План

1. Денатурация и коагуляция белков: физико-химическая сущность.

2. Деструкция белков: физико-химическая сущность.

3. Влияние изменения белков на их пищевую ценность.

4. Проблема белковой недостаточности и пути ее решения.

1. Денатурация и коагуляция белков: физико-химическая сущность

Денатурация – нарушение пространственной структуры белковой молекулы под воздействием внешних факторов, чаще всего нагревания, которые приводят к изменениям природных свойств белка. С физической точки зрения денатурацию рассматривают как разупорядочение конформации полипептидной цепи без изменения первичной структуры. Денатурация может быть тепловой (в результате нагревания), поверхностной (при встряхивании, взбивании), кислотная или щелочная (в результате воздействия кислот и щелочей). Тепловая денатурация сопровождает изменение пищевых продуктов практически во всех процессах кулинарной обработки белоксодержащих продуктов.

Механизм тепловой денатурации: при комнатной температуре определенная пространственная укладка белковой глобулы сохраняется за счет поперечных связей между участками полипептидной цепи: водородных, дисульфидных (-S-S-). Эти связи не прочны, но обладают достаточной энергией, чтобы удерживать полипептидную цепь в свернутом состоянии. При нагревании белков усиливается тепловое движение атомов и полипептидных цепей белковых молекул, в результате поперечные связи разрушаются, ослабляются гидрофобные взаимодействия между боковыми цепями. В результате полипептидная цепь разворачивается, важную роль при этом играет вода: она проникает в участки белковой молекулы и способствует развертыванию цепи. Полностью обезвоженные белки, выделенные в кристаллическом виде, очень устойчивы и не денатурируют даже при длительном нагревании до температуры 100ºС и выше. Развертывание белковой глобулы сопровождается образованием новых поперечных связей, особенно активными при этом становятся дисульфидные.

Денатурация глобулярных белков протекает путем развертывания белковой глобулы и последующем ее сворачивании по новому типу. Прочные ковалентные связи при такой перестройке не разрушаются.

Денатурация фибриллярных белков (например, коллагена соединительной ткани мяса): связи, удерживающие пространственную структуру в виде спирали разрываются и нить белка сокращается, при длительной тепловой обработке коллагеновые волокна превращаются в стекловидную массу.

Денатурация сопровождается изменением важнейших свойств белка: потерей биологической активности (инактивация ферментов), видовой специфичности (изменение окраски, например, мяса), способности к гидратации (при изменении конформации на поверхности белковой глобулы появляются гидрофобные группы, а гидрофильные оказываются блокированными в результате образования внутримолекулярных связей), улучшением атакуемости протеолитическими ферментами, повышением реакционной способности белков, агрегированием белковых молекул. А



Агрегирование – взаимодействием денатурированных молекул белка с образованием более крупных частиц. Внешне это выражается по-разному: в малоконцентрированных белковых растворах – образование пены (хлопья на поверхности бульонов), в более концентрированных белковых растворах – образование сплошного геля при их одновременном уплотнении и отделении жидкости в окружающую среду (дегидратации). Так происходит денатурация белков в мясе, рыбе, яйце. Величина дегидратации зависит от кислотности среды – при подкислении влаги теряется меньше, так при мариновании мяса птицы, рыбы изделия получаются более сочными.

В неденатурированном состоянии белки представляют собой золь (раствор), в результате денатурации происходит переход раствора в студень (гель). Если белок находится в высококонцентрированном состоянии, то в процессе варки образуется сплошной студень, который охватывает весь объем системы (например, белок яйца).

Коагуляция – переход золя в гель, то есть из одного коллоидного состояния в другое. Между процессами денатурации и коагуляции нельзя ставить знак равенства, хотя в большинстве процессов коагуляция сопровождает денатурацию, но иногда и нет. Например, при кипячении молока лактоальбумин и лактоглобулин денатурируют и коагулируют, а казеин в тоже время не меняет своего коллоидного состояния.

Каждый белок имеет определенную температуру денатурации, Например, для белков рыбы низший температурный уровень денатурации, при котором начинаются видимые денатурационные изменения, составляет около 30ºС, яичного белка – 55ºС.

Изменение рН среды оказывает влияние на температуру денатурации: при значениях рН близких к ИТБ, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Создание кислой среды при тепловой обработке способствует снижению дегидратации и продукт получается более сочным.

Температура денатурации повышается в присутствии других более термостабильных белков и некоторых веществ небелковой природы, например, сахарозы.

2. Деструкция белков: физико-химическая сущность

При изготовлении кулинарной продукции изменения белков не ограничиваются денатурацией: для доведения продуктов до состояния кулинарной готовности нагрев ведут при температуре 100ºС и выше, при этом происходит дальнейшее измение белков, сопровождающееся разрушением макромолекулы белка.

Деструкция – дальнейшие постденатурационные изменения белков, протекающие при температуре 100ºС и выше и сопровождающиеся на первой стадии разрушением макромолекул белка с отделением летучих соединений (аммиака, сероводорода, фосфористого водорода и др.), участвующих в формировании аромата готового изделия. При длительной термической обработке происходит деполимеризация (разрушение белковой цепочки) с образованием водорастворимых азотистых веществ.

Ярким примером деструкции денатурированного белка является переход коллагена в глютин при варке бульонов и студней. Деструкция белков происходит в проивзодстве некоторых видов теста. В этом случае разрушение внутримолекулярных связей в белках происходит при участии протеолитических ферментов, содержащихся в муке и вырабатываемых дрожжевыми клетками.

Деструкция белков может быть целенаправленным приемом кулинарной обработки, способствующим интенсификации технологического процесса (использование ферментных препаратов для размягчения мяса, ослабления клейковины теста, получения белковых гидролизатов и др.)

Гидролиз белков – расщепление полипептидных цепей белковой молекулы с высвобождением аминокислот. Эта реакция протекает под действием ферментов в желудочно-кишечном тракте.

Гидратация белков сопутствует всем технологическим процессам и улучшает усвояемость белков. Денатурация в зависимости от глубины влияет на усвояемость по-разному: при легкой денатурации улучшается усвояемость белка (яйцо всмятку), а при дальнейшем уплотнении (яйцо вкрутую) усвояемость ухудшается. На содержание незаменимых аминокислот ни денатурация, ни коагуляция не влияют.

Уменьшение пищевой ценности связано с сильно длительным нагревом: при варке 2 часа разрушается 5,2% незаменимых аминокислот. Особенно сильное влияние на биологическую ценность оказывает повторный нагрев продуктов выше 100ºС.

Система свертывания состоит из ферментов свертывания, неферментативных белковых кофакторов и ингибиторов свертывания. Целью работы этой системы является образование фермента тромбина, ответственного за превращение фибриногена в фибрин.

Факторы свертывания крови

1. Ферменты , являются сериновыми протеазами (кроме фактора XIII):

  • фактор II – протромбин,
  • фактор VII – проконвертин,
  • фактор IX – антигемофильный глобулин В или фактор Кристмаса,
  • фактор X – фактор Стюарта-Прауэра,
  • фактор XI – антигемофильный глобулин С или фактор Розенталя,
  • фактор XIII – фибринстабилизирующий фактор или фактор Лаки-Лоранда.

2. Белки-кофакторы , не обладающие протеолитической активностью. Роль этих белков заключается в связывании и закреплении ферментативных факторов на мембране тромбоцитов:

  • фактор V – проакцелерин, является кофактором фактора Xа,
  • фактор VIII – антигемофильный глобулин А, является кофактором фактора IXа,
  • фактор Виллебранда.
  • высокомолекулярный кининоген (ВМК, фактор Фитцжеральда-Флюже) – кофактор ф.XII и рецептор прекалликреина. Необходимо иметь в виду, что по новой клеточной теории эти белки относятся к системе фибринолиза.

3. Структурный белок тромбообразования – фактор I (фибриноген ).

Тромбин (фактор II)

Тромбин, ключевой фермент гемостаза, является сериновой протеазой . В печени при участии витамина К происходит синтез его неактивного предшественника – протромбина , который в дальнейшем циркулирует в плазме. В плазме крови превращение протромбина в тромбин происходит непосредственно под действием фактора Xa (совместно с Va).

Функции тромбина в гемостазе

В зоне коагуляции:

  • превращение фибриногена в фибрин -мономеры,
  • активация фибрин-стабилизирующего фактора (ф.XIII, трансглутаминаза),
  • ускорение свертывания через активацию факторов V, VIII, IX, XI (положительная обратная связь ),
  • активация тромбоцитов (секреция гранул),
  • в комплексе с тромбомодулином (в высоких концентрациях) активирует TAFI (thrombin activatable fibrinolysis inhibitor ),
  • активация гладкомышечных клеток,
  • стимулирование хемотаксиса лейкоцитов,

Вне зоны коагуляции

  • в комплексе с тромбомодулином активирует протеин С ,
  • стимулирует секрецию из эндотелиальных клеток простациклина и t-PA .

Фибриноген (фактор I)

Фибриноген (фактор I) – большой многокомпонентный белок, который состоит из трех пар полипептидных цепей – Аα, Вβ, γγ, связанных между собой дисульфидными мостиками. Пространственная структура молекулы фибриногена представляет собой центральный Е-домен и 2 периферических D-домена, α- и β-цепи на N-конце имеют глобулярные структуры – фибринопептиды А и В (ФП-А и ФП-В), которые закрывают комплементарные участки в фибриногене и не позволяют этой молекуле полимеризоваться.

Строение фибриногена

Синтез фибриногена не зависит от витамина К, происходит в печени и в клетках РЭС. Некоторое количество фибриногена синтезируется в мегакариоцитах и в тромбоцитах. Превращение фибриногена в фибрин происходит под влиянием тромбина .

Фибринстабилизирующий фактор

Фибринстабилизирующий фактор (фактор XIII) относится к семейству ферментов трансглутаминаз. Он синтезируется в печени и в тромбоцитах, в плазме крови большая часть неактивного фактора ХIII связана с фибриногеном. Активация фактора ХIII происходит при помощи тромбина способом ограниченного протеолиза из неактивного предшественника.

Как и большинство других ферментов, фактор XIII выполняет в гемостазе несколько функций:

  • стабилизирует фибриновый сгусток путем образования ковалентных связей между γ-цепями мономеров фибрина,
  • прикрепляет фибриновый сгусток к фибронектину внеклеточного матрикса,
  • участвует в связывании α2-антиплазмина с фибрином, что способствует предотвращению преждевременного лизиса фибринового сгустка,
  • необходим тромбоцитам для полимеризации актина, миозина и других белков цитоскелета, используемых при ретракции фибринового сгустка.

Для достижения данной цели кровь и форменные элементы подвергают нагреву - коагуляции.

В процессе нагрева происходит изменение свойств белков, содержащихся в крови и кровепродуктах. Наиболее характерными и основными изменениями при нагревании являются тепловая денатурация растворимых белковых веществ. В процессе денатурации происходит изменение структуры белковой молекулы, которое приводит к заметным изменениям свойств без нарушения состава. Глобулярные белки развертывают сложенные в складки полипептидные цепи, образующие глобулы молекулы. Перестройка структуры происходит в результате разрыва некоторых внутримолекулярных связей в белковой молекуле при нагреве.

Денатурированный белок отличается от природного многими свойствами и признаками. Температура, при которой происходит денатурация, для различных белков различна, но для определенного белка постоянна. Так, альбумин крови денатурирует при температуре 67 °С, глобулины — 69-75, фибриноген - 56, гемоглобин - около 70 °С. Таким образом, основные денатурационные изменения белков крови завершаются при температуре около 70 °С. Нейтральные соли щелочных металлов, например поваренная соль, повышают устойчивость белков к тепловой денатурации. Высокими защитными действиями обладают также сахара и анионы жирных кислот, содержащих 7-12 углеродных атомов. Способность таких веществ к повышению устойчивости белков к денатурации может быть использована при концентрировании крови и ее плазмы методом выпаривания в условиях более высоких температур.

К характерным признакам процесса денатурации белков относятся потеря белками растворимости в воде, потеря биологических свойств биологически активными белками, в частности ферментами, лучшая переваримость под воздействием ферментов желудочно-кишечного тракта, потеря способности кристаллизоваться.

В результате денатурации возможно возникновение хаотических связей между полипептидными цепями как внутри молекулы, так и между молекулами различных белков. Следствием таких изменений является потеря белками гидрофильности, происходит их агрегация, коагуляция. При этом образуется нерастворимый сгусток. Дальнейший нагрев коагулята сопровождается его уплотнением с выделением части жидкости. Коагуляция белков крови при тепловой обработке происходит всегда и ускоряется с повышением температуры.

В условиях сухого нагрева (без воды) белков при высокой температуре происходит пирогенный процесс, который приводит к получению продуктов распада, обладающих темным цветом. В результате этих изменений на поверхности аппаратуры образуется корочка, которая ухудшает тепломассообмен между теплоносителем (паром) и обрабатываемым сырьем. Поэтому увеличивается продолжительность процесса и затрачивается дополнительное количество тепло — и электроэнергии.

Пирогенного распада белков можно избежать при кратковременной сушке коагулята или крови в условиях высокой температуры. Для улучшения тепломассообмена в сушильных аппаратах периодического действия в них наряду с кровью или кровепродуктами загружают небольшое количество кости, которая в процессе обработки счищает, с внутренней поверхности аппарата корочки сырья.

Тепловая обработка крови и кровепродуктов сопровождается также потерями водорастворимых витаминов. Наименьшей устойчивостью обладают витамины С, D, В, никотиновая и пантотеновая кислоты.

Установлено, что при варке потери тиамина (витамина B 1) составляют 50%, а рибофлавина (витамин В 2) - 35 %.

Для коагуляции крови с целью полного завершения свертывания белка ее достаточно нагреть до температуры 80 °С. Практически температуру доводят до 80-90 °С. При этом погибает значительное количество содержащихся в крови микроорганизмов. Процесс коагуляции считают законченным, если кровь приобретает равномерный коричневый или коричнево-красный цвет.

Коагуляцию белков можно осуществлять с помощью острого или глухого пара. Чаще применяют острый пар, для чего используют металлические емкости открытого типа, к которым подведен паропровод, оканчивающийся перфорированным змеевиком. При этом способе выгрузку коагулята производят вручную.

Коагуляция в передувочных баках дает возможность совмещать в одном аппарате коагулирование, транспортирование и частичное отделение влаги. Процесс осуществляется следующим образом. После загрузки крови в бак в него впускают острый пар (через нижний змеевик) до тех пор, пока из вытяжной трубы не начнет выходить его струя (примерно через 15 мин). По окончании коагуляции прекращают доступ пара и дают массе отстояться в течение 5 мин, после чего отбирают пробу отстоявшейся жидкости. Если она имеет коричневый цвет и не мутнеет при нагревании до температуры 100 °С, это означает, что процесс отстаивания закончен. В противном случае оставляют массу в передувочном баке еще на 10-15 мин. Отстоявшуюся жидкость сливают через спускную трубу в днище аппарата и, закрыв вытяжную трубу, пускают в передувочный бак пар через паропровод, имеющийся в верхней его части. При этом коагулированная кровь передувается через трубопровод в вакуумный котел или сушилку в течение 2-3 мин.

При коагуляции крови глухим паром процесс нагревания протекает неравномерно и длительно, а на поверхности нагрева образуется слой коагулированных белков, который ухудшает теплопередачу и затрудняет очистку поверхности нагрева.

Более эффективное коагулирование достигается при использовании коагуляторов непрерывного действия шнекового и инжекторного типов.

Коагулятор непрерывного действия шнекового типа представляет собой изолированный снаружи одностенный металлический сосуд со сферическим дном. В нем установлен шнек. Коагулятор снабжен плотно закрывающейся крышкой с загрузочным люком (диаметр горловины 200 мм) и периодически открывающимся питателем, который обеспечивает равномерную принудительную подачу крови в рабочую часть аппарата и предотвращает потери пара в атмосферу. Вращение передается шнеку через звездочку. От вала шнека (частота вращения 0,2 с -1) через приводную звездочку, цепную передачу и звездочку приводится в действие питатель.

В торцевой части коагулятора у загрузочного люка находятся паровой вентиль и перфорированная труба, через которую внутрь аппарата вводится пар давлением не менее 0,2 МПа. Разгрузочный люк расположен в противоположном конце аппарата.

Коагуляция крови осуществляется следующим образом. Цельная кровь (со сгустками) из сборного бака поступает в аппарат самотеком по кровепроводу диаметром 38-50 мм, встречаясь с током острого пара, нагревается до температуры 90-95 °С в течение 15 с. При одновременной подаче пара и крови создаются условия для их поточного продвижения и интенсивного смешивания, что исключает перегрев и предотвращает образование крупных комков. Шнек продвигает коагулят к противоположному концу аппарата, где он выгружается через люк диаметром 360 мм. При частоте вращения шнека 0,1 с -1 выгрузка коагулята происходит через 1,5 мин после поступления крови в аппарат. Шнек коагулятора отжимает часть жидкости, содержащей 0,3% белка. Производительность коагулятора по цельной крови составляет 120 кг/ч. Ее можно регулировать с помощью пробкового крана, установленного на кровепроводе перед загрузочным люком. Через 3-4 ч работы аппарат очищают от крови, прилипающей к шнеку. Для этого открывают крышку аппарата и с помощью шланга промывают шнек и вращающийся питатель горячей воды.

Коагулятор инжекторного типа фирмы «Альфа Лаваль» (Швеция) представляет собой цилиндрический резервуар, внутри которого установлен смеситель, снабженный паровой форсункой и жалюзной камерой. Кровь, поступающая через патрубок, интенсивно разбивается на тонкие струйки паром. Она коагулирует, проходит через дросселирующий вентиль и через патрубок поступает в нагнетательную трубу, направляющую ее на дальнейшую переработку. Наличие в коагуляторе дросселя, регулируемого маховиком, позволяет устанавливать необходимую пропускную способность установки, степень смешивания массы (кровь и пар), а также давление в нагнетательной трубе. Преимущество данной конструкции заключается в возможности регулирования процесса коагулирования крови. Однако возможно прилипание крови к дросселирующему вентилю при повороте парокровяной струи из смесителя к нагнетательной трубе.

На Улан-Удэнском мясоконсервном комбинате разработана и эксплуатируется установка для коагуляции крови, которая состоит из прямоугольного металлического корпуса со сферическим дном и шнека для перемешивания крови во время коагуляции и выгрузки коагулята. В крышку корпуса вмонтирован загрузочный люк с периодически открывающимся питателем, обеспечивающим равномерную подачу крови и предотвращающим потери пара в атмосферу. С обеих сторон корпуса расположены три штуцера для подачи пара под давлением 0,2-0,3 МПа. В днище противоположного конца коагулятора имеется разгрузочный люк. Для предотвращения вытекания крови коагулятор установлен с уклоном в сторону питателя. Шнек приводится во вращение от электродвигателя через редуктор и цепную передачу. Вращение вала питателя осуществляется от вала шнека через звездочки цепной передачи. Все вращающиеся части коагулятора должны быть ограждены.

Коагуляция крови осуществляется следующим образом. Поступая самотеком через питатель в коагулятор и встречаясь с потоком острого пара, кровь нагревается до температуры 90-95 °С, коагулируется, перемешивается шнеком и продвигается к разгрузочному люку.

Применение установки описанной конструкции обеспечивает непрерывность процесса, более полную и равномерную коагуляцию крови.

Фактический расход пара на процесс коагуляции составляет 12- 13 кг на 100 кг крови. Выход коагулята влажностью 80% при коагулировании цельной крови составляет 80%, а при коагулироващш фибрина - 75 % исходного сырья. Содержание влаги в коагуляте зависит от способа коагулирования, но остается довольно высоким - 86-87,5% при применении острого пара и 76-81 % при коагуляции глухим паром.

Предварительное удаление влаги из коагулята перед его сушкой имеет важное значение, так как позволяет сократить расход тепла.

Для обезвоживания коагулята крови наиболее эффективными оказались отстойные центрифуги, пршщип действия которых заключается в следующем. Твердые частицы загруженной массы, имеющие большую плотность, чем жидкая фаза, осаждаются под действием центробежной силы на боковых стенках ротора, формируясь в виде кольцевого слоя ближе к оси вращения. В непрерывнодействующих центрифугах загрузка коагулята, а также отвод разделенных компонентов происходит в процессе работы.

Наибольшее распространение для обезвоживания коагулята крови получили непрерывнодействующие шнековые центрифуги отстойного типа.

Непрерывнодействующая центрифуга ОГШ-321К-01 состоит из станины, ротора, внутри которого помещен шнек с планетарным редуктором, получающим вращение непосредственно от ротора (цапфы последнего находятся в двух опорах). Основным узлом центрифуги является ротор цилиндрической формы, расположенный горизонтально на двух опорах-подшипниках (правой и левой). С торца ротор закрыт цапфами-крышками, которыми он опирается на подшипники.

Ротор приводится в действие от электродвигателя с помощью клиноременной передачи, огражденной кожухом. Внутри ротора расположен шнек, который предназначен для транспортирования коагулята к разгрузочным окнам ротора. Вращение передается через специальный планетарный редуктор, который обеспечивает вращение шнека в одну сторону с ротором, но с некоторым отставанием. Наличие разности в частоте вращения шнека и ротора создает условия для принудительного перемещения осадка вдоль внутренней поверхности ротора. Через полые цапфы ротора и шнека проходит питающая труба, по которой подводится скоагулированная кровь во внутреннюю полость барабана шнека, откуда она через окна выбрасывается во внутреннюю полость ротора.

Ротор в собранном виде состоит из трех основных частей: левой и правой цапф и полого цилиндрического барабана. Вращается он на двух опорных подшипниках. Цапфы ротора одновременно служат днищами, закрывающими барабан с торца. На торцевой поверхности правой цапфы имеются сливные окна, которые перекрываются сливными полудисками. Через указанные отверстия сливается отделяющаяся вода. На торцевой поверхности левой цапфы ротора имеются окна для выгрузки отжатого коагулята.

Шнек является одним из основных узлов центрифуги. Он предназначен для транспортирования коагулята и состоит из полого цилиндрического барабана, на наружной поверхности которого приварены витки спирали. Внутри полого барабана сделаны перегородки, образующие три камеры для приема массы. Камеры имеют по восемь разгрузочных окон. К торцам барабана шнека прикреплены цапфы, образующие опорные шейки шнека. Левая цапфа шнека снабжена шлицами, которыми соединяется с водилом второй ступени планетарного редуктора. Шнек опирается цапфами на подшипники, вмонтированные в цапфы ротора. В правую цапфу ротора вмонтирован радиальный шарикоподшипник, который воспринимает осевые нагрузки от шнека, возникающие при транспортировании шнеком отжатого коагулята к разгрузочным окнам.

Планетарный редуктор предназначен для передачи вращения ротора к шнеку. Редуктор состоит из литого цилиндра, к которому с торцов болтами прикреплены крышки. Правая крышка прикреплена к фланцу, посаженному на левую цапфу ротора. В крышке редуктора со стороны ротора установлены резиновые манжеты, препятствующие утечке масла из редуктора и попаданию в него пыли и грязи.

В корпус редуктора вмонтированы два зубчатых венца с внутренним зацеплением первой и второй ступеней редуктора. Они установлены на подшипниках. В водиле первой ступени установлено два, а в водиле второй ступени - три сателлита, которые находятся в зацеплении одновременно с венцами и центральными шестернями.

Кожух служит защитой от попадания во вращающиеся части ротора посторонних предметов. Кроме того, он препятствует проникновению жидкой фракции в камеру отжатого продукта. Внутренняя часть кожуха, имеет левую и правую камеры. В левую камеру поступает отжатая твердая фракция (коагулят), а в правую - жидкая (вода).

Ротор центрифуги опирается цапфами на две опоры, каждая из которых состоит из корпуса, крышки, двух боковых крышек и радиального шарикоподшипника. Механизм защиты редуктора предохраняет редуктор и шнек центрифуги от перегрузки и поломки. В корпусе механизма защиты установлена пружина, которая воспринимает усилия при работе центрифуги.

В случае мгновенной значительной перегрузки или заклинивания шнека рычаг опрокидывает кулачковый рычаг, и укрепленная на последнем пластинка нажимает на кнопку микропереключателя, который установлен на корпусе механизма защиты и сблокирован с электродвигателем центрифуги. При этом, электродвигатель отключается, и включается звуковой сигнал. Планетарный редуктор огражден кожухом.

Процесс обезвоживания коагулированной крови в центрифуге протекает следующим образом. Коагулированная кровь температурой 80-90 °С через питающую трубу поступает под напором 9,5- 14,2 кПа во внутреннюю полость конического барабана, где под действием центробежных сил происходит отделение твердой фракции коагулята от жидкой (воды). Коагулят осаждается на стенках вращающегося ротора, а затем транспортируется шнеком к разгрузочным окнам, в зоне обезвоживания влага „удаляется из коагулята. Жидкость температурой 70-72 °С устремляется по направлению к широкой стороне ротора и через сливные окна в правой цапфе выбрасывается в приемный отсек кожуха, откуда под действием собственной массы падает вниз. Процесс отделения твердой фракции от жидкой, выгрузка коагулята и слив фугата происходят непрерывно. Продолжительность прохождения скоагулированной массы и разделения на фракции через ротор центрифуги составляет 15 с, При подаче скоагулированной крови насосом в центрифугу избыточное давление не должно превышать 0,095 МПа.

Диаметр подающей трубы трубопровода скоагулированной крови при поступлении самотеком должен быть 50,8 мм, а при подаче насосом - 38,1 мм. Регулирующий и запорно-спускной вентили с манометром помещают около центрифуги. За регулирующим вентилем в системе присоединяют напорную линию, по которой подается вода для промывки и наполнения барабана перед пуском в работу.

Если скоагулированная кровь содержит большое количество твердых частиц, то перед ее поступлением целесообразно вводить в центрифугу горячую воду сразу после запуска центрифуги. Для очистки барабана по окончании работы достаточно промыть его чистой водой, не выключая электродвигатель.

Пуск центрифуги в работу осуществляют следующим образом. Перед пуском необходимо убедиться, в наличии в редукторе и подшипниках смазки. Затем на непродолжительный период включают электродвигатель и проверяют правильность его включения - вращение ротора должно быть по часовой стрелке, если смотреть со стороны подачи скоагулированной крови. При достижении центрифугой установленной частоты вращения подают скоагулированную кровь.

В процессе работы центрифуги необходимо периодически следить за нагревом масла в редукторе, температурой коренных подшипников. Так, температура нагрева масла в подшипниках не должна превышать 60-65 °С. Работать на машине можно только при закрытой крышке, которая должна быть плотно прижата к кожуху. Нельзя подавать в центрифугу жидкую массу, содержащую куски размером более 5-6 мм. 100

В последние годы нашли применение непрерывнодействующие установки для коагуляции крови и обезвоживания коагулята. Переработка крови на данных установках заключается в следующем. Отфильтрованная кровь по кровепроводу поступает в сборник, из которого она винтовым насосом перекачивается в промежуточный сосуд с мешалкой вместимостью 400 дм 3 . Здесь кровь подогревается острым паром до температуры 55 °С, что исключает его свертывание. Подогретая кровь легко стекает по трубе в винтовой насос производительностью 2-3 м 3 /ч, снабженный специальным регулятором скорости, который подает кровь в паровой непрерывнодействующий коагулятор. Количество пара, подаваемого в коагулятор, регулируют вентилем в зависимости от температуры коагулируемой крови, которую при выходе из коагулятора рекомендуется поддерживать на уровне 80 °С.

Наличие в коагуляторе дросселя, регулируемого маховичком, позволяет установить требуемую пропускную способность установки, давление в нагнетательной трубе и необходимую степень перемешивания массы крови и пара. Коагулированная масса крови под напором, создаваемым насосом, подается в отстойную центрифугу, где из нее отжимается до 75 % воды. Одновременно получается обезвоженный коагулят. Отделенная вода направляется через воронку в канализацию. Обезвоженный коагулят поступает по спуску на сушку. Подача воды для промывки оборудования осуществляется по трубопроводам.

Для нагрева 1000 кг крови до температуры от 20 до 90 “С расходуют 130 кг пара. При этом получают 387 кг обезвоженного коагулята и 743 кг воды. В обезвоженном коагуляте содержится 49% сухого остатка и 51% воды, а в отделенной на центрифуге воде находится 1,3% сухого остатка. Таким образом, процесс обработки коагулята на центрифуге позволяет удалить около 75 % воды, имеющейся в исходной крови. Общие потери сухого остатка составляют 10 кг на 1000 кг крови, что составляет 5 % его содержания в 1000 кг крови.

Возможность отделить при центрифугировании 75% воды, имеющейся в исходном сырье, позволяет сэкономить на каждые 1000 кг перерабатываемой крови 724 кг пара, который необходим для испарения влаги при сушке необезвоженной крови.

Непрерывнодействующая установка для обезвоживания коагулята проста в обслуживании,» сокращает продолжительность переработки крови и позволяет получить продукт с высоким содержанием белка. Она занимает небольшую производственную площадь (при производительности 600 и 2200 кг/ч — 5,5 м 2).

Кроме тепловой коагуляции, кровь с целью максимального выделения белков обрабатывают химическими веществами. Такой метод обработки получил название химической коагуляции крови. В США для химической коагуляции крови крупного рогатого скота и свиней используют полифосфат натрия, треххлористое железо, лигнин и лигносульфонат натрия. Обработку крови указанными веществами производят в кислой среде при pH 3,5-4,5. Полученный коагулят нейтрализуют щелочами и обрабатывают на центрифуге для обезвоживания. Наиболее эффективным для коагуляции крови оказался лигносульфонат натрия. Преимущество химической коагуляции заключается в простоте процесса и снижении расхода пара.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Коагуляция молока – это ни что иное как превращение его в гель (сгусток), то есть его свертывание.

Представляет собой связанную твердую фракцию белков молока с присутствием растворенных жиров, которую потом можно легко отделить от жидкой (сыворотки).

Коагуляция белка молока бывает скрытой и истинной. При скрытой коагуляции мицеллы связываются друг с другом не всей поверхностью, а только на некоторых ее участках, образуя пространственную мелкоячеистую структуру, которая называется гелем.

При дестабилизации всех или большинства частиц дисперсной фазы гель охватывает весь объем дисперсной среды (исходного молока).

Скрытую коагуляцию называют просто коагуляцией, гелеобразованием или свертыванием.

Истинная коагуляция заключается в полном слиянии коллоидных частиц и выпадении дисперсной фазы в осадок или всплывании.

Коагулянты — это вещества, которые выполняют несколько функций, но самое главное — формируют желеобразный сгусток — отделяют плотные фракции молока от жидких.

Для этой цели раньше использовали только , который получают из желудков телят.

Именно этот фермент в желудках телят (химозин) помогает им сквашивать молоко матери для питания.

В современном мире для формирования сгустка (также его называют калья) используют:

  • Телячий сычужный фермент (сычуг), изготовленный из желудков телят (молокосвертывающий фермент — химозин).
    Он бывает порошкообразным, пастообразным и жидким. Именно химозин (из телячьего сычужного фермента или искусственно выращенный химозин) лучше всего подходит для производства твердых и полумягких сыров.
  • Пепсины – экстракты желудков других домашних животных. Главным образом используют коровий или , также в продаже есть свиной и куриный пепсины, однако они очень чувствительны к кислотности и нестабильны. Их использование не рекомендовано.
    Коровий пепсин (особенно в смеси с химозином) можно использовать для производства рассольных сыров (брынза, сулугуни). Для производства мягких, полумягких и твердых сыров пепсины использовать не рекомендуется.
  • Микробиальный реннин (микробиальный пепсин) – некоторые дрожжи, плесени и грибы естественным образом продуцируют пригодные для коагуляции ферменты. Наиболее широко используются ферменты, полученные из микроскопического гриба Rhizomucor meihei (прежнее название Mucor meihei). Это вегетарианский коагулянт. Примером такого коагулянта может служить .
  • Химозин, полученный путем ферментации (рекомбинированный химозин) – ген телячьего химозина был внедрен в геном нескольких микроорганизмов-хозяев (Kluyveromyces lactis, Aspergilleus niger, Escherichia), в результате чего они стали способны при ферментации продуцировать протеин, полностью идентичный телячьему химозину.
    Этот фермент прекрасно зарекомендовал себя при изготовлении всех видов сыров, где обычно использовался телячий сычужный фермент. Это вегетарианский коагулянт.

Для приготовления свежих сыров, творога, рассольных сыров можно использовать любой коагулянт.

Однако для полумягких и твердых сыров подходит только химозин (животный сычужный фермент или рекомбинированный химозин), поскольку он вместе с молочнокислыми бактериями (заквасками) участвует в формировании консистенции сыра, его вкуса и способности к сохранению длительное время.

При коагуляции белков молочный жир и вода с растворенными веществами (сыворотка) достаточно прочно захватываются образующимся гелем, при осаждении белков только небольшое количество молочного жира и водной фазы может быть механически удержано осадком.

Выработку и созревание сычужных сыров ведут при невысоких температурах и активной кислотности, называемых физиологическими, чтобы обеспечить возможность осуществления биологической трансформации компонентов молока с минимальными потерями пищевой ценности.

При использовании термокислотного метода отделяют жировую фазу молока сепарированием, осаждают белки обезжиренного молока и смешивают их со сливками.

Осаждение заключается в быстром подкислении молока до более низкого, чем изоэлектрическая точка, уровня добавлением кислой сыворотки, кислого молока, лимонного сока, уксусной кислоты и нагревании его до высоких температур (90-95° С).

Таким образом, при энзиматической коагуляции казеин и жир молока концентрируются одновременно, при термокислотном — в результате двух процессов: центробежного и осаждения.

Кислотный метод заключается в свертывании молока в изоэлектрической точке казеина (pH 4,6) путем медленного образования микроорганизмами кислот или внесения в молоко кислот (обычно соляной), или ацидогенов (например, глюколактона); он применяется в производстве свежих сыров или сыров с короткими сроками созревания.

Энзимы, участвующие в созревании сычужных сыров, не проявляют активности в кислотных сырах из-за низкого pH. Степень трансформации белков и липидов молока в кисломолочных сырах ниже, вкусовой букет уже, чем в сычужных сырах.

Кислотно-энзиматический метод является вариантом кислотной коагуляции, с внесением в молоко небольшого количества молокосвертывающих энзимов, недостаточного для энзиматической коагуляции при pH свежего молока.

В этом случае коагуляция молока происходит при pH 5,1-5,4 (в изоточке параказеина). Добавление молокосвертывающих энзимов благоприятно сказывается на скорости свертывания, прочности сгустка и выделении сыворотки, однако при pH кислотносычужной коагуляции молока происходят радикальные изменения мицелл казеина, что резко изменяет структуру сгустка и сыра по сравнению с таковыми при сычужном свертывании.

Сгусток, образующийся при производстве сыров кислотно-энзиматическим методом, по своим свойствам ближе к кислотному сгустку, качество продуктов — ближе к кисломолочным сырам.

Определенное распространение в производстве рассольных и некоторых других сыров получило концентрирование молока ультрафильтрацией.


В тканях животных и растений белки, вследствие их легкой превращаемости, находятся в состоянии непоочной устойчивости. Неизмененные белки, находящиеся в таком первичном состоянии непрочной устойчивости, называются «нативными», или «генуинными». Как известно, между белком и водой, входящей в форме «воды набухания», имеется известная связь. При изменении в коллоидном растворе концентрации и природы солей белок может то еще более диспергироваться, то, наоборот, осаждаться. Эти процессы обратимы. Но при определенных условиях концентрации электролитов белки (альбумины, глобулины) могут быть коагулированы. Коагулированный белок хотя и может быть при определенных условиях переведен в раствор, но его свойства не будут тождественными оо свойствами «наттаного», неизмененного белка.

Коагуляция, ведущая к изменению физико-химических свойств белка, называется денатурацией. Такое изменение свойств белка, связанное с коагуляцией, может происходить в силу разных причин: влияние тепла, света, крепких кислот, щелочей, солей тяжелых металлов, алкоголя, замораживания и в результате воздействия механическими средствами.

Денатурация теплом характерна для двух групп белков - альбуминов и глобулинов, но наблюдается и у других белков. Так, казеиноген при нагревании до 90-100° изменяется с частичной потерей фосфора. Денатурация зависит от температуры, времени, концентрации водородных ионов, от концентрации и природы электролитов. При денатурации происходят не только коллоидные изменения в состоянии вещества, но и структурные изменения в молекулах растворенных белков. Повышение температуры и

присутствие кислот и щелочей способствуют этим изменениям в структурах молекул. Как выше было сказано, казеиноген при высокой температуре денатурируется с частичной потерей фосфора. После денатурации сырого яичного белка нагреванием происходят изменения состояния серы в белковой молекуле.

При современных способах обезвоживания молока, яиц, плодов и овощей стремятся ограничить тепловую денатурацию и тем самым сохранить обратимость свойств белка при использовании этих продуктов для пищевых целей.

Денатурация ультрафиолетовыми лучами и солнечным светом сходна с денатурацией теплом.

Денатурация кислотами, щелочами и солями тяжелых металлов вызывает превращение растворимых белков (альбуминов, глобулинов и казеина) в нерастворимые формы. Чем выше температура, тем при меньшей концентрации рН наступает денатурация. Молоко с повышенной кислотностью при невысокой температуре не свертывается, при нагревании же такого молока наступает свертывание белков молока. При воздействии на белок алкоголя или ацетона белки превращаются полностью в нерастворимую форму.

При действии на белки формальдегида образуются соединения, обладающие отличными от белков свойствами. Казеин под влиянием формальдегида превращается в рогоподобное вещество.

При замораживании белки мышечной ткани частично денатурируются, причем рН, как и при тепловой денатурации, оказывает сильное влияние на скорость денатурации. При рН = 5-6 скорость денатурации быстро возрастает, при рН = 6-7 денатурация идет медленно.

При сильном механическом воздействии на раствор белка в форме встряхивания наступает денатурация с появлением белковых пленок с пузырьками пены на них. Денатурация некоторых белков может наступать при очень высоком давлении.