογάριθμοςμε ακρίβεια στο τέταρτο δεκαδικό ψηφίο, δηλαδή log1.236≈0.0969+0.0021=0.0990.

Είναι δυνατόν, χρησιμοποιώντας τον παραπάνω πίνακα, να βρούμε τις τιμές των δεκαδικών λογαρίθμων αριθμών που έχουν περισσότερα από τρία ψηφία μετά την υποδιαστολή, καθώς και εκείνων που ξεπερνούν το εύρος από 1 έως 9,999; Ναι μπορείς. Ας δείξουμε πώς γίνεται αυτό με ένα παράδειγμα.

Ας υπολογίσουμε το lg102.76332. Πρώτα πρέπει να γράψετε αριθμός σε τυπική μορφή: 102.76332=1.0276332·10 2. Μετά από αυτό, η μάντισσα πρέπει να στρογγυλοποιηθεί στο τρίτο δεκαδικό ψηφίο, έχουμε 1,0276332 10 2 ≈1,028 10 2, ενώ ο αρχικός δεκαδικός λογάριθμος είναι περίπου ίσος με τον λογάριθμο του προκύπτοντος αριθμού, δηλαδή παίρνουμε log102.76332≈lg1.028·10 2. Τώρα εφαρμόζουμε τις ιδιότητες του λογάριθμου: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Τέλος, βρίσκουμε την τιμή του λογαρίθμου lg1.028 από τον πίνακα των δεκαδικών λογαρίθμων lg1.028≈0.0086+0.0034=0.012. Ως αποτέλεσμα, ολόκληρη η διαδικασία υπολογισμού του λογαρίθμου μοιάζει με αυτό: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

Συμπερασματικά, αξίζει να σημειωθεί ότι χρησιμοποιώντας έναν πίνακα δεκαδικών λογαρίθμων μπορείτε να υπολογίσετε την κατά προσέγγιση τιμή οποιουδήποτε λογαρίθμου. Για να γίνει αυτό, αρκεί να χρησιμοποιήσετε τον τύπο μετάβασης για να μεταβείτε σε δεκαδικούς λογάριθμους, να βρείτε τις τιμές τους στον πίνακα και να εκτελέσετε τους υπόλοιπους υπολογισμούς.

Για παράδειγμα, ας υπολογίσουμε το αρχείο καταγραφής 2 3 . Σύμφωνα με τον τύπο μετάβασης σε νέα βάση του λογάριθμου, έχουμε . Από τον πίνακα των δεκαδικών λογαρίθμων βρίσκουμε log3≈0,4771 και log2≈0,3010. Ετσι, .

Βιβλιογραφία.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. και άλλα Άλγεβρα και οι απαρχές της ανάλυσης: Σχολικό εγχειρίδιο για τις τάξεις 10 - 11 των ιδρυμάτων γενικής εκπαίδευσης.
  • Gusev V.A., Mordkovich A.G. Μαθηματικά (εγχειρίδιο για όσους μπαίνουν σε τεχνικές σχολές).

Λογάριθμος του αριθμού b (b > 0) στη βάση του a (a > 0, a ≠ 1)– εκθέτης στον οποίο πρέπει να αυξηθεί ο αριθμός a για να ληφθεί b.

Ο λογάριθμος βάσης 10 του b μπορεί να γραφτεί ως ημερολόγιο (β), και ο λογάριθμος στη βάση e (φυσικός λογάριθμος) είναι ln(b).

Συχνά χρησιμοποιείται κατά την επίλυση προβλημάτων με λογάριθμους:

Ιδιότητες λογαρίθμων

Υπάρχουν τέσσερις κύριες ιδιότητες των λογαρίθμων.

Έστω a > 0, a ≠ 1, x > 0 και y > 0.

Ιδιότητα 1. Λογάριθμος του προϊόντος

Λογάριθμος του προϊόντοςίσο με το άθροισμα των λογαρίθμων:

log a (x ⋅ y) = log a x + log a y

Ιδιότητα 2. Λογάριθμος του πηλίκου

Λογάριθμος του πηλίκουίση με τη διαφορά των λογαρίθμων:

log a (x / y) = log a x – log a y

Ιδιότητα 3. Λογάριθμος ισχύος

Λογάριθμος βαθμούίσο με το γινόμενο της ισχύος και του λογάριθμου:

Εάν η βάση του λογάριθμου είναι στη μοίρα, τότε ισχύει ένας άλλος τύπος:

Ιδιότητα 4. Λογάριθμος ρίζας

Αυτή η ιδιότητα μπορεί να ληφθεί από την ιδιότητα του λογάριθμου μιας δύναμης, καθώς η nη ρίζα της ισχύος είναι ίση με την ισχύ του 1/n:

Τύπος μετατροπής από λογάριθμο σε μια βάση σε λογάριθμο σε άλλη βάση

Αυτός ο τύπος χρησιμοποιείται επίσης συχνά κατά την επίλυση διαφόρων εργασιών σε λογάριθμους:

Ειδική περίπτωση:

Σύγκριση λογαρίθμων (ανισότητες)

Ας έχουμε 2 συναρτήσεις f(x) και g(x) σε λογάριθμους με τις ίδιες βάσεις και μεταξύ τους υπάρχει πρόσημο ανισότητας:

Για να τα συγκρίνετε, πρέπει πρώτα να δείτε τη βάση των λογαρίθμων:

  • Αν a > 0, τότε f(x) > g(x) > 0
  • Αν 0< a < 1, то 0 < f(x) < g(x)

Πώς να λύσετε προβλήματα με λογάριθμους: παραδείγματα

Προβλήματα με λογαρίθμουςπου περιλαμβάνονται στην Ενιαία Κρατική Εξέταση στα μαθηματικά για την τάξη 11 στην εργασία 5 και την εργασία 7, μπορείτε να βρείτε εργασίες με λύσεις στον ιστότοπό μας στις κατάλληλες ενότητες. Επίσης, εργασίες με λογάριθμους βρίσκονται στην τράπεζα μαθηματικών εργασιών. Μπορείτε να βρείτε όλα τα παραδείγματα κάνοντας αναζήτηση στον ιστότοπο.

Τι είναι ο λογάριθμος

Οι λογάριθμοι θεωρούνταν πάντα σύνθετο θέμα V σχολικό μάθημαμαθηματικά. Υπάρχουν πολλά διαφορετικούς ορισμούςλογάριθμο, αλλά για κάποιο λόγο τα περισσότερα σχολικά βιβλία χρησιμοποιούν το πιο περίπλοκο και ανεπιτυχές από αυτά.

Θα ορίσουμε τον λογάριθμο απλά και ξεκάθαρα. Για να γίνει αυτό, ας δημιουργήσουμε έναν πίνακα:

Άρα, έχουμε δυνάμεις δύο.

Λογάριθμοι - ιδιότητες, τύποι, τρόπος επίλυσης

Εάν πάρετε τον αριθμό από την κάτω γραμμή, μπορείτε εύκολα να βρείτε τη δύναμη στην οποία θα πρέπει να αυξήσετε δύο για να λάβετε αυτόν τον αριθμό. Για παράδειγμα, για να πάρετε 16, πρέπει να αυξήσετε δύο στην τέταρτη δύναμη. Και για να πάρετε 64, πρέπει να αυξήσετε δύο στην έκτη δύναμη. Αυτό φαίνεται από τον πίνακα.

Και τώρα - στην πραγματικότητα, ο ορισμός του λογάριθμου:

η βάση a του ορίσματος x είναι η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός a για να ληφθεί ο αριθμός x.

Ονομασία: log a x = b, όπου a είναι η βάση, x είναι το όρισμα, b είναι αυτό με το οποίο ισούται πραγματικά ο λογάριθμος.

Για παράδειγμα, 2 3 = 8 ⇒log 2 8 = 3 (ο λογάριθμος βάσης 2 του 8 είναι τρεις επειδή 2 3 = 8). Με την ίδια επιτυχία, log 2 64 = 6, αφού 2 6 = 64.

Η πράξη εύρεσης του λογάριθμου ενός αριθμού σε μια δεδομένη βάση ονομάζεται. Λοιπόν, ας προσθέσουμε μια νέα γραμμή στον πίνακα μας:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
ημερολόγιο 2 2 = 1 ημερολόγιο 2 4 = 2 ημερολόγιο 2 8 = 3 ημερολόγιο 2 16 = 4 ημερολόγιο 2 32 = 5 ημερολόγιο 2 64 = 6

Δυστυχώς, δεν υπολογίζονται όλοι οι λογάριθμοι τόσο εύκολα. Για παράδειγμα, προσπαθήστε να βρείτε το αρχείο καταγραφής 2 5. Ο αριθμός 5 δεν βρίσκεται στον πίνακα, αλλά η λογική υπαγορεύει ότι ο λογάριθμος θα βρίσκεται κάπου στο διάστημα. Επειδή 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Αυτοί οι αριθμοί ονομάζονται παράλογοι: οι αριθμοί μετά την υποδιαστολή μπορούν να γραφτούν επ' άπειρον και δεν επαναλαμβάνονται ποτέ. Εάν ο λογάριθμος αποδειχθεί παράλογος, είναι καλύτερα να τον αφήσετε έτσι: log 2 5, log 3 8, log 5 100.

Είναι σημαντικό να κατανοήσουμε ότι ένας λογάριθμος είναι μια έκφραση με δύο μεταβλητές (τη βάση και το όρισμα). Στην αρχή, πολλοί άνθρωποι μπερδεύουν πού είναι η βάση και πού είναι το επιχείρημα. Για να αποφύγετε ενοχλητικές παρεξηγήσεις, απλά δείτε την εικόνα:

Μπροστά μας δεν υπάρχει τίποτα άλλο από τον ορισμό του λογάριθμου. Θυμάμαι: ο λογάριθμος είναι δύναμη, στην οποία πρέπει να ενσωματωθεί η βάση για να ληφθεί ένα όρισμα. Είναι η βάση που ανυψώνεται σε δύναμη - επισημαίνεται με κόκκινο χρώμα στην εικόνα. Αποδεικνύεται ότι η βάση είναι πάντα στο κάτω μέρος! Λέω στους μαθητές μου αυτόν τον υπέροχο κανόνα στο πρώτο μάθημα - και δεν δημιουργείται σύγχυση.

Πώς να μετρήσετε τους λογάριθμους

Καταλάβαμε τον ορισμό - το μόνο που μένει είναι να μάθουμε πώς να μετράμε λογάριθμους, δηλ. απαλλαγείτε από το σημάδι "κούτσουρο". Αρχικά, σημειώνουμε ότι δύο σημαντικά στοιχεία προκύπτουν από τον ορισμό:

  1. Το όρισμα και η βάση πρέπει πάντα να είναι μεγαλύτερα από το μηδέν. Αυτό προκύπτει από τον ορισμό του πτυχίου ορθολογικός δείκτης, στο οποίο προκύπτει ο ορισμός του λογάριθμου.
  2. Η βάση πρέπει να είναι διαφορετική από τη μία, αφού η μία σε οποιοδήποτε βαθμό παραμένει μία. Εξαιτίας αυτού, το ερώτημα «σε ποια δύναμη πρέπει να υψωθεί κανείς για να πάρει δύο» είναι άνευ σημασίας. Δεν υπάρχει τέτοιο πτυχίο!

Τέτοιοι περιορισμοί ονομάζονται εύρος αποδεκτών τιμών(ODZ). Αποδεικνύεται ότι το ODZ του λογαρίθμου μοιάζει με αυτό: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Σημειώστε ότι δεν υπάρχουν περιορισμοί στον αριθμό b (την τιμή του λογάριθμου). Για παράδειγμα, ο λογάριθμος μπορεί κάλλιστα να είναι αρνητικός: log 2 0,5 = −1, επειδή 0,5 = 2 −1.

Ωστόσο, τώρα εξετάζουμε μόνο αριθμητικές εκφράσεις, όπου δεν απαιτείται να γνωρίζουμε το VA του λογαρίθμου. Όλοι οι περιορισμοί έχουν ήδη ληφθεί υπόψη από τους συντάκτες των εργασιών. Αλλά όταν οι λογαριθμικές εξισώσεις και οι ανισότητες μπουν στο παιχνίδι, οι απαιτήσεις DL θα γίνουν υποχρεωτικές. Άλλωστε, η βάση και το επιχείρημα μπορεί να περιέχουν πολύ ισχυρές κατασκευές που δεν ανταποκρίνονται απαραίτητα στους παραπάνω περιορισμούς.

Τώρα ας αναλογιστούμε γενικό σχέδιουπολογισμός λογαρίθμων. Αποτελείται από τρία βήματα:

  1. Να εκφράσετε τη βάση α και το όρισμα x ως δύναμη με την ελάχιστη δυνατή βάση μεγαλύτερη από το ένα. Στην πορεία, είναι καλύτερα να απαλλαγείτε από τα δεκαδικά.
  2. Λύστε την εξίσωση για τη μεταβλητή b: x = a b ;
  3. Ο αριθμός β που προκύπτει θα είναι η απάντηση.

Αυτό είναι όλο! Εάν ο λογάριθμος αποδειχθεί παράλογος, αυτό θα είναι ορατό ήδη στο πρώτο βήμα. Η απαίτηση να είναι η βάση μεγαλύτερη από μία είναι πολύ σημαντική: αυτό μειώνει την πιθανότητα λάθους και απλοποιεί σημαντικά τους υπολογισμούς. Το ίδιο με δεκαδικά: αν τα μετατρέψετε αμέσως σε κανονικά, θα υπάρξουν πολύ λιγότερα σφάλματα.

Ας δούμε πώς λειτουργεί αυτό το σχήμα χρησιμοποιώντας συγκεκριμένα παραδείγματα:

Εργο. Υπολογίστε τον λογάριθμο: log 5 25

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του πέντε: 5 = 5 1 ; 25 = 5 2 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Λάβαμε την απάντηση: 2.

Εργο. Υπολογίστε τον λογάριθμο:

Εργο. Υπολογίστε τον λογάριθμο: log 4 64

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 4 = 2 2 ; 64 = 2 6 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Λάβαμε την απάντηση: 3.

Εργο. Υπολογίστε τον λογάριθμο: log 16 1

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 16 = 2 4 ; 1 = 2 0 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Λάβαμε την απάντηση: 0.

Εργο. Υπολογίστε τον λογάριθμο: log 7 14

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του επτά: 7 = 7 1 ; Το 14 δεν μπορεί να αναπαρασταθεί ως δύναμη του επτά, αφού το 7 1< 14 < 7 2 ;
  2. Από την προηγούμενη παράγραφο προκύπτει ότι ο λογάριθμος δεν μετράει.
  3. Η απάντηση είναι καμία αλλαγή: ημερολόγιο 7 14.

Μια μικρή σημείωση για τελευταίο παράδειγμα. Πώς μπορείτε να είστε σίγουροι ότι ένας αριθμός δεν είναι ακριβής δύναμη ενός άλλου αριθμού; Είναι πολύ απλό - απλώς συνυπολογίστε το σε πρωταρχικούς παράγοντες. Εάν η επέκταση έχει τουλάχιστον δύο διαφορετικούς παράγοντες, ο αριθμός δεν είναι ακριβής ισχύς.

Εργο. Μάθετε αν οι αριθμοί είναι ακριβείς δυνάμεις: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - ακριβής βαθμός, επειδή υπάρχει μόνο ένας πολλαπλασιαστής.
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - δεν είναι ακριβής δύναμη, αφού υπάρχουν δύο παράγοντες: 3 και 2.
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - ακριβής βαθμός.
35 = 7 · 5 - και πάλι δεν είναι ακριβής ισχύς.
14 = 7 · 2 - και πάλι όχι ακριβής βαθμός.

Σημειώστε επίσης ότι οι ίδιοι οι πρώτοι αριθμοί είναι πάντα ακριβείς δυνάμεις του εαυτού τους.

Δεκαδικός λογάριθμος

Μερικοί λογάριθμοι είναι τόσο συνηθισμένοι που έχουν ειδικό όνομα και σύμβολο.

του ορίσματος x είναι ο λογάριθμος στη βάση του 10, δηλ. Η ισχύς στην οποία πρέπει να αυξηθεί ο αριθμός 10 για να ληφθεί ο αριθμός x. Ονομασία: lg x.

Για παράδειγμα, log 10 = 1; lg 100 = 2; lg 1000 = 3 - κ.λπ.

Από εδώ και στο εξής, όταν εμφανίζεται μια φράση όπως «Βρείτε το lg 0.01» σε ένα σχολικό βιβλίο, να ξέρετε ότι δεν πρόκειται για τυπογραφικό λάθος. Αυτός είναι ένας δεκαδικός λογάριθμος. Ωστόσο, εάν δεν είστε εξοικειωμένοι με αυτόν τον συμβολισμό, μπορείτε πάντα να τον ξαναγράψετε:
log x = log 10 x

Ό,τι ισχύει για τους συνηθισμένους λογάριθμους ισχύει και για τους δεκαδικούς λογάριθμους.

Φυσικός λογάριθμος

Υπάρχει ένας άλλος λογάριθμος που έχει τη δική του ονομασία. Κατά κάποιο τρόπο, είναι ακόμη πιο σημαντικό από το δεκαδικό. Μιλάμε για τον φυσικό λογάριθμο.

του ορίσματος x είναι ο λογάριθμος στη βάση του e, δηλ. η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός e για να ληφθεί ο αριθμός x. Ονομασία: ln x.

Πολλοί θα ρωτήσουν: ποιος είναι ο αριθμός e; Αυτό παράλογος αριθμός, η ακριβής αξία του είναι αδύνατο να βρεθεί και να γραφτεί. Θα δώσω μόνο τα πρώτα στοιχεία:
e = 2,718281828459…

Δεν θα υπεισέλθουμε σε λεπτομέρειες σχετικά με το τι είναι αυτός ο αριθμός και γιατί χρειάζεται. Απλώς θυμηθείτε ότι το e είναι η βάση του φυσικού λογάριθμου:
ln x = log e x

Έτσι ln e = 1; ln e 2 = 2; ln e 16 = 16 - κ.λπ. Από την άλλη πλευρά, το ln 2 είναι ένας παράλογος αριθμός. Γενικά, ο φυσικός λογάριθμος οποιουδήποτε ρητός αριθμόςπαράλογος. Εκτός, φυσικά, από ένα: ln 1 = 0.

Για τους φυσικούς λογάριθμους, ισχύουν όλοι οι κανόνες που ισχύουν για τους συνηθισμένους λογάριθμους.

Δείτε επίσης:

Λογάριθμος. Ιδιότητες του λογαρίθμου (ισχύς του λογαρίθμου).

Πώς να αναπαραστήσετε έναν αριθμό ως λογάριθμο;

Χρησιμοποιούμε τον ορισμό του λογάριθμου.

Ένας λογάριθμος είναι ένας εκθέτης στον οποίο πρέπει να αυξηθεί η βάση για να ληφθεί ο αριθμός κάτω από το πρόσημο του λογάριθμου.

Έτσι, για να αναπαραστήσετε έναν ορισμένο αριθμό c ως λογάριθμο στη βάση a, πρέπει να βάλετε μια δύναμη με την ίδια βάση με τη βάση του λογαρίθμου κάτω από το πρόσημο του λογαρίθμου και να γράψετε αυτόν τον αριθμό c ως εκθέτη:

Απολύτως οποιοσδήποτε αριθμός μπορεί να αναπαρασταθεί ως λογάριθμος - θετικός, αρνητικός, ακέραιος, κλασματικός, ορθολογικός, παράλογος:

Για να μην μπερδεύετε το α και το γ κάτω από αγχωτικές συνθήκες ενός τεστ ή μιας εξέτασης, μπορείτε να χρησιμοποιήσετε τον ακόλουθο κανόνα απομνημόνευσης:

ότι είναι κάτω κατεβαίνει, ό,τι είναι πάνω ανεβαίνει.

Για παράδειγμα, πρέπει να αναπαραστήσετε τον αριθμό 2 ως λογάριθμο στη βάση 3.

Έχουμε δύο αριθμούς - 2 και 3. Αυτοί οι αριθμοί είναι η βάση και ο εκθέτης, που θα γράψουμε κάτω από το πρόσημο του λογαρίθμου. Απομένει να καθοριστεί ποιος από αυτούς τους αριθμούς θα πρέπει να γραφτεί, στη βάση του βαθμού και ποιος - επάνω, στον εκθέτη.

Η βάση 3 στη σημειογραφία ενός λογάριθμου βρίσκεται στο κάτω μέρος, πράγμα που σημαίνει ότι όταν αντιπροσωπεύουμε δύο ως λογάριθμο στη βάση 3, θα γράψουμε επίσης το 3 στη βάση.

Το 2 είναι υψηλότερο από το τρία. Και σε σημειογραφία του βαθμού δύο γράφουμε πάνω από τα τρία, δηλαδή ως εκθέτη:

Λογάριθμοι. Πρώτο επίπεδο.

Λογάριθμοι

Λογάριθμοςθετικός αριθμός σιβασισμένο στο ένα, Οπου a > 0, a ≠ 1, ονομάζεται ο εκθέτης στον οποίο πρέπει να αυξηθεί ο αριθμός ένα, Αποκτώ σι.

Ορισμός λογάριθμουμπορεί να γραφτεί εν συντομία ως εξής:

Αυτή η ισότητα ισχύει για b > 0, a > 0, a ≠ 1.Συνήθως λέγεται λογαριθμική ταυτότητα.
Η ενέργεια εύρεσης του λογάριθμου ενός αριθμού ονομάζεται κατά λογάριθμο.

Ιδιότητες λογαρίθμων:

Λογάριθμος του προϊόντος:

Λογάριθμος του πηλίκου:

Αντικατάσταση της λογαριθμικής βάσης:

Λογάριθμος βαθμού:

Λογάριθμος της ρίζας:

Λογάριθμος με βάση ισχύος:





Δεκαδικοί και φυσικοί λογάριθμοι.

Δεκαδικός λογάριθμοςΟι αριθμοί καλούν τον λογάριθμο αυτού του αριθμού στη βάση 10 και γράφουν   lg σι
Φυσικός λογάριθμοςαριθμοί ονομάζονται λογάριθμος αυτού του αριθμού προς τη βάση μι, Οπου μι- ένας παράλογος αριθμός περίπου ίσος με 2,7. Ταυτόχρονα γράφουν ln σι.

Άλλες σημειώσεις για την άλγεβρα και τη γεωμετρία

Βασικές ιδιότητες των λογαρίθμων

Βασικές ιδιότητες των λογαρίθμων

Οι λογάριθμοι, όπως κάθε αριθμός, μπορούν να προστεθούν, να αφαιρεθούν και να μετασχηματιστούν με κάθε τρόπο. Αλλά επειδή οι λογάριθμοι δεν είναι ακριβώς συνηθισμένοι αριθμοί, υπάρχουν κανόνες εδώ, οι οποίοι καλούνται κύριες ιδιότητες.

Πρέπει οπωσδήποτε να γνωρίζετε αυτούς τους κανόνες - χωρίς αυτούς, δεν μπορεί να λυθεί ούτε ένα σοβαρό λογαριθμικό πρόβλημα. Επιπλέον, υπάρχουν πολύ λίγα από αυτά - μπορείτε να μάθετε τα πάντα σε μια μέρα. Ας ξεκινήσουμε λοιπόν.

Πρόσθεση και αφαίρεση λογαρίθμων

Θεωρήστε δύο λογάριθμους με τις ίδιες βάσεις: log a x και log a y. Στη συνέχεια μπορούν να προστεθούν και να αφαιρεθούν και:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Άρα, το άθροισμα των λογαρίθμων είναι ίσο με τον λογάριθμο του γινομένου και η διαφορά είναι ίση με τον λογάριθμο του πηλίκου. Παρακαλώ σημειώστε: το βασικό σημείο εδώ είναι πανομοιότυπους λόγους. Εάν οι λόγοι είναι διαφορετικοί, αυτοί οι κανόνες δεν λειτουργούν!

Αυτοί οι τύποι θα σας βοηθήσουν να υπολογίσετε μια λογαριθμική παράσταση ακόμα και όταν δεν λαμβάνονται υπόψη τα επιμέρους μέρη της (δείτε το μάθημα «Τι είναι ο λογάριθμος»). Ρίξτε μια ματιά στα παραδείγματα και δείτε:

Μητρώο 6 4 + ημερολόγιο 6 9.

Επειδή οι λογάριθμοι έχουν τις ίδιες βάσεις, χρησιμοποιούμε τον τύπο αθροίσματος:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Εργο. Βρείτε την τιμή της παράστασης: log 2 48 − log 2 3.

Οι βάσεις είναι ίδιες, χρησιμοποιούμε τον τύπο διαφοράς:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Εργο. Βρείτε την τιμή της παράστασης: log 3 135 − log 3 5.

Και πάλι οι βάσεις είναι ίδιες, οπότε έχουμε:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Όπως μπορείτε να δείτε, οι αρχικές εκφράσεις αποτελούνται από «κακούς» λογάριθμους, οι οποίοι δεν υπολογίζονται χωριστά. Όμως μετά τους μετασχηματισμούς προκύπτουν εντελώς κανονικοί αριθμοί. Πολλοί βασίζονται σε αυτό το γεγονός χαρτιά δοκιμής. Ναι, οι εκφράσεις που μοιάζουν με τεστ προσφέρονται με κάθε σοβαρότητα (μερικές φορές χωρίς σχεδόν καμία αλλαγή) στην Εξέταση Ενιαίου Κράτους.

Εξαγωγή του εκθέτη από τον λογάριθμο

Τώρα ας περιπλέκουμε λίγο το έργο. Τι γίνεται αν η βάση ή το όρισμα ενός λογαρίθμου είναι δύναμη; Τότε ο εκθέτης αυτού του βαθμού μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου σύμφωνα με τους ακόλουθους κανόνες:

Είναι εύκολο να δει κανείς ότι ο τελευταίος κανόνας ακολουθεί τους δύο πρώτους. Αλλά είναι καλύτερα να το θυμάστε ούτως ή άλλως - σε ορισμένες περιπτώσεις θα μειώσει σημαντικά τον αριθμό των υπολογισμών.

Φυσικά, όλοι αυτοί οι κανόνες έχουν νόημα αν παρατηρηθεί το ODZ του λογαρίθμου: a > 0, a ≠ 1, x > 0. Και κάτι ακόμα: μάθετε να εφαρμόζετε όλους τους τύπους όχι μόνο από αριστερά προς τα δεξιά, αλλά και αντίστροφα , δηλ. Μπορείτε να εισάγετε τους αριθμούς πριν από το σύμβολο του λογάριθμου στον ίδιο τον λογάριθμο.

Πώς να λύσετε λογάριθμους

Αυτό είναι που απαιτείται συχνότερα.

Εργο. Βρείτε την τιμή της παράστασης: log 7 49 6 .

Ας απαλλαγούμε από το βαθμό στο όρισμα χρησιμοποιώντας τον πρώτο τύπο:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι ο παρονομαστής περιέχει έναν λογάριθμο, η βάση και το όρισμα του οποίου είναι ακριβείς δυνάμεις: 16 = 2 4 ; 49 = 7 2. Εχουμε:

Νομίζω ότι το τελευταίο παράδειγμα απαιτεί κάποια διευκρίνιση. Πού πήγαν οι λογάριθμοι; Μέχρι την τελευταία στιγμή δουλεύουμε μόνο με τον παρονομαστή. Παρουσιάσαμε τη βάση και το όρισμα του λογάριθμου που στέκεται εκεί με τη μορφή δυνάμεων και βγάλαμε τους εκθέτες - πήραμε ένα κλάσμα "τριώροφο".

Τώρα ας δούμε το κύριο κλάσμα. Ο αριθμητής και ο παρονομαστής περιέχουν τον ίδιο αριθμό: log 2 7. Εφόσον το log 2 7 ≠ 0, μπορούμε να μειώσουμε το κλάσμα - τα 2/4 θα παραμείνουν στον παρονομαστή. Σύμφωνα με τους κανόνες της αριθμητικής, τα τέσσερα μπορούν να μεταφερθούν στον αριθμητή, πράγμα που έγινε. Το αποτέλεσμα ήταν η απάντηση: 2.

Μετάβαση σε νέα βάση

Μιλώντας για τους κανόνες πρόσθεσης και αφαίρεσης λογαρίθμων, τόνισα συγκεκριμένα ότι λειτουργούν μόνο με τις ίδιες βάσεις. Κι αν οι λόγοι είναι διαφορετικοί; Τι γίνεται αν δεν είναι ακριβείς δυνάμεις του ίδιου αριθμού;

Οι φόρμουλες για τη μετάβαση σε ένα νέο θεμέλιο έρχονται στη διάσωση. Ας τα διατυπώσουμε με τη μορφή ενός θεωρήματος:

Ας δοθεί λογάριθμο ημερολόγιοτσεκούρι. Τότε για οποιονδήποτε αριθμό c τέτοιο ώστε c > 0 και c ≠ 1, η ισότητα είναι αληθής:

Συγκεκριμένα, αν θέσουμε c = x, παίρνουμε:

Από τον δεύτερο τύπο προκύπτει ότι η βάση και το όρισμα του λογάριθμου μπορούν να αντικατασταθούν, αλλά σε αυτήν την περίπτωση ολόκληρη η έκφραση "αναποδογυρίζεται", δηλ. ο λογάριθμος εμφανίζεται στον παρονομαστή.

Αυτοί οι τύποι σπάνια βρίσκονται σε συμβατικές αριθμητικές εκφράσεις. Είναι δυνατό να αξιολογήσετε πόσο βολικές είναι μόνο αποφασίζοντας λογαριθμικές εξισώσειςκαι ανισότητες.

Ωστόσο, υπάρχουν προβλήματα που δεν μπορούν να λυθούν καθόλου παρά μόνο με τη μετάβαση σε ένα νέο θεμέλιο. Ας δούμε μερικά από αυτά:

Εργο. Βρείτε την τιμή της παράστασης: log 5 16 log 2 25.

Σημειώστε ότι τα ορίσματα και των δύο λογαρίθμων περιέχουν ακριβείς δυνάμεις. Ας βγάλουμε τους δείκτες: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Τώρα ας «αντιστρέψουμε» τον δεύτερο λογάριθμο:

Δεδομένου ότι το γινόμενο δεν αλλάζει κατά την αναδιάταξη των παραγόντων, πολλαπλασιάσαμε ήρεμα τέσσερα και δύο και στη συνέχεια ασχοληθήκαμε με τους λογάριθμους.

Εργο. Βρείτε την τιμή της παράστασης: log 9 100 lg 3.

Η βάση και το όρισμα του πρώτου λογάριθμου είναι ακριβείς δυνάμεις. Ας το γράψουμε αυτό και ας απαλλαγούμε από τους δείκτες:

Τώρα ας απαλλαγούμε από τον δεκαδικό λογάριθμο μεταβαίνοντας σε μια νέα βάση:

Βασική λογαριθμική ταυτότητα

Συχνά στη διαδικασία επίλυσης είναι απαραίτητο να αναπαραστήσουμε έναν αριθμό ως λογάριθμο σε μια δεδομένη βάση.

Σε αυτήν την περίπτωση, οι παρακάτω τύποι θα μας βοηθήσουν:

Στην πρώτη περίπτωση, ο αριθμός n γίνεται ο εκθέτης στο όρισμα. Ο αριθμός n μπορεί να είναι απολύτως οτιδήποτε, γιατί είναι απλώς μια λογαριθμική τιμή.

Ο δεύτερος τύπος είναι στην πραγματικότητα ένας παραφρασμένος ορισμός. Έτσι λέγεται: .

Στην πραγματικότητα, τι συμβαίνει αν ο αριθμός b αυξηθεί σε τέτοια δύναμη που ο αριθμός b σε αυτή τη δύναμη να δώσει τον αριθμό a; Αυτό είναι σωστό: το αποτέλεσμα είναι ο ίδιος αριθμός α. Διαβάστε ξανά προσεκτικά αυτήν την παράγραφο - πολλοί άνθρωποι κολλάνε σε αυτήν.

Όπως οι τύποι για τη μετάβαση σε μια νέα βάση, η βασική λογαριθμική ταυτότητα είναι μερικές φορές η μόνη δυνατή λύση.

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι το log 25 64 = log 5 8 - απλά πήρε το τετράγωνο από τη βάση και το όρισμα του λογαρίθμου. Λαμβάνοντας υπόψη τους κανόνες για τον πολλαπλασιασμό των δυνάμεων με την ίδια βάση, παίρνουμε:

Αν κάποιος δεν ξέρει, αυτή ήταν μια πραγματική εργασία από την Ενιαία Κρατική Εξέταση :)

Λογαριθμική μονάδα και λογαριθμικό μηδέν

Εν κατακλείδι, θα δώσω δύο ταυτότητες που δύσκολα μπορούν να ονομαστούν ιδιότητες - μάλλον είναι συνέπειες του ορισμού του λογαρίθμου. Εμφανίζονται συνεχώς σε προβλήματα και, παραδόξως, δημιουργούν προβλήματα ακόμη και σε «προχωρημένους» μαθητές.

  1. log a a = 1 είναι. Θυμηθείτε μια για πάντα: ο λογάριθμος σε οποιαδήποτε βάση α αυτής της ίδιας της βάσης είναι ίσος με ένα.
  2. log a 1 = 0 είναι. Η βάση a μπορεί να είναι οτιδήποτε, αλλά αν το όρισμα περιέχει ένα, ο λογάριθμος είναι ίσος με μηδέν! Επειδή το 0 = 1 είναι άμεση συνέπεια του ορισμού.

Αυτά είναι όλα τα ακίνητα. Φροντίστε να εξασκηθείτε στην εφαρμογή τους! Κατεβάστε το cheat sheet στην αρχή του μαθήματος, εκτυπώστε το και λύστε τα προβλήματα.

Όπως γνωρίζετε, κατά τον πολλαπλασιασμό των παραστάσεων με δυνάμεις, οι εκθέτες τους αθροίζονται πάντα (a b *a c = a b+c). Αυτός ο μαθηματικός νόμος προήλθε από τον Αρχιμήδη και αργότερα, τον 8ο αιώνα, ο μαθηματικός Virasen δημιούργησε έναν πίνακα με ακέραιους εκθέτες. Ήταν αυτοί που χρησίμευσαν για την περαιτέρω ανακάλυψη των λογαρίθμων. Παραδείγματα χρήσης αυτής της συνάρτησης μπορούν να βρεθούν σχεδόν παντού όπου χρειάζεται να απλοποιήσετε τον περίπλοκο πολλαπλασιασμό με απλή πρόσθεση. Εάν αφιερώσετε 10 λεπτά για να διαβάσετε αυτό το άρθρο, θα σας εξηγήσουμε τι είναι οι λογάριθμοι και πώς να εργαστείτε με αυτούς. Σε απλή και προσιτή γλώσσα.

Ορισμός στα μαθηματικά

Ένας λογάριθμος είναι μια έκφραση της ακόλουθης μορφής: log a b=c, δηλαδή, ο λογάριθμος οποιουδήποτε μη αρνητικού αριθμού (δηλαδή οποιουδήποτε θετικού) "b" στη βάση του "a" θεωρείται ότι είναι η δύναμη "c ” στην οποία πρέπει να αυξηθεί η βάση “a” για να ληφθεί τελικά η τιμή “b”. Ας αναλύσουμε τον λογάριθμο χρησιμοποιώντας παραδείγματα, ας πούμε ότι υπάρχει μια έκφραση log 2 8. Πώς να βρείτε την απάντηση; Είναι πολύ απλό, πρέπει να βρείτε μια ισχύ τέτοια ώστε από το 2 στην απαιτούμενη ισχύ να παίρνετε 8. Αφού κάνετε κάποιους υπολογισμούς στο κεφάλι σας, παίρνουμε τον αριθμό 3! Και αυτό είναι αλήθεια, γιατί το 2 στη δύναμη του 3 δίνει την απάντηση ως 8.

Τύποι λογαρίθμων

Για πολλούς μαθητές και φοιτητές, αυτό το θέμα φαίνεται περίπλοκο και ακατανόητο, αλλά στην πραγματικότητα οι λογάριθμοι δεν είναι τόσο τρομακτικοί, το κύριο πράγμα είναι να κατανοήσουμε τη γενική τους σημασία και να θυμόμαστε τις ιδιότητές τους και ορισμένους κανόνες. Υπάρχουν τρεις διαφορετικοί τύποι λογαριθμικών παραστάσεων:

  1. Φυσικός λογάριθμος ln a, όπου η βάση είναι ο αριθμός Euler (e = 2,7).
  2. Δεκαδικό α, όπου η βάση είναι 10.
  3. Λογάριθμος οποιουδήποτε αριθμού b στη βάση a>1.

Κάθε ένα από αυτά επιλύεται με έναν τυπικό τρόπο, συμπεριλαμβανομένης της απλοποίησης, της αναγωγής και της επακόλουθης αναγωγής σε έναν μόνο λογάριθμο χρησιμοποιώντας λογαριθμικά θεωρήματα. Για να λάβετε τις σωστές τιμές των λογαρίθμων, θα πρέπει να θυμάστε τις ιδιότητές τους και την ακολουθία των ενεργειών κατά την επίλυσή τους.

Κανόνες και ορισμένοι περιορισμοί

Στα μαθηματικά υπάρχουν αρκετοί κανόνες-περιορισμοί που γίνονται δεκτοί ως αξίωμα, δηλαδή δεν υπόκεινται σε συζήτηση και είναι η αλήθεια. Για παράδειγμα, είναι αδύνατο να διαιρεθούν οι αριθμοί με το μηδέν, και είναι επίσης αδύνατο να εξαχθεί μια άρτια ρίζα από αρνητικούς αριθμούς. Οι λογάριθμοι έχουν επίσης τους δικούς τους κανόνες, ακολουθώντας τους οποίους μπορείτε εύκολα να μάθετε να εργάζεστε ακόμη και με μεγάλες και μεγάλες λογαριθμικές εκφράσεις:

  • Η βάση "a" πρέπει να είναι πάντα μεγαλύτερη από το μηδέν και όχι ίση με 1, διαφορετικά η έκφραση θα χάσει το νόημά της, επειδή το "1" και το "0" σε οποιοδήποτε βαθμό είναι πάντα ίσα με τις τιμές τους.
  • εάν a > 0, τότε a b >0, αποδεικνύεται ότι το "c" πρέπει επίσης να είναι μεγαλύτερο από το μηδέν.

Πώς να λύσετε λογάριθμους;

Για παράδειγμα, δίνεται η εργασία να βρείτε την απάντηση στην εξίσωση 10 x = 100. Αυτό είναι πολύ εύκολο, πρέπει να επιλέξετε μια δύναμη αυξάνοντας τον αριθμό δέκα στον οποίο λαμβάνουμε 100. Αυτό, φυσικά, είναι 10 2 = 100.

Τώρα ας αναπαραστήσουμε αυτήν την έκφραση σε λογαριθμική μορφή. Παίρνουμε log 10 100 = 2. Κατά την επίλυση λογαρίθμων, όλες οι ενέργειες πρακτικά συγκλίνουν για να βρούμε την ισχύ στην οποία είναι απαραίτητο να εισαγάγουμε τη βάση του λογαρίθμου για να λάβουμε έναν δεδομένο αριθμό.

Για να προσδιορίσετε με ακρίβεια την τιμή ενός άγνωστου βαθμού, πρέπει να μάθετε πώς να εργάζεστε με έναν πίνακα βαθμών. Μοιάζει με αυτό:

Όπως μπορείτε να δείτε, ορισμένοι εκθέτες μπορούν να μαντευτούν διαισθητικά εάν έχετε τεχνικό μυαλό και γνώση του πίνακα πολλαπλασιασμού. Ωστόσο, για μεγαλύτερες τιμές θα χρειαστείτε ένα τραπέζι τροφοδοσίας. Μπορεί να χρησιμοποιηθεί ακόμη και από εκείνους που δεν γνωρίζουν απολύτως τίποτα για πολύπλοκα μαθηματικά θέματα. Η αριστερή στήλη περιέχει αριθμούς (βάση α), η επάνω σειρά αριθμών είναι η τιμή της δύναμης c στην οποία αυξάνεται ο αριθμός a. Στη διασταύρωση, τα κελιά περιέχουν τις αριθμητικές τιμές που είναι η απάντηση (a c =b). Ας πάρουμε, για παράδειγμα, το πρώτο κελί με τον αριθμό 10 και τετράγωνο το, παίρνουμε την τιμή 100, η ​​οποία υποδεικνύεται στην τομή των δύο κελιών μας. Όλα είναι τόσο απλά και εύκολα που θα καταλάβει και ο πιο αληθινός ανθρωπιστής!

Εξισώσεις και ανισώσεις

Αποδεικνύεται ότι υπό ορισμένες συνθήκες ο εκθέτης είναι ο λογάριθμος. Επομένως, οποιεσδήποτε μαθηματικές αριθμητικές εκφράσεις μπορούν να γραφτούν ως λογαριθμική ισότητα. Για παράδειγμα, το 3 4 = 81 μπορεί να γραφτεί ως ο βασικός 3 λογάριθμος του 81 ίσος με τέσσερα (log 3 81 = 4). Για τις αρνητικές δυνάμεις οι κανόνες είναι οι ίδιοι: 2 -5 = 1/32 το γράφουμε ως λογάριθμο, παίρνουμε log 2 (1/32) = -5. Ένα από τα πιο συναρπαστικά τμήματα των μαθηματικών είναι το θέμα των «λογαρίθμων». Παραδείγματα και λύσεις εξισώσεων θα δούμε παρακάτω, αμέσως μετά τη μελέτη των ιδιοτήτων τους. Τώρα ας δούμε πώς μοιάζουν οι ανισότητες και πώς να τις διακρίνουμε από τις εξισώσεις.

Δίνεται μια έκφραση της ακόλουθης μορφής: log 2 (x-1) > 3 - είναι λογαριθμική ανισότητα, αφού η άγνωστη τιμή «x» βρίσκεται κάτω από το πρόσημο του λογαρίθμου. Και επίσης στην έκφραση συγκρίνονται δύο ποσότητες: ο λογάριθμος του επιθυμητού αριθμού στη βάση δύο είναι μεγαλύτερος από τον αριθμό τρία.

Η πιο σημαντική διαφορά μεταξύ λογαριθμικών εξισώσεων και ανισώσεων είναι ότι οι εξισώσεις με λογάριθμους (για παράδειγμα, ο λογάριθμος 2 x = √9) υποδηλώνουν μία ή περισσότερες συγκεκριμένες αριθμητικές τιμές στην απάντηση, ενώ κατά την επίλυση μιας ανισότητας, τόσο το εύρος των αποδεκτών οι τιμές και τα σημεία προσδιορίζονται σπάζοντας αυτή τη συνάρτηση. Κατά συνέπεια, η απάντηση δεν είναι ένα απλό σύνολο μεμονωμένων αριθμών, όπως στην απάντηση σε μια εξίσωση, αλλά μια συνεχής σειρά ή σύνολο αριθμών.

Βασικά θεωρήματα για τους λογάριθμους

Κατά την επίλυση πρωτόγονων εργασιών εύρεσης των τιμών του λογάριθμου, οι ιδιότητές του μπορεί να μην είναι γνωστές. Ωστόσο, όταν πρόκειται για λογαριθμικές εξισώσεις ή ανισώσεις, πρώτα απ 'όλα, είναι απαραίτητο να κατανοήσουμε με σαφήνεια και να εφαρμόσουμε στην πράξη όλες τις βασικές ιδιότητες των λογαρίθμων. Θα δούμε παραδείγματα εξισώσεων αργότερα· ας δούμε πρώτα κάθε ιδιότητα με περισσότερες λεπτομέρειες.

  1. Η κύρια ταυτότητα μοιάζει με αυτό: a logaB =B. Ισχύει μόνο όταν το α είναι μεγαλύτερο από 0, όχι ίσο με ένα και το Β είναι μεγαλύτερο από μηδέν.
  2. Ο λογάριθμος του προϊόντος μπορεί να αναπαρασταθεί με τον ακόλουθο τύπο: log d (s 1 * s 2) = log d s 1 + log d s 2. Στην περίπτωση αυτή, η υποχρεωτική συνθήκη είναι: d, s 1 και s 2 > 0; a≠1. Μπορείτε να δώσετε μια απόδειξη για αυτόν τον λογαριθμικό τύπο, με παραδείγματα και λύση. Έστω log a s 1 = f 1 και log a s 2 = f 2, μετά a f1 = s 1, a f2 = s 2. Λαμβάνουμε ότι s 1 * s 2 = a f1 *a f2 = a f1+f2 (ιδιότητες του μοίρες ), και μετά εξ ορισμού: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, το οποίο έπρεπε να αποδειχθεί.
  3. Ο λογάριθμος του πηλίκου μοιάζει με αυτό: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Το θεώρημα με τη μορφή τύπου παίρνει την ακόλουθη μορφή: log a q b n = n/q log a b.

Αυτός ο τύπος ονομάζεται «ιδιότητα του βαθμού του λογάριθμου». Μοιάζει με τις ιδιότητες των συνηθισμένων βαθμών και δεν προκαλεί έκπληξη, γιατί όλα τα μαθηματικά βασίζονται σε φυσικά αξιώματα. Ας δούμε την απόδειξη.

Έστω log a b = t, προκύπτει t =b. Αν υψώσουμε και τα δύο μέρη στην ισχύ m: a tn = b n ;

αλλά εφόσον a tn = (a q) nt/q = b n, επομένως log a q b n = (n*t)/t, τότε log a q b n = n/q log a b. Το θεώρημα έχει αποδειχθεί.

Παραδείγματα προβλημάτων και ανισοτήτων

Οι πιο συνηθισμένοι τύποι προβλημάτων στους λογάριθμους είναι παραδείγματα εξισώσεων και ανισώσεων. Βρίσκονται σχεδόν σε όλα τα προβληματικά βιβλία και αποτελούν επίσης υποχρεωτικό μέρος των εξετάσεων των μαθηματικών. Για εισαγωγή στο πανεπιστήμιο ή επιτυχία εισαγωγικές εξετάσειςστα μαθηματικά πρέπει να ξέρεις πώς να λύνεις σωστά τέτοια προβλήματα.

Δυστυχώς, δεν υπάρχει ένα ενιαίο σχέδιο ή σχήμα για την επίλυση και τον προσδιορισμό της άγνωστης τιμής του λογαρίθμου, αλλά ορισμένοι κανόνες μπορούν να εφαρμοστούν σε κάθε μαθηματική ανισότητα ή λογαριθμική εξίσωση. Πρώτα απ 'όλα, θα πρέπει να μάθετε εάν η έκφραση μπορεί να απλοποιηθεί ή να περιοριστεί σε μια γενική μορφή. Απλοποιήστε τις μακριές λογαριθμικές εκφράσειςείναι δυνατό εάν χρησιμοποιείτε σωστά τις ιδιότητες τους. Ας τους γνωρίσουμε γρήγορα.

Όταν λύνουμε λογαριθμικές εξισώσεις, πρέπει να προσδιορίσουμε τον τύπο λογάριθμου που έχουμε: ένα παράδειγμα παράστασης μπορεί να περιέχει έναν φυσικό λογάριθμο ή έναν δεκαδικό.

Ακολουθούν παραδείγματα ln100, ln1026. Η λύση τους συνοψίζεται στο γεγονός ότι πρέπει να καθορίσουν την ισχύ στην οποία η βάση 10 θα είναι ίση με 100 και 1026, αντίστοιχα. Για να λύσετε φυσικούς λογάριθμους, πρέπει να εφαρμόσετε λογαριθμικές ταυτότητες ή τις ιδιότητές τους. Ας δούμε παραδείγματα επίλυσης λογαριθμικών προβλημάτων διαφόρων τύπων.

Πώς να χρησιμοποιήσετε τους τύπους λογαρίθμων: με παραδείγματα και λύσεις

Ας δούμε λοιπόν παραδείγματα χρήσης των βασικών θεωρημάτων για τους λογαρίθμους.

  1. Η ιδιότητα του λογάριθμου ενός προϊόντος μπορεί να χρησιμοποιηθεί σε εργασίες όπου είναι απαραίτητο να επεκταθεί μεγάλης σημασίαςτους αριθμούς β σε απλούστερους παράγοντες. Για παράδειγμα, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Η απάντηση είναι 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - όπως μπορείτε να δείτε, χρησιμοποιώντας την τέταρτη ιδιότητα της λογαριθμικής ισχύος, καταφέραμε να λύσουμε μια φαινομενικά πολύπλοκη και άλυτη έκφραση. Απλά πρέπει να συνυπολογίσετε τη βάση και στη συνέχεια να αφαιρέσετε τις τιμές εκθέτη από το πρόσημο του λογαρίθμου.

Εργασίες από την Ενιαία Κρατική Εξέταση

Οι λογάριθμοι βρίσκονται συχνά σε εισαγωγικές εξετάσεις, ειδικά πολλά λογαριθμικά προβλήματα στις ενιαίες κρατικές εξετάσεις ( Κρατική εξέτασηγια όλους τους αποφοίτους του σχολείου). Συνήθως αυτές οι εργασίες δεν υπάρχουν μόνο στο μέρος Α (το πιο εύκολο μέρος δοκιμήςεξέταση), αλλά και στο μέρος Γ (οι πιο περίπλοκες και ογκώδεις εργασίες). Η εξέταση απαιτεί ακριβή και τέλεια γνώση του θέματος «Φυσικοί λογάριθμοι».

Παραδείγματα και λύσεις σε προβλήματα λαμβάνονται από επίσημους Επιλογές Ενιαίας Κρατικής Εξέτασης. Ας δούμε πώς επιλύονται τέτοιες εργασίες.

Δίνεται log 2 (2x-1) = 4. Λύση:
ας ξαναγράψουμε την παράσταση, απλοποιώντας την λίγο log 2 (2x-1) = 2 2, με τον ορισμό του λογάριθμου παίρνουμε ότι 2x-1 = 2 4, άρα 2x = 17. x = 8,5.

  • Είναι καλύτερο να μειώσετε όλους τους λογάριθμους στην ίδια βάση, έτσι ώστε η λύση να μην είναι περίπλοκη και μπερδεμένη.
  • Όλες οι εκφράσεις κάτω από το πρόσημο του λογάριθμου υποδεικνύονται ως θετικές, επομένως, όταν ο εκθέτης μιας παράστασης που βρίσκεται κάτω από το πρόσημο του λογάριθμου και ως βάση της αφαιρείται ως πολλαπλασιαστής, η παράσταση που παραμένει κάτω από τον λογάριθμο πρέπει να είναι θετική.