Муниципальное общеобразовательное учреждение

Старомаксимкинская основная общеобразовательная школа

Районная научно – практическая конференция по математике

«Шаг в науку»

Научно – исследовательская работа

« Нестандартные алгоритмы счета или быстрый счет без калькулятора»

Руководитель: ,

учитель математики

с. Ст. Максимкино, 2010

Введение……………………………………………………………………..…………….3

Глава 1. История счета

1.2. Чудо - счетчики……………………………………………………………………...9

Глава 2. Старинные способы умножения

2.1. Русский крестьянский способ умножения…..…………….……………….……..Метод «решетки»……………….…….. ………………………………….………..13

2.3. Индийский способ умножения……………………………………………………..15

2.4. Египетский способ умножения…………………………………………………….16

2.5. Умножение на пальцах……………………………………………………………..17

Глава 3. Устный счет – гимнастика ума

3.1. Умножение и деление на 4……………..……………………….………………….19

3.2. Умножение и деление на 5……………………………………...………………….19

3.3. Умножение на 25……………………………………………………………………19

3.4. Умножение на 1,5……………………………………………………………….......20

3.5. Умножение на 9……….…………………………………………………………….20

3.6. Умножение на 11…………………………………………………..…………….….20

3.7. Умножение трехзначного числа на 101……………………………………………21

3.7. Возведение в квадрат числа, оканчивающегося цифрой 5 ………………………21

3.8. Возведение в квадрат числа, близкого к 50……………….………………………22

3.9. Игры………………………………………………………………………………….22

Заключение…………………………………………………………………………….…24

Список использованной литературы…………………………………………………...25

Введение

Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны, если бы не наука о числах.

Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В нашей работе предпочтение отдано стихии чисел и действий с ними.

Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому мы сочли важным показать не только то, что сам процесс выполнения действия может быть интересным, но и что, хорошо усвоив приёмы быстрого счета, можно поспорить и с ЭВМ.

Объектом исследования являются алгоритмы счета.

Предметом исследования выступает процесс вычисления.

Цель: изучить нестандартные приемы вычислений и экспериментальным путем выявить причину отказа от использования этих способов при обучении математике современных школьников.

Задачи:

Раскрыть историю возникновения счета и феномен « Чудо - счётчиков»;

Описать старинные способы умножения и опытно-экспериментальным путем выявить трудности в их использовании;

Рассмотреть некоторые приемы устного умножения и на конкретных примерах показать преимущества их использования.

Гипотеза: в старину говорили: « Умножение – мое мученье». Значит, раньше было сложно и трудно умножать. Прост ли наш современный способ умножения?

При работе над докладом я пользовался следующими методами :

Ø поисковый метод с использованием научной и учебной литература , а также поиск необходимой информации в сети Интернет;

Ø практический метод выполнения вычислений с применением нестандартных алгоритмов счета;

Ø анализ полученных в ходе исследования данных.

Актуальность данной темы заключается в том, что использование нестандартных приемов в формировании вычислительных навыков усиливает интерес учащихся к математике и содействует развитию математических способностей.

За простым действием умножения скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали. Захотелось узнать эти и другие способы умножения, сравнить их с нашим сегодняшним действием умножения.

Для того чтобы выяснить, знают ли современные школьники другие способы выполнения арифметических действий, кроме умножения столбиком и деления «уголком» и хотели бы узнать новые способы, был проведен устный опрос. Было опрошено 20 учащиеся 5-7 классов. Этот опрос показал, что современные школьники не знают других способов выполнения действий, так как редко обращаются к материалу, находящемуся за пределами школьной программы.

Результаты анкетирования:

(На диаграммах представлены в процентах доли утвердительных ответов учащихся).

1) Нужно ли уметь выполнять арифметические действия с натуральными числами современному человеку?

2) а) Умеете ли вы умножать, складывать,

б) Знаете ли вы другие способы выполнения арифметических действий?

3) а хотели бы узнать?

Глава 1. История счёта

1.1. Как возникли числа

Подсчитывать предметы люди научились ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т. д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Чтобы с успехом заниматься сельским хозяйством , понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.
И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки - по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы - он пас и коров, и коз, и ослов. Поэтому пришлось делась из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.

Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней. Обычно таких числительных было мало. Например, у племени реки Муррей в Австралии было два простых числительных: энэа (1) и петчевал (2). Другие числа они выражали составными числительными: 3= «петчевал-энэа», 4 «петчевал-петчевал» и т. д. Ещё одно австралийское племя – камилороев имело простые числительные мал (1), булан (2), гулиба (3) . И здесь другие числа получались сложением меньше: 4= «булан – булан», 5= «булан – гулиба», 6= « гулиба – гулиба» и т. д.

У многих народов название числа зависело от подсчитываемых предметов. Если жители островов Фиджи считали лодки, то число 10 называли « боло»; если они считали кокосовые орехи, то число 10 называли «каро». Точно так же поступали живущие на Сахалине и берегах Амура нивхи. Ещё в прошлом веке одно и то же число они называли разными словами, если считали людей, рыб, лодки, сети, звёзды, палки.

Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.

С развитием производства и торгового обмена люди стали лучше понимать, что общего у трёх лодок и трёх топоров, десяти стрел и десяти орехов. Племена часто вели обмен «предмет за предмет»; к примеру, обменивали 5 съедобных кореньев на 5 рыб. Становилось ясно, что 5 одно и то же и для кореньев, и для рыб; значит, и называть его можно одним словом.

Похожие способы счёта применяли и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.

До сих пор мы рассказывали об устном счёте. А как записывали числа? Поначалу, ещё до возникновения письменности, использовали зарубки на палках, насечки на костях, узелки на верёвках. Найденная волчья кость в Дольни - Вестонице (Чехословакия), имела 55 насечек, сделанных более 25000 лет назад.

Когда появилась письменность, появились и цифры для записи чисел. Сначала цифры напоминали зарубки на палках: в Египте и Вавилоне, в Этрурии и Финики, в Индии и Китае небольшие числа записывали палочками или чёрточками. Например, число 5 записывали пятью палочками. Индейцы астеки и майя вместо палочек использовали точки. Затем появились специальные знаки для некоторых чисел, таких, как 5 и 10 .

В то время почти все нумерации были не позиционными, а похожими на римскую нумерацию. Лишь одна вавилонская шестидесятеричная нумерация была позиционной. Но и в ней долго не было нуля, а также запятой, отделяющей целую часть от дробной. Поэтому одна и та же цифра могла означать и 1, и 60, и 3600. Угадывать значение числа приходилось по смыслу задачи.

За несколько столетий до новой эры изобрели новый способ записи чисел, при котором цифрами служили буквы обычного алфавита . Первые 9 букв обозначали числа десятки 10, 20,…, 90, а ещё 9 букв обозначали сотни. Такой алфавитной нумерацией пользовались до 17 в. Чтобы отличить «настоящие» буквы от чисел, над буквами- числами ставили чёрточку (на Руси эта чёрточка называлась «титло»).

Во всех этих нумерациях было очень трудно выполнить арифметические действия. Поэтому изобретение в 6 в. индийцами десятичной позиционной нумерации по праву считается одним из крупнейших достижений человечества. Индийская нумерация и индийские цифры стали известны в Европе от арабов, и обычно их называют арабскими.

При записи дробей ещё долгое время целую часть записывали в новой, десятичной нумерации, а дробную – в шестидесятеричной. Но в начале 15 в. самаркандский математик и астроном аль - Каши стал употреблять в вычислениях десятичные дроби.

Числа, с которыми мы работаем с положительными и отрицательными числами. Но, оказывается, что это не все числа, которые используют в математике и других науках. И узнать о них можно не дожидаясь старшей школы, а гораздо раньше, если изучать историю возникновения чисел в математике.

1.2 « Чудо - счётчики»

Он все понимает с полуслова и тут же формулирует вывод, к которому обычный человек, может быть, придет путем долгих и тягостных раздумий. Книги он поглощает с невероятной скоростью, а на первом месте в его шорт-листе бестселлеров - учебник по занимательной математике. В момент решения самых трудных и необычных задач в его глазах горит огонь вдохновения. Просьбы сходить в магазин или помыть посуду остаются без внимания либо выполняются с большим недовольством. Самая лучшая награда - это поход в лекторий, а самый ценный подарок - книга. Он максимально практичен и в своих поступках в основном подчиняется рассудку и логике. Он холодно относится к окружающим его людям и предпочтет катанию на роликах шахматную партию с компьютером. Будучи ребенком, он не по годам осознает собственные недостатки, отличается повышенной эмоциональной устойчивостью и приспособляемостью к внешним обстоятельствам.

Этот портрет написан отнюдь не с аналитика ЦРУ.
Так, по мнению психологов, выглядит человек-калькулятор, индивидуум, обладающий уникальными математическими способностями, позволяющими ему в мгновение ока производить в уме самые сложные подсчеты.

За порогом сознания чудо - счетоводы, способные без калькулятора совершать невообразимо сложные арифметические действия, обладают уникальными особенностями памяти, отличающей их от других людей. Как правило, кроме огромных линеек формул и вычислений, эти люди (ученые их называют мнемониками - от греческого слова mnemonika, означающего "искусство запоминания") держат в голове списки адресов не только друзей, но и случайных знакомых, а также многочисленных организаций, где им когда-то приходилось бывать.

В лаборатории НИИ психотехнологий, где решили исследовать феномен, провели такой эксперимент. Пригласили уникума - сотрудника Центрального государственного архива Санкт-Петербурга Ему предлагали для запоминания различные слова и цифры. Он должен был их повторять. За каких-то пару минут он мог зафиксировать в памяти до семидесяти элементов. Десятки слов и цифр буквально "загрузили" в память Александра. Когда количество элементов перевалило за две сотни, решили проверить его возможности. К удивлению участников эксперимента, мегапамять не дала ни одного сбоя. С секунду пошевелив губами, он с поразительной точностью, словно читая, начал воспроизводить весь ряд элементов.

Еще, например, один учёный – исследователь провёл эксперимент с мадмуазель Осака. Испытуемую попросили возвести в квадрат 97, получить десятую степень того числа. Она это сделала моментально.

В Ванском районе западной Грузии живет Арон Чикашвили. Он быстро и точно производит в уме сложнейшие вычисления. Как-то друзья решили проверить возможности «чудо-счётчика». Задание было сложным: сколько слов и букв скажет диктор, комментирующий второй тайм футбольного матча «Спартак» (Москва) - «Динамо» (Тбилиси). Одновременно был включен магнитофон. Ответ последовал, как только диктор сказал последнее слово: 17427 букв, 1835 слов. На проверку ушло ….5 часов. Ответ оказался правильным.

Рассказывают, что отец Гаусса обычно платил свом рабочим в конце недели, прибавляя к каждому дневному заработку за сверхурочные часы. Однажды после того, как Гаусс-отец закончил расчеты, следивший за операциями отца ребёнок, которому было три года, воскликнул: « Папа, подсчёт не верен! Вот такая должна быть сумма». Вычисления повторили и с удивлением убедились, что малыш указал правильную сумму.

Интересно, что многие «чудо-счётчики» не имеют понятия вообще, как они считают. « Считаем, и всё! А как считаем, Бог его знает». Некоторые «счётчики» были совсем необразованными людьми. Англичанин Бакстон, «счётчик-виртуоз», так никогда и не научился читать; американский «негр-счётчик» Томас Фаллер умер неграмотным в возрасте 80-ти лет.

Проводились соревнования в институте кибернетики Украинской академии наук. В соревновании участвовали молодой «счётчик-феномен» Игорь Шелушков и ЭВМ «Мир». Машина за несколько секунд сделала множество сложных математических операций. Победителем в этом соревновании вышел Игорь Шелушков.

Большенство таких людей обладает прекрасной памятью и имеют дарование. Но некоторые из них никакими способностями к математике не обладают. Они знают секрет! А секрет этот в том, что они хорошо усвоили приемы быстрого счёта, запомнили несколько специальных формул. Но бельгийский служащий, который за 30 секунд по предложенному ему многозначному числу, полученному от умножения некоторого числа само на себя 47 раз, называет это число (извлекает корень 47-ой

степени из многозначного числа), добился таких потрясающих успехов в счёте в результате многолетней тренировки.

Итак, многие «счётчики-феномены» пользуются особыми приемами быстрого счёта и специальными формулами. Значит, мы тоже можем пользоваться некоторыми из этих приёмов.

Глава II . Старинные способы умножения.

2.1. Русский крестьянский способ умножения.

В России 2-3 века назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название крестьянского (существует мнение, что он берет начало от египетского).

Пример: умножим 47 на 35,

Запишем числа на одной строчке, проведём между ними вертикальную черту;

Левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);

Деление заканчивается, когда слева появится единица;

Вычёркиваем те строчки, в которых стоят слева чётные числа;

35 + 70 + 140 + 280 + 1120 = 1645.

2.2. Метод «решетки».

1). Выдающийся арабский математик и астроном Абу Мусса аль - Хорезми жил и работал в Багдаде. «Аль - Хорезми» буквально означает «из Хорезми», т. е. родился в г. Хорезме (сейчас входит в состав Узбекистана). Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.

Сведений о жизни и деятельности Мухаммеда аль - Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время.

2). В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «методом решётки» (он же «ревность»). Этот метод даже проще, чем применяемый сегодня.

Пусть нужно умножить 25 и 63.

Начертим таблицу в которой две клетки по длине и две по ширине запишем одно число по длине другое по ширине. В клетках запишем результат умножения данных цифр, на их пересечении отделим десятки и единицы диагональю. Полученные цифры сложим по диагонали, и полученный результат можно прочитать по стрелке (вниз и вправо).

Нами рассмотрен простой пример, однако, этим способом можно умножать любые многозначные числа.

Рассмотрим еще один пример: перемножим 987 и 12:

Рисуем прямоугольник 3 на 2 (по количеству десятичных знаков у каждого множителя);

Затем квадратные клетки делим по диагонали;

Вверху таблицы записываем число 987;

Слева таблицы число 12 (см. рисунок);

Теперь в каждый квадратик впишем произведение цифр – сомножителей, расположенных в одной строчке и в одном столбце с этим квадратиком, десятки выше диагонали, единицы ниже;

После заполнения всех треугольников, цифры в них складывают вдоль каждой диагонали;

Результат записываем справа и внизу таблицы (см. рисунок);

987 ∙ 12=11844

Этот алгоритмом умножения двух натуральных чисел был распространен в средние века на Востоке и Италии.

Неудобство этого способа мы отметили в трудоемкости подготовки прямоугольной таблицы, хотя сам процесс вычисления интересен и заполнение таблицы напоминает игру.

2.3 Индийский способ умножения

Некоторые опытные учителя в прошлом веке считали, что этот способ должен заменить в нашей школе общепринятый способ умножения.

Американцам он настолько понравился, что они его даже так и назвали «Американский способ». Однако им пользовались жители Индии еще в VI в. н. э., и правильнее его назвать «индийским способом». Перемножить два каких - либо двузначных числа, скажем 23 на 12. Я сразу пишу, что получится.

Вы видите: очень быстро получен ответ. Но как он получен?

Первый шаг: х23 говорю: «2 х 3 = 6»

Второй шаг: х23 говорю: « 2 х 2 + 1 х 3 = 7»

Третий шаг: х23 говорю: «1 х 2 = 2».

12 пишу 2 левее цифры 7

276 получаем 276.

Мы познакомились с этим способом на очень простом примере без перехода через разряд. Однако наши исследования показали, что им можно пользоваться и при умножении чисел с переходом через разряд, а также при умножении многозначных чисел. Приведем примеры:

х528 х24 х15 х18 х317

123 30 13 19 12

На Руси этот способ был известен как способ умножения крестиком.

В этом «крестике» и заключается неудобство умножения, легко запутаться, к тому же трудно удерживать в уме все промежуточные произведения, результаты которых затем надо сложить.

2.4. Египетский способ умножения

Обозначения чисел, которые использовались в древности, были более или менее пригодны для записи результата счета. А вот выполнять арифметические действия с их помощью было очень сложно, особенно это касалось действия умножения (попробуй, перемножь: ξφß*τδ). Выход из этой ситуации нашли египтяне, поэтому способ получил название египетского. Они заменили умножение на любое число - удвоением, то есть сложением числа с самим собой.

Пример: 34 ∙ 5=34∙ (1 + 4) = 34∙ (1 + 2 ∙ 2) = 34 ∙ 1+ 34 ∙ 4.

Т. к. 5 = 4 + 1, то для получения ответа оставалось сложить числа, стоящие в правом столбике против цифр 4 и 1 , т. е. 136 + 34 = 170.

2.5. Умножение на пальцах

Древние египтяне были очень религиозны и считали, что душу умершего в загробном мире подвергают экзамену по счёту на пальцах. Уже это говорит о том значении, которое придавали древние этому способу выполнения умножения натуральных чисел (он получил название пальцевого счета ).

Умножали на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходил число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. После этого брали столько десятков, сколько вытянуто пальцев на обеих руках, и прибавляли к этому числу произведение загнутых пальцев на первой и второй руке.

Пример: 8 ∙ 9 = 72

Позже пальцевой счёт усовершенствовали – научились показывать с помощь пальцев числа до 10000

Движение пальца

А вот еще один из способов помочь памяти: с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1, второй за ним обозначим цифрой 2, затем 3, 4… до десятого пальца, который означает 10. Если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается девять; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения.

Пример. Пусть надо найти произведение 4х9.

Положив обе руки на стол, приподнимем четвертый палец, считая слева направо. Тогда до поднятого пальца находятся три пальца (десятки), а после поднятого - 6 пальцев (единицы). Результат произведения 4 на 9, значит, равен 36.

Еще пример:

Пусть требуется умножить 3 * 9.

Слева направо найдите третий палец, того пальца выпрямленными будут 2 пальца, они и будут означать 2 десятка.

Справа от загнутого пальца выпрямленными окажутся 7 пальцев, они означают 7 единиц. Сложите, 2 десятка и 7 единиц получится 27.

Сами пальцы показали это число.

// // /////

Итак, рассмотренные нами старинные способы умножения показывают, что используемый в школе алгоритм умножения натуральных чисел - не единственный и известен он был не всегда.

Однако, он достаточно быстр и наиболее удобен.

Глава 3. Устный счет – гимнастика ума

3.1. Умножение и деление на 4.

Чтобы умножить число на 4, его дважды удваивают.

Например,

214 * 4 = (214 * 2) * 2 = 428 * 2 = 856

537 * 4 = (537 * 2) * 2 = 1074 * 2 = 2148

Чтобы число разделить на 4 , его дважды делят на 2.

Например,

124: 4 = (124: 2) : 2 = 62: 2 = 31

2648: 4 = (2648: 2) : 2 = 1324: 2 = 662

3.2. Умножение и деление на 5.

Чтобы умножить число на 5, нужно его умножить на 10/2 , то есть умножить на 10 и разделить на 2.

Например,

138 * 5 = (138 * 10) : 2 = 1380: 2 = 690

548 * 5 (548 * 10) : 2 = 5480: 2 = 2740

Чтобы число разделить на 5, нужно умножить его на 0,2, то есть в удвоенном исходном числе отделить запятой последнюю цифру.

Например,

345: 5 = 345 * 0,2 = 69,0

51: 5 = 51 * 0,2 = 10,2

3.3. Умножение на 25.

Чтобы умножить число на 25, нужно его умножить на 100/4, то есть умножить на 100 и разделить на 4.

Например,

348 * 25 = (348 * 100) : 4 = (34800: 2) : 2 = 17400: 2 = 8700

3.4. Умножение на 1,5.

Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину.

Например,

26 * 1,5 = 26 + 13 = 39

228 * 1,5 = 228 + 114 = 342

127 * 1,5 = 127 + 63,5 = 190,5

3.5. Умножение на 9.

Чтобы умножить число на 9, к нему приписывают 0 и отнимают исходное число. Например,

241 * 9 = 2410 – 241 = 2169

847 * 9 = 8470 – 847 = 7623

3.6. Умножение на 11.

1 способ . Чтобы число умножить на 11, к нему приписывают 0 и прибавляют исходное число. Например:

47 * 11 = 470 + 47 = 517

243 * 11 = 2430 + 243 = 2673

2 способ. Если хочешь умножить число на 11, то поступай так: запиши число, которое нужно умножить на 11, а между цифрами исходного числа вставь сумму этих цифр. Если сумма получается двузначное число, то 1 прибавляем к первой цифре исходного числа. Например:

45 * 11 = * 11 = 967

Такой способ подходит только для умножения двузначных чисел.

3.7. Умножение трехзначного числа на 101.

Например 125 * 101 = 12625

(увеличиваем первый множитель на число его сотен и приписываем к нему справа две последние цифры первого множителя)

125 + 1 = 126 12625

Этот прием дети легко усваивают при записи вычисления в столбик

х х125
101
+ 125
125 _
12625

х х348
101
+348
348 _
35148

Еще пример: 527 * 101 = (527+5)27 = 53227

3.8. Возведение в квадрат числа, оканчивающегося цифрой 5.

Чтобы возвести в квадрат число, оканчивающееся цифрой 5 (например, 65), умножают число его десятков (6) на число десятков, увеличенное на 1 (на 6+1 = 7), и к полученному числу приписывают 25

(6 * 7 = 42 Ответ: 4225)

Например:

3.8. Возведение в квадрат числа, близкого к 50.

Если хочешь возвести в квадрат число, близкое к 50, но большее 50, то поступай так:

1) вычти из этого числа 25;

2) припиши к результату двумя цифрами квадрат избытка данного числа над 50.

Объяснение: 58 – 25 = 33, 82 = 64, 582 = 3364.

Объяснение: 67 – 25 = 42, 67 – 50 = 17, 172 =289,

672 = 4200 + 289 = 4489.

Если хочешь возвести в квадрат число, близкое к 50, но меньшее 50, то поступай так:

1) вычти из этого числа 25;

2) припиши к результату двумя цифрами квадрат недостатка данного числа до 50.

Объяснение: 48 – 25 = 23, 50 – 48 =2, 22 = 4, 482 = 2304.

Объяснение: 37 – 25 = 12,= 13, 132 =169,

372 = 1200 + 169 = 1369.

3.9. Игры

Отгадывание полученного числа.

1. Задумайте какое-нибудь число. Прибавьте к нему 11; умножьте полученную сумму на 2; от этого произведения отнимите 20; умножьте полученную разность на 5 и от нового произведения отнимите число, в 10 раз больше задуманного вами числа.

Я отгадываю: вы получили 10. Верно?

2. Задумайте число. Утрой его. Вычти из полученного 1. Полученное умножьте на 5. К полученному прибавьте 20. Разделите полученное на 15. Из полученного вычтите задуманное.

У вас получилось 1.

3. Задумайте число. Умножьте его на 6. Вычтите 3. Умножьте на 2. Прибавьте 26. Вычтите удвоенное задуманное. Разделите на 10. Вычтите задуманное.

У вас получилось 2.

4. Задумайте число. Утройте его. Вычтите 2. Умножьте на 5. Прибавьте 5. Разделите на 5. Прибавьте 1. Разделите на задуманное. У вас получилось 3.

5. Задумайте число, удвойте его. Прибавьте 3. Умножьте на 4. Вычтите 12. Разделите на задуманное.

У вас получилось 8.

Угадывание задуманных чисел.

Предложите своим товарищам задумать любые числа. Пусть каждый прибавит к своему задуманному числу 5.

Полученную сумму пусть умножит на 3.

От произведения пусть отнимет 7.

Из полученного результата пусть вычтет ещё 8.

Листок с окончательным результатом пусть каждый отдаст вам. Глядя на листок, вы тут же говорите каждому, какое число он задумал.

(Чтобы угадать задуманное число, результат, написанный на бумажке или сказанный вам устно, разделить на 3)

Заключение

Мы вступили в новое тысячелетие! Грандиозные открытия и достижения человечества. Мы много знаем, многое умеем. Кажется чем-то сверхъестественным, что с помощью чисел и формул можно рассчитать полёт космического корабля, «экономическую - ситуацию» в стране, погоду на «завтра», описать звучание нот в мелодии. Нам известно высказывание древнегреческого математика, философа, жившего в 4 веке д. н.э.- Пифагора - «Всё есть число!».

Согласно философскому воззрению этого учёного и его последователей, числа управляют не только мерой и весом, но также всеми явлениями, происходящими в природе, и являются сущностью гармонии, царствующей в мире, душой космоса.

Описывая старинные способы вычислений и современные приёмы быстрого счёта, мы попытались показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.

Изучение старинных способов умножения показало, что это арифметическое действие было трудным и сложным из-за многообразия способов и их громоздкости выполнения.

Современный способ умножения прост и доступен всем.

При знакомстве с научной литературой обнаружили более быстрые и надежные способы умножения. Поэтому изучение действия умножения – тема перспективная.

Возможно, что с первого раза у многих не получится быстро, с ходу выполнять эти или другие подсчеты. Пусть сначала не получится использовать прием, показанный в работе. Не беда. Нужна постоянная вычислительная тренировка. Из урока в урок, из года в год. Она поможет приобрести полезные навыки устного счета.

Список использованной литературы

1. Ванцян: Учебник для 5 класса . - Самара: Издательский дом

«Фёдоров», 1999.

2. , Ахадов мир чисел: Книга учащихся,- М. Просвещение, 1986.

3. «От игры к знаниям», М., «Просвещение» 1982г.

4. Свечников, фигуры, задачи М., Просвещение, 1977г.

5. http://matsievsky. *****/sys-schi/file15.htm

6. http://*****/mod/1/6506/hystory. html

Исследовательская работа по математике в начальной школе

Краткая аннотация исследовательской работы
Каждый школьник умеет умножать многозначные числа «столбиком». В данной работе автор обращает внимание на существование альтернативных способов умножения, доступных младшим школьникам, которые могут «нудные» вычисления превратить в весёлую игру.
В работе рассматриваются шесть нетрадиционных способов умножения многозначных чисел, используемые в различные исторические эпохи: русский крестьянский, решетчатый, маленький замок, китайский, японский, по таблице В.Оконешникова.
Проект предназначен для развития познавательного интереса к изучаемому предмету, для углубления знаний в области математики.
Оглавление
Введение 3
Глава 1. Альтернативные способы умножения 4
1.1. Немного истории 4
1.2. Русский крестьянский способ умножения 4
1.3. Умножение способом «Маленький замок» 5
1.4. Умножение чисел методом «ревность» или «решётчатое умножение» 5
1.5. Китайский способ умножения 5
1.6. Японский способ умножения 6
1.7. Таблица Оконешникова 6
1.8.Умножение столбиком. 7
Глава 2. Практическая часть 7
2.1. Крестьянский способ 7
2.2. Маленький замок 7
2.3. Умножение чисел методом «ревность» или «решётчатое умножение» 7
2.4. Китайский способ 8
2.5. Японский способ 8
2.6. Таблица Оконешникова 8
2.7. Анкетирование 8
Заключение 9
Приложение 10

«Предмет математики настолько серьезен, что полезно не упускать случаев делать его немного занимательным».
Б. Паскаль

Введение
Человеку в повседневной жизни невозможно обойтись без вычислений. Поэтому на уроках математики нас в первую очередь учат выполнять действия над числами, то есть считать. Умножаем, делим, складываем и вычитаем мы привычными для всех способами, которые изучаются в школе. Возник вопрос: а есть ли еще какие-нибудь альтернативные способы вычислений? Мне захотелось изучить их более подробно. В поисках ответа на возникшие вопросы было проведено данное исследование.
Цель исследования: выявление нетрадиционных способов умножения для изучения возможности их применения.
В соответствии с поставленной целью нами были сформулированные следующие задачи:
- Найти как можно больше необычных способов умножения.
- Научиться их применять.
- Выбрать для себя самые интересные или более легкие, чем те, которые предлагаются в школе, и использовать их при счете.
- Проверить на практике умножения многозначных чисел.
- Провести анкетирование учащихся 4-х классов
Объект исследования: различные нестандартные алгоритмы умножения многозначных чисел
Предмет исследования: математическое действие «умножение»
Гипотеза: если существуют стандартные способы умножения многозначных чисел, возможно, есть и альтернативные способы.
Актуальность : распространение знаний об альтернативных способах умножения.
Практическая значимость . В ходе работы было решено множество примеров и создан альбом, в который включены примеры с различными алгоритмами умножениями многозначных чисел несколькими альтернативными способами. Это может заинтересовать одноклассников для расширения математического кругозора и послужит началом новых экспериментов.

Глава 1. Альтернативные способы умножения

1.1. Немного истории
Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы современный школьник мог отправиться на пятьсот лет назад, он поразил бы всех быстротой и безошибочностью своих вычислений. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера.
Особенно трудны в старину были действия умножения и деления.
В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках». И все эти приемы умножения соперничали друг с другом и усваивались с большим трудом.
Рассмотрим наиболее интересные и простые способы умножения.
1.2. Русский крестьянский способ умножения
В России 2-3 века назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название крестьянского.
Чтобы перемножить два числа, их записывали рядом, а затем левое число делили на 2, а правое умножали на 2. Результаты записывать в столбик, пока слева не останется 1. Остаток отбрасывается. Вычёркиваем те строки, в которых слева стоят чётные числа. Оставшиеся числа в правом столбце - складываем.
1.3. Умножение способом «Маленький замок»
Итальянский математик Лука Пачоли в своём трактате «Сумма знаний по арифметике, отношениям и пропорциональности» (1494г.) приводит восемь различных методов умножения. Первый из них носит название «Маленький замок».
Преимущество способа умножения «Маленький замок» в том, что уже с самого начала определяются цифры старших разрядов, а это бывает важно, если требуется быстро оценить величину.
Цифры верхнего числа, начиная со старшего разряда, поочередно умножаются на нижнее число и записываются в столбик с добавлением нужного числа нулей. Затем результаты складываются.
1.4. Умножение чисел методом «ревность» или «решётчатое умножение»
Второй способ Лука Пачоли носит название «ревность» или «решётчатое умножение».
Сначала рисуется прямоугольник, разделённый на квадраты. Затем квадратные клетки делятся по диагонали и «…получается картинка, похожая на решётчатые ставни-жалюзи, - пишет Пачоли. – Такие ставни вешались на окна венецианских домов, мешая уличным прохожим видеть, сидящих у окон дам и монахинь».
Перемножая каждую цифру первого множителя с каждой цифрой второго, записываются произведения в соответствующие клетки, располагая десятки над диагональю, а единицы под ней. Цифры произведения получают сложением цифр в косых полосах. Результаты сложений записываются под таблицей, а также справа от неё.
1.5. Китайский способ умножения
Теперь представим метод умножения, бурно обсуждаемый в Интернете, который называют китайским. При умножении чисел считаются точки пересечения прямых, которые соответствуют количеству цифр каждого разряда обоих множителей.
1.6. Японский способ умножения
Японский способ умножения – это графический способ с использованием кругов и линий. Не менее забавный и интересный чем китайский. Даже чем-то на него похож.
1.7. Таблица Оконешникова
Кандидат философских наук Василий Оконешников, по совместительству изобретатель новой системы устного счёта, считает, что школьники смогут научиться устно складывать и умножать миллионы, биллионы и даже секстиллионы с квадриллионами. По мнению самого учёного, наиболее выигрышной в этом отношении является девятеричная система – все данные просто располагают в девяти ячейках, расположенных, как кнопочки на калькуляторе.
По мысли учёного, прежде чем стать вычислительным «компьютером», необходимо вызубрить созданную им таблицу.
Таблица разделена на 9 частей. Расположены они по принципу мини калькулятора: слева в нижнем углу «1», справа в верхнем углу «9». Каждая часть – таблица умножения чисел от 1 до 9 (по той же «кнопочной» система). Для того, чтобы умножить любое число, например, на 8, мы находим большой квадрат, соответствующий числу 8 и выписываем из этого квадрата числа, соответствующие цифрам многозначного множителя. Полученные числа складываем особо: первая цифра остаётся без изменения, а все остальные попарно складываются. Получившееся число и будет результатом умножения.
Если при сложении двух цифр получается число, превосходящее девять, то его первая цифра прибавляется к предыдущей цифре результата, а вторая пишется на «своё» место.
Новая методика была опробована в нескольких российских школах и университетах. Минобразования РФ разрешило публиковать в тетрадях в клеточку вместе с привычной таблицей Пифагора новую таблицу умножения – пока просто для знакомства.
1.8. Умножение столбиком.
Не многие знают, что автором нашего привычного способа умножения столбиком многозначного числа на многозначное следует считать Адама Ризе (Приложение 7). Этот алгоритм считается самым удобным.
Глава 2. Практическая часть
Осваивая перечисленные способы умножения, было решено множество примеров, оформлен альбом с образцами различных алгоритмов вычислений. (Приложение). Рассмотрим алгоритм вычислений на примерах.
2.1. Крестьянский способ
Умножим 47 на 35 (Приложение 1),
-запишем числа на одной строчке, проведём между ними вертикальную черту;
-левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);
-деление заканчивается, когда слева появится единица;
-вычёркиваем те строчки, в которых стоят слева чётные числа;
-оставшиеся справа числа складываем – это результат.
35 + 70 + 140 + 280 + 1120 = 1645.
Вывод. Способ удобен тем, что достаточно знать таблицу только на 2. Однако при работе с большими числами он очень громоздкий. Удобен для работы с двузначными числами.
2.2. Маленький замок
(Приложение 2). Вывод. Способ очень похож на наш современный «столбик». Да еще и сразу определяются цифры старших разрядов. Это бывает важно, если нужно быстро оценить величину.
2.3. Умножение чисел методом «ревность» или «решётчатое умножение»
Умножим, например, числа 6827 и 345 (Приложение 3):
1. Вычерчиваем квадратную сетку и пишем один из множителей над колонками, а второй - по высоте.
2. Умножаем число каждого ряда последовательно на числа каждой колонки. Последовательно умножаем 3 на 6, на 8, на 2 и на 7 и т.д.
4. Складываем числа, следуя диагональным полосам. Если сумма одной диагонали содержит десятки, то прибавляем их к следующей диагонали.
Из результатов сложения цифр по диагоналям составляется число 2355315, которое и является произведением чисел 6827 и 345, то есть 6827 ∙ 345 = 2355315.
Вывод. Способ «решетчатое умножение» ничуть не хуже, чем общепринятый. Он даже проще, поскольку в клетки таблицы заносятся числа прямо из таблицы умножения без одновременного сложения, присутствующего в стандартном методе.
2.4. Китайский способ
Предположим надо умножить 12 на 321(Приложение 4). На листе бумаги поочередно рисуем линии, количество которых определяется из данного примера.
Рисуем первое число – 12. Для этого сверху вниз, слева на право, рисуем:
одну зелёную палочку (1)
и две оранжевых (2).
Рисуем второе число – 321, снизу вверх, слева на право:
три голубых палочки (3);
две красные (2);
одну сиреневую (1).
Теперь простым карандашом отделяем точки пересечения и приступим к их подсчёту. Двигаемся справа налево (по часовой стрелке): 2, 5, 8, 3.
Полученный результат прочитаем слева направо – 3852
Вывод. Интересный способ, но проводить 9 прямых при умножении на 9 как-то долго и неинтересно, а потом еще точки пересечения считать. Без сноровки сложно разобраться в делении числа на разряды. В общем, без таблицы умножения не обойтись!
2.5. Японский способ
Умножим 12 на 34 (Приложение 5). Так как второй множитель двузначное число, а первая цифра первого множителя 1, строим два одиночных круга в верхней строке и два двоичных круга в нижней строке, так как вторая цифра первого множителя равна 2.
Так как первая цифра второго множителя 3, а вторая 4, делим круги первого столбца на три части, второго столбца на четыре части.
Количество частей, на которые разделились круги и является ответом, то есть 12 х 34 = 408.
Вывод. Способ очень похож на китайский графический. Только прямые заменены кругами. Легче определять разряды у числа, однако рисовать круги – менее удобно.
2.6. Таблица Оконешникова
Требуется умножить 15647 х 5. Сразу вспоминаем большую «кнопку» 5 (она посередине) и на ней мысленно находим маленькие кнопочки 1, 5, 6, 4, 7 (они также расположены, как на калькуляторе). Им соответствуют числа 05, 25, 30, 20, 35. Полученные числа складываем: первая цифра 0 (остаётся без изменения), 5 мысленно складываем с 2, получаем 7 – это вторая цифра результата, 5 складываем с 3, получаем третью цифру - 8, 0+2=2, 0+3=3 и остаётся последняя цифра произведения – 5. В результате получилось 78 235.
Вывод. Способ очень удобный, но нужно выучить наизусть или всегда иметь под рукой таблицу.
2.7. Анкетирование учащихся
Было проведено анкетирование четвероклассников. Приняли участие 26 человек (Приложение 8). На основании анкетирования выявлено, что все опрошенные умеют умножать традиционным способом. А вот о нетрадиционных способах умножения большинство ребят не знают. И есть желающие познакомиться с ними.
После первичного анкетирования было проведено внеклассное занятие «Умножение с увлечением», на котором ребята познакомились с альтернативными алгоритмами умножения. После чего был проведен опрос с целью выявить наиболее понравившиеся способы. Безусловным лидером стал самый современный метод Василия Оконешникова. (Приложение 9)
Заключение
Научившись считать всеми представленными способами, я считаю, что наиболее удобный метод умножения является способ «Маленький замок» - ведь он так похож на наш нынешний!
Из всех найденных мною необычных способов счета более интересным показался способ «Японский». Самым простым мне показался метод «удвоения и раздвоения», который использовали русские крестьяне. Я его использую при умножении не слишком больших чисел. Очень удобно его использовать при умножении двузначных чисел.
Таким образом, я достигла цели моего исследования – изучила и научилась применять нетрадиционные способы умножения многозначных чисел. Моя гипотеза подтвердилась – я овладела шестью альтернативными способами и выяснила, что это еще не все возможные алгоритмы.
Изученные мною нетрадиционные методы умножения очень интересны и имеют право на существование. А в некоторых случаях ими даже проще пользоваться. Считаю, что о существовании этих методов можно рассказывать в школе, дома и удивить своих друзей и знакомых.
Пока мы только изучали и анализировали уже известные способы умножения. Но кто знает, возможно, в будущем мы сами сможем открыть новые способы умножения. Также я не хочу останавливаться на достигнутом и продолжить изучение нетрадиционных способов умножения.
Список источников информации
1. Список литературы
1.1. Арутюнян Е., Левитас Г. Занимательная математика. - М.: АСТ - ПРЕСС, 1999. - 368 с.
1.2. Беллюстина В. Как постепенно дошли люди до настоящей арифметики. - ЛКИ,2012.-208 с.
1.3. Депман И. Рассказы о математике. – Ленинград.: Просвещение, 1954. – 140 с.
1.4. Ликум А. Все обо всем. Т. 2. - М.: Филологическое общество «Слово», 1993. - 512 с.
1.5. Олехник С. Н., Нестеренко Ю. В., Потапов М. К.. Старинные занимательные задачи. – М.: Наука. Главная редакция физико-математической литературы, 1985. – 160 с.
1.6. Перельман Я.И. Занимательная арифметика. - М.: Русанова, 1994 – 205с.
1.7. Перельман Я.И. Быстрый счет. Тридцать простых приемов устного счета. Л.: Лениздат, 1941 - 12 с.
1.8. Савин А.П. Математические миниатюры. Занимательная математика для детей. - М.: Детская литература, 1998 - 175 с.
1.9. Энциклопедия для детей. Математика. – М.: Аванта +, 2003. – 688 с.
1.10. Я познаю мир: Детская энциклопедия: Математика/ сост. Савин А.П., Станцо В.В., Котова А.Ю. - М.: ООО «Издательство АСТ», 2000. - 480 с.
2. Другие источники информации
Интернет – ресурсы:
2.1. Корнеев А.А. Феномен русского умножения. История. [Электронный ресурс]

В древней Индии применяли два способа умножения: сетки и галеры.
На первый взгляд они кажутся очень сложными, но если ты будешь следовать шаг за шагом в предлагаемых упражнениях, то увидишь, что это довольно просто.
Умножаем, например, числа 6827 и 345:
1. Вычерчиваем квадратную сетку и пишем один из номеров над колонками, а второй по высоте. В предложенном примере можно использовать одну из этих сеток.

2. Выбрав сетку, умножаем число каждого ряда последовательно на числа каждой колонки. В этом случае последовательно умножаем 3 на 6, на 8, на 2 и на 7. Посмотри на этой схеме, как пишется произведение в соответствующей клетке.

3. Посмотри, как выглядит сетка со всеми запоненными клетками.

4. В заключение складываем числа, следуя диагональным полосам. Если сумма одной диагонали содержит десятки, то прибавляем их к следующей диагонали.

Посмотри, как из результатов сложения цифр по диагоналям (они выделены жёлтым фоном) составляется число 2355315, которое и является произведение чисел 6827 и 345.

Третьякова Анастасия, Тёмкина Алина

Цель и задачи проекта:

Цель: ознакомление с различными способами умножения натуральных чисел, не используемых на уроках, и их применение при вычислениях числовых выражений.

Задачи:

  1. Найти и разобрать различные способы умножения.
  2. Научиться демонстрировать некоторые способы умножения.
  3. Рассказать о новых способах умножения и научить ими пользоваться учащихся.
  4. Развить навыки самостоятельной работы: поиск информации, отбор и оформление найденного материала.

Гипотеза: «Знания лишь тем открываются.

Кто с разными числами знается!!!»

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №35 городского округа Самара

Проект на тему:

«Способы умножения

Натуральных чисел»

Работу выполнили: ученицы 5 «А» класса

Третьякова Анастасия,

Тёмкина Алина.

Научный руководитель:

учитель математики

Рузанова И.М.

Самара, 2014г.

Цель и задачи проекта:

Цель: ознакомление с различными способами умножения натуральных чисел, не используемых на уроках, и их применение при вычислениях числовых выражений.

Задачи:

  1. Найти и разобрать различные способы умножения.
  2. Научиться демонстрировать некоторые способы умножения.
  3. Рассказать о новых способах умножения и научить ими пользоваться учащихся.
  4. Развить навыки самостоятельной работы: поиск информации, отбор и оформление найденного материала.

Гипотеза: «Знания лишь тем открываются.

Кто с разными числами знается!!!»

Пифагор.

  1. Введение. 4 стр.
  2. Основная часть. 5 – 13 стр.
  1. Русско-крестьянский способ умножения. 5 – 6 стр.
  2. Квадрат Пифагора. 6 – 7 стр.
  3. Таблица Оконешникова. 7 – 9 стр.
  4. Индийский способ умножения. 9 – 11 стр.
  5. Египетский способ умножения. 11 – 12 стр.
  6. Китайский способ умножения. 12 стр.
  7. Японский способ умножения. 13 стр.
  1. Заключение. 14 стр.
  2. Литература. 14 стр.
  1. Введение.

….. Вы не сможете выполнить умножения многозначных чисел - хотя бы даже двузначных - если не помните наизусть всех результатов умножения однозначных чисел, т. е. того, что называется таблицей умножения. В старинной «Арифметике» Магницкого необходимость твердого знания таблицы умножения воспета в таких - надо сознаться, чуждых для современного слуха - стихах:

Аще кто не твердит

таблицы и гордит,

Не может познати

числом что множати

И во всей науки, несвобод от муки,

Колико не учиттуне ся удручит

И в пользу не будет аще ю забудет.

Сам Магницкий, автор этих стихов, очевидно, не знал или упустил из виду, что существуют способы перемножать числа и без знания таблицы умножения. Способы эти, не похожи на наши школьные приемы, некоторые употреблялись в обиходе великорусских крестьян и унаследованы ими от глубокой древности, некоторые используются и в наше время.

В школе изучают таблицу умножения, а затем учат детей умножать числа в столбик. Разумеется, это не единственный способ умножения. На самом деле, существует несколько десятков способов умножения многозначных чисел. В данной работе мы приведём несколько способов умножения, возможно они покажутся более простыми и вы будете ими пользоваться.

  1. Основная часть.
  1. Русско-крестьянский способ умножения.

Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоений другого числа. Пример: 32 х 13

Множимое =32

Множитель = 13

Таблица 1.

Деление пополам (см. левую половину Табл.1) продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число (правая часть Табл.1). Последнее удвоенное число и дает искомый результат.

Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение: (32 х 13) = (1 х 416)

Особо внимательные заметят "А как быть с нечетными числами, которые не кратны 2-м?".

Итак, пусть нам необходимо умножить два числа: 987 и 1998. Одно запишем слева, а второе - справа на одной строчке. Левое число будем делить на 2, а правое - умножать на 2 и результаты записывать в столбик. Если при делении возникнет остаток, то он отбрасывается.

Операцию продолжаем, пока слева не останется 1. Затем вычеркнем те строчки, в которых слева стоят четные числа и сложим оставшиеся числа в правом столбце. Это и есть искомое произведение. Дана графическая иллюстрация по данному описанию. (см. Таблицу 2.)

Таблица 2.

  1. Квадрат Пифагора.

1 2 3

4 5 6

7 8 9

Это всем известный Квадрат Пифагора, отражающий мировую систему счисления, состоящую из девяти цифр: от 1 до 9. Выражаясь современным языком – это девяти разрядная числовая матрица, в которой цифры, являющиеся основой для дальнейших вычислений любой сложности расположены в порядке возрастания. Квадрат Пифагора называют и Эннеадой, а тройку цифр - триада. Можно рассматривать тройки цифр расположенные по горизонтали (123, 456, 789) и по вертикали(147, 258, 369). Причем, записанные таким образом, тройки цифр начинают обозначать уже особые числа, подчиняющиеся законам математической пропорции и гармонии.

Вспомним главное правило древнеегипетской математики, в котором сказано, что умножение производится при помощи удвоения и сложения полученных результатов; то есть каждое удвоение есть сложение числа с самим собой. Поэтому интересно посмотреть на результат подобного удвоения цифр и чисел, но полученному современным методом складывания « в столбик», известному даже в начальных классах школы. Это будет напоминать египетскую систему счисления, по сути, с разницей в том, что все цифры либо числа записываются в один столбик (без указания того или иного действия в соседнем столбике - как у египтян).

Начнем с цифр, составляющих Квадрат Пифагора: от 1 – до 9.

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

10 20 30 40 50 60 70 80 90

Цифра 1: обычный последовательный ряд цифр.

Цифра 9: левый столбик - четкий восходящий ряд («поток»).

правый столбик - четкий нисходящий ряд последовательных цифр. Условимся называть восходящим ряд, значения чисел в котором увеличиваются сверху вниз; в нисходящем же – наоборот: уменьшаются значения чисел сверху вниз.

Цифра 2: в правом столбике повторяются четные цифры 2,4,6,8 («в периоде»).

Цифра 8: такой же повтор - только в обратном порядке- 8,6,4,2.

Цифры 4 и 6: четные цифры «в периоде» 4,8,2,6 и 6,2,8,4.

Цифра 5: подчиняется правилу сложения цифры 5- чередование 5 и 0.

Цифра 3: правый столбик - нисходящий ряд уже не цифр, а чисел, образующих тройки вертикальных рядов в квадрате Пифагора- 369, 258, 147. Причем, отсчет идет «из правого угла квадрата» или справа налево. Здесь также действует принятое выше правило восходящего - нисходящего ряда. Но восходящий ряд – это движение от тройки чисел 147 до тройки 369; нисходящий - от 369 до 147.

Цифра 7: восходящий ряд чисел 147,258,369 из «левого угла» или слева направо. Впрочем, все зависит от того, как изображена сама девятиразрядная числовая матрица - где поставить цифру 1.

  1. Таблица Оконешникова.

Школьники смогут научиться устно складывать и умножать миллионы, биллионы и даже секстиллионы с квадриллионами. А поможет им в этом кандидат философских наук Василий Оконешников, по совместительству изобретатель новой системы устного счёта. Учёный утверждает, что человек способен запоминать огромный запас информации, главное – как эту информацию расположить.
По мнению самого учёного, наиболее выигрышной в этом отношении является девятеричная система – все данные просто располагают в девяти ячейках, расположенных, как кнопочки на калькуляторе.

По мысли учёного, прежде чем стать вычислительным «компьютером», необходимо вызубрить созданную им таблицу. Цифры в ней распределены в девяти клетках непросто. Как утверждает Оконешников, глаз человека и его память так хитро устроены, что информация, расположенная по его методике, запоминается во-первых, быстрее, а во-вторых – намертво.
Таблица разделена на 9 частей. Расположены они по принципу мини калькулятора: слева в нижнем углу «1», справа в верхнем углу «9». Каждая часть – таблица умножения чисел от 1 до 9 (опять же в левом нижнем углу на 1, рядом правее на 2 и т.д., по той же «кнопочной» система). Как ими пользоваться?
Например , требуется умножить 9 на 842 . Сразу вспоминаем большую «кнопку» 9 (она вверху справа и на ней мысленно находим маленькие кнопочки 8,4,2 (они также расположены как на калькуляторе). Им соответствуют числа 72, 36, 18. Полученные числа складываем особо: первая цифра 7 (остаётся без изменения), 2 мысленно складываем с 3, получаем 5 – это вторая цифра результата, 6 складываем с 1, получаем третью цифру -7, и остаётся последняя цифра искомого числа – 8. В результате получилось 7578.
Если при сложении двух цифр получается число, превосходящее девять, то его первая цифра прибавляется к предыдущей цифре результата, а вторая пишется на «своё» место.
С помощью матричной таблицы Оконешникова по утверждению самого автора, можно изучать и иностранные языки, и даже таблицу Менделеева. Новая методика была опробована в нескольких российских школах и университетах. Минобразования РФ разрешило публиковать в тетрадях в клеточку вместе с привычной таблицей Пифагора новую таблицу умножения – пока просто для знакомства.

Пример : 15647 х 5

  1. Индийский способ умножения.

В древней Индии применяли два способа умножения: сетки и галеры. На первый взгляд они кажутся очень сложными, но если следовать шаг за шагом в предлагаемых упражнениях, то можно убедиться, что это довольно просто.

Умножаем, например, числа 6827 и 345 :

1. Вычерчиваем квадратную сетку и пишем один из номеров над колонками, а второй по высоте. В предложенном примере можно использовать одну из этих сеток.

Сетка 1 Сетка 2

2. Выбрав сетку, умножаем число каждого ряда последовательно на числа каждой колонки. В этом случае последовательно умножаем 3 на 6, на 8, на 2 и на 7. Посмотри на этой схеме, как пишется произведение в соответствующей клетке.

Сетка 1

3. Посмотри, как выглядит сетка со всеми заполненными клетками.

Сетка 1

4. В заключение складываем числа, следуя диагональным полосам. Если сумма одной диагонали содержит десятки, то прибавляем их к следующей диагонали.

Сетка1

Посмотри, как из результатов сложения цифр по диагоналям (они выделены жёлтым фоном) составляется число 2355315 , которое и является произведение чисел 6827 и 345, то есть 6827 х 345 = 2355315.

  1. Египетский способ умножения.

Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать. Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное перемножение на второй множитель (см. пример). Этот метод можно и сегодня встретить в очень отдаленных регионах.

Разложение. Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:

1 x 2 = 2 2 x 2 = 4 4 x 2 = 8 8 x 2 = 16 16 x 2 = 32

Пример разложения числа 25: Кратный множитель для числа «25» - это 16; 25 - 16 = 9. Кратный множитель для числа «9» - это 8; 9 - 8 = 1. Кратный множитель для числа «1» - это 1; 1 - 1 = 0. Таким образом «25» - это сумма трех слагаемых: 16, 8 и 1.

Пример : умножим « 13 » на « 238 » . Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: ✔ 1 х 238 = 238 ✔ 4 х 238 = 952 ✔ 8 х 238 = 1904 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 1904 + 952 + 238 = 3094.

  1. Китайский способ умножения.

А теперь представим метод умножения, бурно обсуждаемый в Интернете, который называют китайским. При умножении чисел считаются точки пересечения прямых, которые соответствуют количеству цифр каждого разряда обоих множителей.

Пример : умножим 21 на 13 . В первом множителе 2 десятка и 1единица, значит строим 2 параллельные прямые и поодаль 1 прямую.

Во втором множителе 1 десяток и 3 единицы. Строим параллельно 1 и поодаль 3 прямые, пересекающие прямые первого множителя.

Прямые пересеклись в точках, количество которых и есть ответ, то есть 21 х 13 = 273

Забавно и интересно, но проводить 9 прямых при умножении на 9 как-то долго и неинтересно, а потом еще точки пересечения считать… В общем, без таблицы умножения не обойтись!

  1. Японский способ умножения.

Японский способ умножения – это графический способ с использованием кругов и линий. Не менее забавный и интересный чем китайский. Даже чем-то на него похож.

Пример: умножим 12 на 34. Так как второй множитель двузначное число, а первая цифра первого множителя 1 , строим два одиночных круга в верхней строке и два двоичных круга в нижней строке, так как вторая цифра первого множителя равна 2 .

12 х 34

Так как первая цифра второго множителя 3 , а вторая 4 , делим круги первого столбца на три части, второго столбца на четыре.

12 х 34

Количество частей, на которые разделились круги и является ответом, то есть 12 х 34 = 408.

  1. Заключение.

Работая над этой темой мы узнали, что существует много различных, забавных и интересных способов умножения. Некоторыми в различных странах пользуются до сих пор. Но не все способы удобны в использовании, особенно при умножении многозначных чисел. В общем, таблицу умножения все-таки знать нужно!

Данная работа может быть использована для занятий на математических кружках, дополнительных занятиях с детьми во внеурочное время, как дополнительный материал на уроке по теме «Умножение натуральных чисел». Материал изложен доступно и интересно, что привлечёт внимание и интерес учащихся к предмету математика.

  1. Литература.
  1. И.Я. Депман, Н.Я. Виленкин “За страницами учебника математики”.
  2. Л.Ф. Магницкий «Арифметика».
  3. Журнал «Математика» №15 2011г.
  4. Интернет-ресурсы.