Что в различных веществах содержится достаточно много элементарных частиц, фундаментальные физические взаимодействия представлены четырьмя типами: сильным, электромагнитным, слабым и гравитационным. Последнее считается самым всеобъемлющим.

Гравитации подвержены все макротела и микрочастицы без исключения. Гравитационному воздействию подвергаются абсолютно все элементарные частицы. Проявляется оно в форме всемирного тяготения. Это фундаментальное взаимодействие управляет самыми глобальными процессами, происходящими во Вселенной. Гравитация обеспечивает структурную стабильность Солнечной системы.

В соответствии с современными представлениями, фундаментальные взаимодействия возникают вследствие обмена частицами. Гравитация формируется посредством обмена гравитонами.

Фундаментальные взаимодействия - гравитационное и электромагнитное - являются по природе своей дальнодействующими. Соответствующие им силы могут проявиться на значительных расстояниях. Указанные фундаментальные взаимодействия при этом имеют свои особенности.

Описано однотипными зарядами (электрическими). При этом заряды могут иметь как положительный, так отрицательный знак. Электромагнитные силы, в отличие от (гравитации), могут выступать в качестве сил отталкивания и притяжения. Данным взаимодействием обуславливаются химические и физические свойства различных веществ, материалов, живой ткани. Электромагнитные силы приводят в действие и электронную и электрическую аппаратуру, связывая при этом между собой заряженные частицы.

Фундаментальные взаимодействия известны за пределами узкого круга астрономов и физиков в разной степени.

Несмотря на меньшую известность (в сравнении с прочими типами), слабые силы играют важную роль в жизни Вселенной. Так, если бы не было слабого взаимодействия, то погасли бы звезды, Солнце. Эти силы относятся к короткодействующим. Радиус приблизительно в тысячу раз меньше, чем у сил ядерных.

Ядерные силы считаются самыми мощными из прочих. Сильным взаимодействием определяются связи только между адронами. Действующие в между нуклонами ядерные силы являются его проявлением. приблизительно в сто раз мощнее электромагнитного. Отличаясь от гравитационного (как, собственно, и от электромагнитного), оно является короткодействующим на расстоянии, которое больше 10-15 м. Кроме того, описание его возможно при помощи трех зарядов, формирующих сложные сочетания.

Радиус действия считается важнейшим признаком фундаментального взаимодействия. Радиусом действия называют максимальное расстояние, которое образуется между частицами. За его рамками взаимодействием можно пренебречь. Малый радиус характеризует силу как короткодействующую, большой радиус - как дальнодействующую.

Как уже отмечалось выше, слабые и сильные взаимодействия считаются короткодействующими. Интенсивность их убывает достаточно быстро при увеличении между частицами расстояния. Указанные взаимодействия проявляются на небольших, недоступных для восприятия посредством органов чувств расстояниях. В связи с этим, данные силы были открыты значительно позже остальных (только в двадцатом столетии). При этом были применены достаточно сложные экспериментальные установки. Гравитационные и электромагнитные виды фундаментальных взаимодействий считаются дальнодействующими. Они отличаются медленным убыванием при увеличении между частицами расстояния и не наделены конечным радиусом действия.

Процессуальный ум. Руководство по установлению связи с Умом Бога Минделл Арнольд

Четыре физические силы

Четыре физические силы

В сегодняшней физике известно четыре вида сил или силовых полей. Давайте рассмотрим их по очереди и попробуем предположить, какие виды психологических переживаний, аналогий и метафор могли бы быть связаны с этими физическими полями. Это поможет нам понять, каким образом силовые поля физики могут быть аспектами процессуального ума.

Электромагнетизм: Электромагнитное поле позволяет магниту поднимать со стола металлическую скрепку. Как я говорил ранее, это поле в некоторых отношениях соответствует повседневному чувству притяжения или отталкивания, предваряемому заигрываниями. Вы чувствуете, что вас привлекают или отталкивают определенные виды людей, когда между вами происходит достаточно заигрываний!

Сильная ядерная сила. Это поле обладает большой силой на коротких расстояниях и может удерживать вместе протоны в ядрах атомов. Представьте себе ядро атома. Протоны заряжены положительно, а нейтроны не имеют заряда. Какая же сила удерживает эти протоны вместе и не дает им отталкивать друг друга, как обычно делают частицы с одинаковым (положительным или отрицательным) зарядом? Сегодня эту силу называют «сильной ядерной силой» (или «сильным взаимодействием». – Прим. пер.). Ее присутствие чувствуется только на коротких расстояниях, только внутри крохотных ядер, но она так мощна, что при нарушении сильного взаимодействия в атомах высвобождается атомная энергия. Нам всем следует знать о сильном взаимодействии. Это важная политическая сила! Как мы знаем, она обладает способностью высвобождать огромное количество энергии из атомных бомб и ядерных реакторов. Знание о сильном взаимодействии – это вопрос жизни, смерти и политики для всех нас на нашей маленькой планете.

Что может быть аналогом сильного взаимодействия в психологии? Это сила, удерживающая вместе наш центр, наше ядро, наш личный миф. В вашем процессуальном уме «сильное взаимодействие» удерживает вместе такие вещи, которые, как вы обычно думали, должны отталкивать друг друга. В любом случае, устанавливая связь с направлением и смыслом своей жизни, вы получаете почти бесконечную энергию. Отвергая эту глубинную суть, вы становитесь подавленным из-за отсутствия энергии. «Сильное взаимодействие» нашего личного мифа или организационного центра может вызывать нас к жизни. Личные мифы подобны ядрам атомов. Устанавливая связь с ними, вы находите энергию и страсть всей жизни. Точно так же, устанавливая связь с основной, подлинной природой кого-либо, вы создаете почти неразрывные узы. Именно поэтому «разрыв» бывает таким бурным! Мифическая сила, заключенная в ядре отношений и организаций может быть удивительной (или разрушительной).

Фукушима Роши, создающий каллиграфию

Слабая ядерная сила . Еще одна ядерная сила, слабая сила (или слабое взаимодействие) не так хорошо понята, как сильное взаимодействие. В стандартной модели физики частиц считается, что слабая ядерная сила, подобно всем другим силам, создается обменом крохотными частицами. Наиболее изученный эффект слабого взаимодействия – это радиоактивный бета-распад атомных ядер с испусканием электронов. Слабое взаимодействие названо так потому, что он в 10 13 раз слабее сильного взаимодействия.

Слабая сила напоминает мне о небольшом порыве ветра, которого достаточно, чтобы вызвать лавину, когда снег почти свисает с обрыва. Точно так же, слабая сила может высвобождать излучение в неустойчивых ядрах.

Психологические аналогии слабой силы имеют место, когда вы находитесь в незавершенной или неустойчивой ситуации. Например, когда вы чувствуете раздражение, маленький «порыв» может заставить вас обезуметь и вызвать вокруг себя «лавины». Если вы уже в дурном настроении, один (маленький слабый) чей-нибудь косой взгляд может вызывать катастрофу! С другой стороны, если вы пребываете в спокойном состоянии процессуального ума, эта маленькая сила способна высвободить внезапное великолепие творчества. Помните свое пребывание в состояниях процессуального ума? В этой глубокой медитации крохотное почти-ничто может порождать новые творческие идеи.

Дзэнские каллиграфы работают со слабой силой. Они сидят в состоянии «не-ума», или «му-шин», а потом вдруг берут свое перо и создают прекрасную каллиграфию. Так работает эта слабая ядерная сила! См. фотографию нашего друга Фукуши-мы Роши, создающего каллиграфию после медитации. Сперва он медитирует, а потом позволяет своему сознанию Дзэн (или тому, что он называет своим «творческим умом») творить. Это работает слабая сила!

Дао тоже может быть слабой силой. Согласно Дао Дэ Цзин, Дао – это «ничто». Оно очень мало. Ву-Вей, или недеяние, означает следование Дао, или непринужденное действие. Маленькое заигрывание вызывает невероятное излучение, и если вы следуете ему, то становитесь почти «радиоактивным».

Тяготение (гравитация). Это силовое поле очень отличается от трех других физических сил. Теория относительности объясняет, что гравитация происходит от изгибания и искривления пространства-времени. Подумайте о своем матрасе. Если вы сидите на матрасе без одеял или простыней и роняете на него мячик, он, скорее всего, покатится к наиболее вдавленной части матраса, там, где его касается ваше тело. Этот матрас дает нам способ говорить о пространстве-времени – четырехмерном пространстве вселенной. Согласно Эйнштейну, пространство-время нашей вселенной вогнуто, наподобие того матраса, и получающаяся кривизна заставляет вещи катиться определенным образом. То, что мы считаем земным притяжением, с точки зрения теории относительности обусловлено кривизной пространства-времени вокруг земли.

Хотя тяготение и кривизна пространства-времени имеют смысл, когда вы наблюдаете видимую вселенную, эти представления – пока – мало пригодны в квантовом мире, поскольку пространство-время представляет собой континуум, наподобие того, каким мог бы быть гигантский резиновый матрас. Однако пространства квантового мира больше похожи на кусочки резины размером с песчинку. Эти два варианта пространства очень различны! Это одна из причин, почему так трудно объединить теорию относительности и квантовую теорию.

Большинство людей не слишком задумываются о тяготении, если только они не космонавты или не беспокоятся о своем весе и не должны вставать на весы. Возможно, первая и последняя битва, которая у нас когда-либо была, связана с тяготением. Мы никогда не можем победить в битве с тяготением. Материальная часть нас всегда тянется к земле. В психологии тяготение соответствует чувству земли, ощущению общности, чувству, что все притягивает все остальное – даже вещи, которые по нашему мнению должны быть противоположностями. Тяготение организует или удерживает вместе всю вселенную; оно связывает воедино галактики и даже частицы. Однако, поскольку тяготение так невероятно слабо, это самая слабая из всех сил, достаточно маленького магнита, чтобы поднять скрепку для бумаги со стола, где бы она в ином случае оставалась вследствие тяготения.

Мне очень нравится тяготение. По-моему, это самая тонкая из всех сил. Тяготение – это то «почти ничто», которое тянет нас туда или сюда, которая заставляет нас чувствовать себя тяжелыми; однако, несмотря на свою тонкую природу, оно обладает бесконечным дальнодействием (как и электромагнитная сила). Оно воздействует на вещи, находящиеся на другом конце вселенной, и скрепляет нас воедино. Во многих отношениях, процессуальный ум очень близок к природе тяготения. Например, процессуальный ум, как и тяготение, обладает бесконечным дальнодействием – он может быть и очень близким к нашему осознанию, и очень далеким от него. Нас может «трогать», когда мы видим великих вождей, объединяющих людей осмысленным образом. Тяготение всеобъемлюще: оно явно притягивает всю материю, все фигуры и не создает полярностей. Оно включает в себя все свои части и векторы. Это единственное поле, для которого сегодня нет известной виртуальной частицы, хотя поиски гипотетического «гравитона» продолжаются. На нашем современном уровне знания тяготение представляет собой поле, обусловленное или совпадающее с формой вселенной, нашего общего дома. Оно аналогично «атмосфере» или «ауре» наших главнейших верований, равно как и наших околосмертных и духовных переживаний.

Данный текст является ознакомительным фрагментом. Из книги Капитал автора Маркс Карл

Из книги Философский словарь разума, материи, морали [фрагменты] автора Рассел Бертран

58. Законы физические Законы, запечатленные в дифференциальных уравнениях, вероятно могут быть точными, но мы не можем об этом знать. Все, что мы можем знать эмпирически, является приблизительным и подвержено исключениям; про точные законы, которые приняты в физике,

Из книги НИЧЕГО ОБЫЧНОГО автора Миллмэн Дэн

ФИЗИЧЕСКИЕ УПРАЖНЕНИЯ: ОПЫТ ДВИЖЕНИЯ Питание имеет очень большое значение для здоровья, однако важность физических упражнений еще более высока. Пааво Айрола, признанный авторитет, посвятивший свою жизнь исследованиям в области питания и диеты, однажды сказал, что

Из книги Диалектика мифа автора Лосев Алексей Федорович

Осознанные физические упражнения В отличие от большинства видов спорта, спортивных игр и атлетики, осознанные упражнения представляют собой уравновешенные комплексные движения, специально предназначенные для общего оздоровления тела, разума и чувств. Осознанные

Из книги Капитал автора Маркс Карл

d) материя как принцип реальности, физические теории; d) В последнее время материалисты прибегли просто к подлогу. Они объявили материю не чем иным, как 5) принципом реальности, а материализм просто учением об объективности вещей и мира. Но тут остается только развести

Из книги Космическая философия автора Циолковский Константин Эдуардович

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

Основные физические гипотезы Притяжение разных родов, энергия, сложность, скорость и упругостьВселенная состоит из точек, взаимно влияющих друг на друга силою тяготения. Общий закон его неизвестен. Известно только, что с уменьшением между ними расстояния притяжение

Из книги Том 25, ч.1 автора Энгельс Фридрих

4.1. Разум и физические законы Все мы (как телом, так и разумом) принадлежим Вселенной, которая беспрекословно подчиняется - причем с чрезвычайно высокой точностью - невероятно хитроумным и повсеместно применимым математическим законам. В рамках современного научного

Из книги Философия в систематическом изложении (сборник) автора Коллектив авторов

Из книги Осмысление процессов автора Тевосян Михаил

III. Экономия в производстве двигательной силы, на передаче силы и на постройках В своем октябрьском отчете за 1852 г. Л. Хорнер цитирует письмо известного инженера Джемса Несмита из Патрикрофта, изобретателя парового молота; в письме этом, между прочим, говорится:«Публика

Из книги Марксистская философия в XIX веке. Книга первая (От возникновения марксистской философии до ее развития в 50-х – 60 годах XIX века) автора

III. Физические науки В иерархии наук рядом с кинематикой выступает механика; возникает вопрос: какое понятие здесь было решающим? Исследуя состав науки в этом направлении, мы находим два главных понятия: силу и массу, вокруг которых исторически развилась механика.

Из книги Мораль XXI века автора Салас Соммэр Дарио

Глава 1 Материя. Химические и физические свойства вещества. Качества и способности. Живые и неживые формы жизни Часы доказывают существование часовщика, а вселенная существование Бога. Франсуа Вольтер «Наше знание похоже на шар: чем больше он становится, тем больше у

Из книги Сокровенный смысл жизни. Том 3 автора Ливрага Хорхе Анхель

Деятельность как опредмечивание и распредмечивание. Производительные силы как силы человека Способ бытия производственного отношения – это его непрерывное воспроизводство в процессе совокупной человеческой деятельности как предметно-преобразующей и

Из книги Процессуальный ум. Руководство по установлению связи с Умом Бога автора Минделл Арнольд

Экспериментальные подтверждения того, что некоторые нарушения морали вызывают негативные физические последствия Эти эксперименты преследуют исключительно этические цели, показывая в свете новых концепций, изложенных в этой книге, как некоторые нарушения морали могут

Из книги автора

Из книги автора

Четыре силы и их виртуальные частицы Давайте сосредоточимся на TOE физики, так называемой «единой теории поля» и подумаем о силах и полях. В сегодняшней физике есть повседневная реальность, состоящая из пространства, времени и объектов. Внутри объектов имеются различные

В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами. Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу. Это могут быть звёзды, спутники планет и т.п.

Электромагнитные силы действуют между телами, имеющими электрический заряд.

Ядерные силы (сильные) являются самыми мощными в природе. Они действуют внутри ядер атомов на расстояниях 10 -13 см.

Слабые силы , как и ядерные, действуют на малых расстояниях порядка 10 -15 см. В результате их действия происходят процессы внутри ядра.

Механика рассматривает гравитационные силы, силы упругости и силы трения.

Гравитационные силы

Гравитация описывается законом всемирного тяготения. Этот закон был изложен Ньютоном в середине XVII в. в работе «Математические начала натуральной философии».

Гравитацией называют силу тяготения, с которой любые материальные частицы притягиваются друг у другу.

Сила, с которой материальные частицы притягиваются друг к другу, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними .

G – гравитационная постоянная, численно равная модулю силы тяготения, с которой тело, имеющее единичную массу, действует на тело, имеющее такую же единичную массу и находящееся на единичном расстоянии от него.

G = 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

На поверхности Земли сила гравитации (сила тяготения) проявляется в виде силы тяжести .

Мы видим, что любой предмет, брошенный в горизонтальном направлении, всё равно падает вниз. Падает вниз также и любой предмет, подброшенный вверх. Происходит это под действием силы тяжести, которая действует на любое материальное тело, находящееся вблизи поверхности Земли. Сила тяжести действует на тела и на поверхности других астрономических тел. Эта сила всегда направлена вертикально вниз.

Под действием силы тяжести тело движется к поверхности планеты с ускорением, которое называется ускорением свободного падения .

Ускорение свободного падения на поверхности Земли обозначается буквой g .

F t = mg ,

следовательно,

g = F t / m

g = 9, 81 м/с 2 на полюсах Земли, а на экваторе g = 9,78 м/с 2 .

При решении простых физических задач величину g принято считать равной 9,8 м/с 2 .

Классическая теория тяготения применима только для тел, имеющих скорость намного ниже скорости света.

Силы упругости

Силами упругости называются силы, которые возникают в теле в результате деформации, вызывающей изменение его формы или объёма. Эти силы всегда стремятся вернуть тело в его первоначальное положение.

При деформации происходит смещение частиц тела. Сила упругости направлена в сторону, противоположную направлению смещения частиц. Если деформация прекращается, сила упругости исчезает.

Английский физик Роберт Гук, современник Ньютона, открыл закон, устанавливающий связь между силой упругости и деформацией тела.

При деформации тела возникает сила упругости, прямо пропорциональная удлинению тела, и имеющая направление, противоположное перемещению частиц при деформации.

F = k l ,

где к – жёсткость тела, или коэффициент упругости;

l – величина деформации, показывающая величину удлинения тела под воздействием сил упругости.

Закон Гука действует для упругих деформаций, когда удлинение тела мало, а тело восстанавливает свои первоначальные размеры после того, как исчезают силы, вызвавшие эту деформацию.

Если деформация велика, и тело не возвращается в свою исходную форму, закон Гука не применяется. При очень больших деформациях происходит разрушение тела.

Силы трения

Сила трения возникает, когда одно тело движется по поверхности другого. Она имеет электромагнитную природу. Это следствие взаимодействия между атомами и молекулами соприкасающихся тел. Направление силы трения противоположно направлению движения.

Различают сухое и жидкое трение. Сухим называют трение, если между телами нет жидкой или газообразной прослойки.

Отличительная особенность сухого трения – трение покоя, которое возникает при относительном покое тел.

Величина силы трения покоя всегда равна величине внешней силы и направлена в противоположную сторону. Сила трения покоя препятствует движению тела.

В свою очередь, сухое трение разделяется на трение скольжения и трение качения .

Если величина внешней силы превышает величину силы трения, то в этом случае появится проскальзывание, и одно из контактирующих тел начнёт поступательно перемещаться относительно другого тела. А сила трения будет называться силой трения скольжения . Её направление будет противоположно направлению скольжения.

Сила трения скольжения зависит от силы, с которой тела давят друг на друга, от состояния трущихся поверхностей, от скорости движения, но не зависит от площади соприкосновения.

Сила трения скольжения одного тела по поверхности другого вычисляется по формуле:

F тр. = k · N ,

где k – коэффициент трения скольжения;

N – сила нормальной реакции, действующая на тело со стороны поверхности.

Сила трения качения возникает между телом, которое перекатывается по поверхности, и самой поверхностью. Такие силы появляются, например, при соприкосновении шин автомобиля с дорожным покрытием.

Величина силы трения качения вычисляется по формуле

где F t – сила трения качения;

f – коэффициент трения качения;

R – радиус катящегося тела;

N – прижимающая сила.

» Что такое фундаментальные взаимодействия?

Сегодня мне хочется рассказать Вам о фундаментальных силах или взаимодействиях. Вы узнаете, что это вообще такое, сколько их и зачем они нужны.

Ну что, поехали!

Что такое фундаментальные силы?

В нашей Вселенной существует множество физических сил и взаимодействий. Например, сила трения, ядерные реакции и химические связи. Но все они вторичны, кроме неких четырёх взаимодействий. Их и называют "фундаментальными". Они являются типами взаимодействия элементарных частиц и определяют все остальные силы в природе.

В самом начале жизни Вселенной было одно фундаментальное взаимодействие. Но так продлилось недолго. Уже к концу первой секунды после единая фундаментальная сила разделилась на четыре отдельных взаимодействия: сильное, слабое, электромагнитное и гравитационное. Рассмотрим их всех.

Сильное взаимодействие.

Вы никогда не задумывались, почему атомы большинства химических элементов стабильны? Казалось бы, что тут сложного. Однако, в 30-х годах прошлого века, поиск ответа на данный вопрос заставил учёных попотеть.

Из школьного курса физики и химии Вам наверняка известно, что атом состоит из двух частей: ядра и вращающихся вокруг него электронов. Ядро, в свою очередь, состоит из "нуклонов" - протонов и нейтронов.

Атом электрически нейтрален. Но в его ядре есть только положительно и нейтрально заряженные частицы - протоны и нейтроны. Общеизвестно, что притягиваться друг к другу могут только разноимённо заряженные тела - иными словами, "плюс" к "минусу". Следовательно, протоны и нейтроны должны отталкиваться друг от друга. Однако в реальности атомы ядра таки существуют и в ус не дуют. В чём же причина?

"Может быть, всё дело в гравитации?" - подумали тогда физики. Оказалось, что нет. Гравитационное взаимодействие, будучи самым слабым из всех, не могло бы противостоять электромагнитным силам.

Значит, существует некая достаточно мощная сила, связывающая нуклоны в стабильные атомы ядра. Её и называют "сильным взаимодействием". Впоследствии выяснилось, что оно также связывает кварки (представителей одной из групп фундаментальных частиц) в составные частицы под названием "адроны" - например, те же протоны и нейтроны.

В сильном взаимодействии участвуют кварки, адроны и глюоны. Глюоны не обладают массой и являются переносчиками сильного взаимодействия. Ими обмениваются кварки и тем самым реализуют эту фундаментальную силу.

Сильное ядерное взаимодействие является самым мощным в природе. Оно в тысячу раз сильнее электромагнитного и в 100.000 раз - "слабого ядерного", а гравитацию превосходит по мощи аж в 10 39 (10 в 39 степени) раз.

Сильное взаимодействие жестокое - из-за него учёные не могут наблюдать кварки в свободном состоянии. Эти бедные частицы навеки заключены в адроны. Оказалось, что чем дальше кварки друг от друга, тем сильнее они притягиваются. Поэтому данные частицы никогда не наблюдаются одиноко блуждающими по пространству и существуют только в адронах.

Электромагнетизм.

В электромагнитном взаимодействии участвуют все тела и частицы, которые обладают электрическим зарядом. Однако, есть и исключения - могут участвовать нейтральные частицы, но состоящие из заряженных. Ярким примером является нейтрон. Он обладает нейтральным зарядом, но состоит из заряженных кварков.

Электромагнитное взаимодействие осуществляется между заряженными частицами посредством электромагнитного поля. Его квантом (фундаментальной частицей) является фотон - по совместительству, тролль всея мироздания.

Электромагнетизм и заключается в том, что заряженные частицы взаимодействуют друг с другом, обмениваясь фотонами.

Электромагнитные силы появляются в виде сил и притяжения (тело с положительным зарядом притягивается к отрицательно заряженному), и отталкивания.

Данное взаимодействие играет очень важную роль в природе за счёт своего взаимодействия. Оно определяет структуру молекул (химические связи) и электронных оболочек в атомах. Поэтому к электромагнетизму сводится очень много вещей.

Большинство привычных физических сил, которые рассматривает "классическая механика" Ньютона - сила трения, упругости, поверхностного натяжения и т.д. - имеют электромагнитную природу.

Электромагнитные силы также определяют большую часть физических свойств тел макромира, а также их изменение при переходе из одного агрегатного состояния в другое. Данное взаимодействие лежит в основе электрических, магнитных, оптических и химических явлений.

Слабые ядерные силы.

Слабое взаимодействие проявляется на расстояниях, значительно меньше атомного ядра. Оно слабее двух вышеописанных фундаментальных сил, но сильнее гравитации.

В слабых ядерных силах участвуют две группы фундаментальных частиц (лептоны и кварки) и адроны. В процессе слабого взаимодействия частицы обмениваются "переносчиками" - W- и Z-бозонами, которые довольно массивны, в отличие от безмассовых глюонов и фотонов.

Слабые ядерные силы играют важную роль в природе. Протекание термоядерных реакций в звёздах обусловлено именно данным взаимодействием. Иными словами, благодаря слабым ядерным силам горит Солнце и другие газовые светила.

Но это ещё не всё. Слабое взаимодействие ответственно за бета-распад атомных ядер. Данный процесс является одним из трёх видов радиоактивности. Он заключается в испускании ядром "бета-частиц": электронов или позитронов.

Благодаря слабому взаимодействию происходит т.н. "слабый распад". Это когда массивные частицы разделяются на более лёгкие. Важным частным случаем является распад нейтрона - он способен превратится в протон, электрон и антинейтрино.

Гравитация.

Универсальное фундаментальное взаимодействие. Ему подвержены все материальные тела - от элементарных частиц до громадных галактик. Данная фундаментальная сила является самой слабой из всех и выражается стремлением материальных тел друг к другу - притяжением.

Гравитация является дальнодействующей силой и управляет наиболее глобальными процессами во Вселенной. Благодаря ей звёзды и их скопления сгруппировались в галактики. Благодаря ей в туманностях формируются газовые светила, холодные куски камня в космосе группируются в планеты, а мячик, брошенный Вами вверх, обязательно упадёт вниз.

Гравитация морочит головы физиков уже несколько десятилетий. Она является предметом многолетнего конфликта двух основных физических теорий: квантовой механики и теории относительности. Но почему?

Дело в том, что общая теория относительности и квантовая физика построены на разных принципах и описывают данную фундаментальную силу по-разному.

Эйнштейн объяснил гравитацию как искривление самого пространства-времени из-за масс материальных тел. А квантовая физика "квантует" её - описывает как взаимодействие, у которого есть свои частицы-переносчики. Их называют "гравитонами".

В квантовой механике пространство-время не представлено "динамической переменной", т.е. не зависит от находящихся в нём тел и систем. А это вразрез идёт с теорией относительности.

Но что самое удивительное - несмотря на принципиальные различия, все эти две теории доказаны экспериментально. Квантовая механика прекрасно описывает микромир, а теория относительности - Вселенную в макроскопических масштабах.

Сейчас идут попытки объединить релятивистскую и квантовую физику и беспроблемно описать гравитацию. Тогда будет построена "теория всего", и главным кандидатом на получение данного титула является "теория струн", запутанная в край своими 11-ю измерениями.

Навигация записи

Фундаментальные взаимодействия

В природе существует огромное множество природных систем и структур, особенности и развитие которых объясняется взаимодействием материальных объектов, то есть взаимным действием друг на друга. Именно взаимодействие – это основная причина движения материи и оно свойственно всем материальным объектам вне зависимости от их происхождения и их системной организации . Взаимодействие универсально, как и движение. Взаимодействующие объекты обмениваются энергией и импульсом (это основные характеристики их движения). В классической физике взаимодействие определяется силой, с которой один материальный объект действует на другой. Долгое время парадигмой была концепция дальнодействия – взаимодействие материальных объектов, находящихся на большом расстоянии друг от друга и оно передается через пустое пространство мгновенно . В настоящее время экспериментально подтверждена другая – концепция близкодействия – взаимодействие передается при помощи физических полей с конечной скоростью, не превышающей скорости света в вакууме. Физическое поле – особый вид материи, обеспечивающей взаимодействие материальных объектов и их систем (следующие поля: электромагнитное, гравитационное, поле ядерных сил – слабое и сильное). Источником физического поля являются элементарные частицы (электромагнитного – заряженные частицы), в квантовой теории взаимодействие обусловлено обменом квантами поля между частицами.

Различают четыре фундаментальных взаимодействия в природе: сильное, электромагнитное, слабое и гравитационное, которые определяют структуру окружающего мира.

Сильное взаимодействие (ядерное взаимодействие) – взаимное притяжение составных частей атомных ядер (протонов и нейтронов)и действует на расстоянии порядка 10 -1 3 см, передается глюонами. С точки зрения электромагнитного взаимодействия протон и нейтрон – разные частицы, так как протон электрически заряжен, а нейтрон - нет. Но с точки зрения сильного взаимодействия, эти частицы неразличимы, так как в стабильном состоянии нейтрон является нестабильной частицей и распадается на протон, электрон и нейтрино, но в рамках ядра он становится похожим по своим свойствам с протоном, поэтому и был введен термин «нуклон (от лат. nucleus - ядро)» и протон с нейтроном стали рассматриваться как два различных состояния нуклона. Чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро, тем больше удельная энергия связи.

В стабильном веществе взаимодействие между протонами и нейтронами при не слишком высоких температурах усиливается, но если происходит столкновение ядер или их частей (нуклонов, обладающих высокой энергией) тогда происходят ядерные реакции, которые сопровождаются выделением огромной энергией.

При определенных условиях сильное взаимодействие очень прочно связывает частицы в атомные ядра – материальные системы с высокой энергией связи. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Электромагнитное взаимодействие передается при помощи электрических и магнитных полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное при их движении. Изменяющееся электрическое поле порождает переменное магнитное – это и есть источник переменного магнитного поля. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон - квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы - в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Около 90% информации об окружающем мире мы получаем через электромагнитную волну, так как различные агрегатные состояния вещества, трение, упругость и т.п. определяются силами межмолекулярного взаимодействия, которые по своей природе электромагнитные. Электромагнитные взаимодействия описываются законами Кулона, Ампера и электромагнитной теорией Максвелла.

Электромагнитное взаимодействие – это основа создания различных электроприборов, радиоприемников, телевизоров, компьютеров и т.д. Оно примерно в тысячу раз слабее сильного, но значительно более дальнодействующее.

Без электромагнитных взаимодействий не было бы атомов, молекул, макрообъектов, тепла и света.

3. Слабое взаимодействие возможно между различными частицами, кроме фотона, оно является короткодействующим и проявляется на расстояниях, меньших размера атомного ядра 10 -15 – 10 -22 см. Слабое взаимодействие слабее сильного и процессы при слабом взаимодействии протекают медленнее, чем при сильном. Отвечает за распад нестабильных частиц (напр., превращения нейтрона в протон, электрон, антинейтрино). Именно благодаря этому взаимодействию, большинство частиц нестабильны. Переносчики слабого взаимодействия – вионы, частицы с массой в 100 раз больше массы протонов и нейтронов. За счет этого взаимодействия светит Солнце (протон превращается в нейтрон, позитрон, нейтрино, испускаемое нейтрино обладает огромной проницающей способностью).

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не возникали бы новые звезды.

4. Гравитационное взаимодействие самое слабое, не учитывается в теории элементарных частиц, так как на характерных для них расстояниях (10 -13 см) эффекты малые, а на ультрамалых расстояниях (10 -33 см) и при ультрабольших энергиях гравитация приобретает значение и начинают проявляться необычные свойства физического вакуума.

Гравитация (от лат. gravitas - «тяжесть») - фундаментальное взаимодействие является дальнодействующим (это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени) и ему подвержены все материальные тела. В основном гравитация играет определяющую роль в космических масштабах, Мегамире.

В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием R , есть

Где G - гравитационная постоянная.

Без гравитационных взаимодействий не было галактик, звезд, планет, эволюции Вселенной.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц (при сильном взаимодействии ядерные реакции происходят в течение 10 -24 – 10 -23 с., при электромагнитном - изменения осуществляются в течение 10 -19 – 10 -21 с., при слабом распад в течение 10 -10 с.).

Все взаимодействия необходимы и достаточны для построения сложного и разнообразного материального мира, из них по мнению ученых можно получить суперсилу (при очень высоких температурах или энергиях все четыре взаимодействия объединяются в одно ).