Класс: 10

Презентация к уроку
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Основные типы точек равновесия

Пусть задана линейная однородная система второго порядка с постоянными коэффициентами: \[\left\{ \begin{array}{l} \frac{{dx}}{{dt}} = {a_{11}}x + {a_{12}}y\\ \frac{{dy}}{{dt}} = {a_{21}}x + {a_{22}}y \end{array} \right..\] Данная система уравнений является автономной , поскольку правые части уравнений не содержат в явном виде независимой переменной \(t.\)

В матричной форме система уравнений записывается как \[ {\mathbf{X"} = A\mathbf{X},\;\;\text{где}\;\;\mathbf{X} = \left({\begin{array}{*{20}{c}} x\\ y \end{array}} \right),}\;\; {A = \left({\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right).} \] Положения равновесия находятся из решения стационарного уравнения \ Это уравнение имеет единственное решение \(\mathbf{X} = \mathbf{0},\) если матрица \(A\) является невырожденной , т.е. при условии \(\det A \ne 0.\) В случае вырожденной матрицы система имеет бесконечное множество точек равновесия.

Классификация положений равновесия определяется собственными значениями \({\lambda _1},{\lambda _2}\) матрицы \(A.\) Числа \({\lambda _1},{\lambda _2}\) находятся из решения характеристического уравнения \[{\lambda ^2} - \left({{a_{11}} + {a_{22}}} \right)\lambda + {a_{11}}{a_{22}} - {a_{12}}{a_{21}} = 0.\] В общем случае, когда матрица \(A\) является невырожденной, существует \(4\) различных типа точек равновесия:

Устойчивость положений равновесия определяется общими теоремами об устойчивости . Так, если действительные собственные значения (или действительные части комплексных собственных значений) отрицательны, то точка равновесия является асимптотически устойчивой . Примерами таких положений равновесия являются и устойчивый фокус .

Если действительная часть хотя бы одного собственного числа положительна, то соответствующее положение равновесия является неустойчивым . Например, это может быть .

Наконец, в случае чисто мнимых корней (точка равновесия является центром ) мы имеем дело с классической устойчивостью в смысле Ляпунова .

Наша дальнейшая цель состоит в том, чтобы изучить поведение решений вблизи положений равновесия. Для систем \(2\)-го порядка это удобно делать графически с помощью фазового портрета , представляющего собой совокупность фазовых траекторий на координатной плоскости. Стрелки на фазовых траекториях показывают направление перемещения точки (т.е. некоторого конкретного состояния системы) с течением времени.

Рассмотрим подробнее каждый тип точки равновесия и соответствующие фазовые портреты.

Устойчивый и неустойчивый узел

Собственные значения \({{\lambda _1},{\lambda _2}}\) точек типа "узел" удовлетворяют условиям: \[{\lambda _1},{\lambda _2} \in \Re,\;\;{\lambda _1} \cdot {\lambda _2} > 0.\] Здесь могут возникнуть следующие частные случаи.

Корни \({{\lambda _1},{\lambda _2}}\) различны \(\left({{\lambda _1} \ne {\lambda _2}} \right)\) и отрицательны \(\left({{\lambda _1}
Построим схематический фазовый портрет такой точки равновесия. Пусть для определенности \(\left| {{\lambda _1}} \right|
Поскольку оба собственных значения отрицательны, то решение \(\mathbf{X} = \mathbf{0}\) является асимптотически устойчивым . Такое положение равновесия называется устойчивым узлом . При \(t \to \infty\) фазовые кривые стремятся к началу координат \(\mathbf{X} = \mathbf{0}.\)

Уточним направление фазовых траекторий. Поскольку \[ {x\left(t \right) = {C_1}{V_{11}}{e^{{\lambda _1}t}} + {C_2}{V_{12}}{e^{{\lambda _2}t}},}\;\; {y\left(t \right) = {C_1}{V_{21}}{e^{{\lambda _1}t}} + {C_2}{V_{22}}{e^{{\lambda _2}t}},} \] то производная \(\large\frac{{dy}}{{dx}}\normalsize\) равна \[\frac{{dy}}{{dx}} = \frac{{{C_1}{V_{21}}{\lambda _1}{e^{{\lambda _1}t}} + {C_2}{V_{22}}{\lambda _2}{e^{{\lambda _2}t}}}}{{{C_1}{V_{11}}{\lambda _1}{e^{{\lambda _1}t}} + {C_2}{V_{12}}{\lambda _2}{e^{{\lambda _2}t}}}}.\] Разделим числитель и знаменатель на \({{e^{{\lambda _1}t}}}:\) \[\frac{{dy}}{{dx}} = \frac{{{C_1}{V_{21}}{\lambda _1} + {C_2}{V_{22}}{\lambda _2}{e^{\left({{\lambda _2} - {\lambda _1}} \right)t}}}}{{{C_1}{V_{11}}{\lambda _1} + {C_2}{V_{12}}{\lambda _2}{e^{\left({{\lambda _2} - {\lambda _1}} \right)t}}}}.\] В данном случае \({\lambda _2} - {\lambda _1}
В случае \({C_1} = 0\) производная при любом \(t\) равна \[\frac{{dy}}{{dx}} = \frac{{{V_{22}}}}{{{V_{12}}}},\] т.е. фазовая траектория лежит на прямой, направленной вдоль собственного вектора \({\mathbf{V}_2}.\)

Теперь рассмотрим поведение фазовых траекторий при \(t \to -\infty.\) Очевидно, что координаты \(x\left(t \right),y\left(t \right)\) стремятся к бесконечности, а производная \(\large\frac{{dy}}{{dx}}\normalsize\) при \({C_2} \ne 0\) принимает следующий вид: \[\frac{{dy}}{{dx}} = \frac{{{C_1}{V_{21}}{\lambda _1}{e^{\left({{\lambda _1} - {\lambda _2}} \right)t}} + {C_2}{V_{22}}{\lambda _2}}}{{{C_1}{V_{11}}{\lambda _1}{e^{\left({{\lambda _1} - {\lambda _2}} \right)t}} + {C_2}{V_{12}}{\lambda _2}}} = \frac{{{V_{22}}}}{{{V_{12}}}},\] т.е. фазовые кривые в бесконечно удаленных точках становятся параллельными вектору \({\mathbf{V}_2}.\)

Соответственно, при \({C_2} = 0\) производная равна \[\frac{{dy}}{{dx}} = \frac{{{V_{21}}}}{{{V_{11}}}}.\] В этом случае фазовая траектория определяется направлением собственного вектора \({\mathbf{V}_1}.\)

С учетом рассмотренных свойств фазовых траекторий, фазовый портрет устойчивого узла имеет вид, показанный схематически на рисунке \(1.\)

Аналогичным образом можно исследовать поведение фазовых траекторий и для других типов положений равновесия. Далее, опуская детальный анализ, проведем основные качественные характеристики других точек равновесия.

Корни \({{\lambda _1},{\lambda _2}}\) различны \(\left({{\lambda _1} \ne {\lambda _2}} \right)\) и положительны \(\left({{\lambda _1} > 0, {\lambda _2}} > 0\right).\)
В этом случае точка \(\mathbf{X} = \mathbf{0}\) называется неустойчивым узлом . Ее фазовый портрет показан на рисунке \(2.\)

Заметим, что в случае как устойчивого, так и неустойчивого узла фазовые траектории касаются прямой, которая направлена вдоль собственного вектора, соответствующего меньшему по абсолютной величине собственному значению \(\lambda.\)

Дикритический узел

Пусть характеристическое уравнение имеет один нулевой корень кратности \(2,\) т.е. рассмотрим случай \({\lambda _1} = {\lambda _2} = {\lambda} \ne 0.\) При этом система имеет базис из двух собственных векторов, т.е. геометрическая кратность собственного значения \(\lambda\) равна \(2.\) В терминах линейной алгебры это означает, что размерность собственного подпространства матрицы \(A\) равна \(2:\) \(\dim \ker A = 2.\) Такая ситуация реализуется в системах вида \[ {\frac{{dx}}{{dt}} = \lambda x,}\;\; {\frac{{dy}}{{dt}} = \lambda y.} \] Направление фазовых траекторий зависит от знака \(\lambda.\) Здесь возможны следующие два случая:

Случай \({\lambda _1} = {\lambda _2} = {\lambda} Такое положение равновесия называется устойчивым дикритическим узлом (рисунок \(3\)) .

Случай \({\lambda _1} = {\lambda _2} = {\lambda} > 0.\) Данная комбинация собственных значений соответствует неустойчивому дикритическому узлу (рисунок \(4\)).

Вырожденный узел

Пусть собственные значения матрицы \(A\) снова являются совпадающими: \({\lambda _1} = {\lambda _2} = {\lambda} \ne 0.\) В отличие от предыдущего случая дикритического узла предположим, что геометрическая кратность собственного значения (или другими словами размерность собственного подпространства) равна теперь \(1.\) Это означает, что матрица \(A\) имеет лишь один собственный вектор \({\mathbf{V}_1}.\) Второй линейно независимый вектор, необходимый для составления базиса, определяется как вектор \({\mathbf{W}_1},\) присоединенный к \({\mathbf{V}_1}.\)

В случае \({\lambda _1} = {\lambda _2} = {\lambda} точка равновесия называется устойчивым вырожденным узлом (рисунок \(5\)).

При \({\lambda _1} = {\lambda _2} = {\lambda} > 0\) положение равновесия называется неустойчивым вырожденным узлом (рисунок \(6\)).

Положение равновесия является при условиях \[{\lambda _1},{\lambda _2} \in \Re,\;\;{\lambda _1} \cdot {\lambda _2} 0.\) Собственные значения \({\lambda _1}\) и \({\lambda _2}\) ассоциируются с соответствующими собственными векторами \({\mathbf{V}_1}\) и \({\mathbf{V}_2}.\) Прямые, направленные вдоль собственных векторов \({\mathbf{V}_1},\) \({\mathbf{V}_2},\) называются сепаратрисами . Они являются асимптотами для остальных фазовых траекторий, имеющих форму гипербол. Каждой из сепаратрис можно сопоставить определенное направление движения. Если сепаратриса связана с отрицательным собственным значением \({\lambda _1} 0,\) т.е. для сепаратрисы, связанной с вектором \({\mathbf{V}_2},\) движение направлено от начала координат. Схематически фазовый портрет седла показан на рисунке \(7.\)

Устойчивый и неустойчивый фокус

Пусть теперь собственные значения \({\lambda _1},{\lambda _2}\) являются комплексными числами , действительные части которых не равны нулю. Если матрица \(A\) состоит из действительных чисел, то комплексные корни будут представляться в виде комплексно-сопряженных чисел: \[{\lambda _{1,2}} = \alpha \pm i\beta .\] Выясним, какой вид имеют фазовые траектории в окрестности начала координат. Построим комплексное решение \({\mathbf{X}_1}\left(t \right)\) соответствующее собственному числу \({\lambda _1} = \alpha + i\beta:\) \[ {{\mathbf{X}_1}\left(t \right) = {e^{{\lambda _1}t}}{\mathbf{V}_1} } = {{e^{\left({\alpha + i\beta } \right)t}}\left({\mathbf{U} + i\mathbf{W}} \right),} \] где \({\mathbf{V}_1} = \mathbf{U} + i\mathbf{W}\) − комплекснозначный собственный вектор, ассоциированный с числом \({\lambda _1},\) \(\mathbf{U}\) и \(\mathbf{W}\) − действительные векторные функции. В результате преобразований получаем \[ {{\mathbf{X}_1}\left(t \right) = {e^{\alpha t}}{e^{i\beta t}}\left({\mathbf{U} + i\mathbf{W}} \right) } = {{e^{\alpha t}}\left({\cos \beta t + i\sin \beta t} \right)\left({\mathbf{U} + i\mathbf{W}} \right) } = {{e^{\alpha t}}\left({\mathbf{U}\cos \beta t + i\mathbf{U}\sin \beta t + i\mathbf{W}\cos \beta t - \mathbf{W}\sin \beta t} \right) } = {{e^{\alpha t}}\left({\mathbf{U}\cos \beta t + - \mathbf{W}\sin \beta t} \right) } + {i{e^{\alpha t}}\left({\mathbf{U}\sin \beta t + \mathbf{W}\cos \beta t} \right).} \] Действительная и мнимая части в последнем выражении образуют общее решение системы, которое имеет вид: \[ {\mathbf{X}\left(t \right) = {C_1}\text{Re}\left[ {{\mathbf{X}_1}\left(t \right)} \right] + {C_2}\text{Im}\left[ {{\mathbf{X}_1}\left(t \right)} \right] } = {{e^{\alpha t}}\left[ {{C_1}\left({\mathbf{U}\cos \beta t - \mathbf{W}\sin \beta t} \right)} \right. } + {\left. {{C_2}\left({\mathbf{U}\sin \beta t + \mathbf{W}\cos \beta t} \right)} \right] } = {{e^{\alpha t}}\left[ {\mathbf{U}\left({{C_1}\cos \beta t + {C_2}\sin \beta t} \right)} \right. } + {\left. {\mathbf{W}\left({{C_2}\cos \beta t - {C_1}\sin \beta t} \right)} \right].} \] Представим постоянные \({C_1},{C_2}\) в виде \[{C_1} = C\sin \delta ,\;\;{C_2} = C\cos \delta ,\] где \(\delta\) − некоторый вспомогательный угол. Тогда решение записывается как \[ {\mathbf{X}\left(t \right) = C{e^{\alpha t}}\left[ {\mathbf{U}\left({\sin \delta \cos \beta t + \cos \delta \sin \beta t} \right)} \right. } + {\left. {\mathbf{W}\left({\cos\delta \cos \beta t - \sin \delta \sin \beta t} \right)} \right] } = {C{e^{\alpha t}}\left[ {\mathbf{U}\sin \left({\beta t + \delta } \right)} \right. + \left. {\mathbf{W}\cos \left({\beta t + \delta } \right)} \right].} \] Таким образом, решение \(\mathbf{X}\left(t \right)\) раскладывается по базису, заданному векторами \(\mathbf{U}\) и \(\mathbf{W}:\) \[\mathbf{X}\left(t \right) = \mu \left(t \right)\mathbf{U} + \eta \left(t \right)\mathbf{W},\] где коэффициенты разложения \(\mu \left(t \right),\) \(\eta \left(t \right)\) определяются формулами: \[ {\mu \left(t \right) = C{e^{\alpha t}}\sin \left({\beta t + \delta } \right),}\;\; {\eta \left(t \right) = C{e^{\alpha t}}\cos\left({\beta t + \delta } \right).} \] Отсюда видно, что фазовые траектории представляют собой спирали. При \(\alpha устойчивым фокусом . Соответственно, при \(\alpha > 0\) мы имеем неустойчивый фокус .

Направление закручивания спиралей можно определить по знаку коэффициента \({a_{21}}\) в исходной матрице \(A.\) Действительно, рассмотрим производную \(\large\frac{{dy}}{{dt}}\normalsize,\) например, в точке \(\left({1,0} \right):\) \[\frac{{dy}}{{dt}}\left({1,0} \right) = {a_{21}} \cdot 1 + {a_{22}} \cdot 0 = {a_{21}}.\] Положительный коэффициент \({a_{21}} > 0\) соответствует закручиванию спиралей против часовой стрелки, как показано на рисунке \(8.\) При \({a_{21}}
Таким образом, с учетом направления закручивания спиралей, всего существует \(4\) различных вида фокуса. Схематически они показаны на рисунках \(8-11.\)

Если собственные значения матрицы \(A\) являются число мнимыми числами, то такое положение равновесия называется центром . Для матрицы с действительными элементами мнимые собственные значения будут комплексно-сопряженными. В случае центра фазовые траектории формально получаются из уравнения спиралей при \(\alpha = 0\) и представляют собой эллипсы , т.е. описывают периодическое движение точки на фазовой плоскости. Положения равновесия типа "центр" являются устойчивыми по Ляпунову.

Возможны два вида центра, различающиеся направлением движения точек (рисунки \(12, 13\)). Как и в случае спиралей, направление движения можно определить, например, по знаку производной \(\large\frac{{dy}}{{dt}}\normalsize\) в какой-либо точке. Если взять точку \(\left({1,0} \right),\) то \[\frac{{dy}}{{dt}}\left({1,0} \right) = {a_{21}}.\] т.е. направление вращения определяется знаком коэффициента \({a_{21}}.\)

Итак, мы рассмотрели различные типы точек равновесия в случае невырожденной матрицы \(A\) \(\left({\det A \ne 0} \right).\) С учетом направления фазовых траекторий всего существует \(13\) различных фазовых портретов, показанных, соответственно, на рисунках \(1-13.\)

Теперь обратимся к случаю вырожденной матрицы \(A.\)

Вырожденная матрица

Если матрица является вырожденной, то у нее одно или оба собственных значения равны нулю. При этом возможны следующие частные случаи:

Случай \({\lambda _1} \ne 0, {\lambda _2} = 0\).
Здесь общее решение записывается в виде \[\mathbf{X}\left(t \right) = {C_1}{e^{{\lambda _1}t}}{\mathbf{V}_1} + {C_2}{\mathbf{V}_2},\] где \({\mathbf{V}_1} = {\left({{V_{11}},{V_{21}}} \right)^T},\) \({\mathbf{V}_2} = {\left({{V_{12}},{V_{22}}} \right)^T},\) − собственные векторы, соответствующие числам \({\lambda _1}\) и \({\lambda _2}.\) Оказывается, что в данном случае вся прямая, проходящая через начало координат и направленная вдоль вектора \({\mathbf{V}_2},\) состоит из точек равновесия (эти точки не имеют специального названия). Фазовые траектории представляют собой лучи, параллельные другому собственному вектору \({\mathbf{V}_1}.\) В зависимости от знака \({\lambda _1}\) движение при \(t \to \infty\) происходит либо в направлении прямой \({\mathbf{V}_2}\) (рис.\(14\)), либо от нее (рис.\(15\)). Случай \({\lambda _1} = {\lambda _2} = 0, \dim \ker A = 2.\)
В этом случае размерность собственного подпространства матрицы равна \(2\) и, следовательно, существуют два собственных вектора \({\mathbf{V}_1}\) и \({\mathbf{V}_2}.\) Такая ситуация возможна при нулевой матрице \(A.\) Общее решение выражается формулой \[\mathbf{X}\left(t \right) = {C_1}{\mathbf{V}_1} + {C_2}{\mathbf{V}_2}.\] Отсюда следует, что любая точка плоскости является положением равновесия системы.

Случай \({\lambda _1} = {\lambda _2} = 0, \dim \ker A = 1.\)
Данный случай вырожденной матрицы отличается от предыдущего тем, что существует лишь \(1\) собственный вектор (Матрица \(A\) при этом будет ненулевой ). Для построения базиса в качестве второго линейно независимого вектора можно взять вектор \({\mathbf{W}_1},\) присоединенный к \({\mathbf{V}_1}.\) Общее решение системы записывается в виде \[\mathbf{X}\left(t \right) = \left({{C_1} + {C_2}t} \right){\mathbf{V}_1} + {C_2}{\mathbf{W}_1}.\] Здесь все точки прямой, проходящей через начало координат и направленной вдоль собственного вектора \({\mathbf{V}_1},\) являются неустойчивыми положениями равновесия. Фазовые траектории представляют собой прямые, параллельные \({\mathbf{V}_1}.\) Направление движения вдоль этих прямых при \(t \to \infty\) зависит от постоянной \({C_2}:\) при \({C_2} 0\) − в противоположную сторону (рис.\(16\)).

Напомним, что следом матрицы называется число, равное сумме диагональных элементов: \[ {A = \left({\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right),}\;\; {\text{tr}\,A = {a_{11}} + {a_{22}},}\;\; {\det A = {a_{11}}{a_{22}} - {a_{12}}{a_{21}}.} \] Действительно, характеристическое уравнение матрицы имеет следующий вид: \[{\lambda ^2} - \left({{a_{11}} + {a_{22}}} \right)\lambda + {a_{11}}{a_{22}} - {a_{12}}{a_{21}} = 0.\] Его можно записать через определитель и след матрицы: \[{\lambda ^2} - \text{tr}\,A \cdot \lambda + \det A = 0.\] Дискриминант этого квадратного уравнения определяется соотношением \ Таким образом, бифуркационная кривая , разграничивающая различные режимы устойчивости, представляет собой параболу на плоскости \(\left({\text{tr}\,A,\det A} \right)\) (рис.\(17\)): \[\det A = {\left({\frac{\text{tr}\,A}{2}} \right)^2}.\] Выше параболы находятся точки равновесия типа фокус и центр. Точки типа "центр" расположены на положительной полуоси \(Oy,\) т.е. при условии \(\text{tr}\,A = 0.\) Ниже параболы находятся точки типа "узел" или "седло". Сама парабола содержит дикритические или вырожденные узлы.

Устойчивые режимы движения существуют в левом верхнем квадранте бифуркационной диаграммы. Остальные три квадранта соответствуют неустойчивым положениям равновесия.

Алгоритм построения фазового портрета

Для схематического построения фазового портрета линейной автономной системы \(2\)-го порядка с постоянными коэффициентами \[ {\mathbf{X"} = A\mathbf{X},}\;\; {A = \left({\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right),}\;\; {\mathbf{X} = \left({\begin{array}{*{20}{c}} x\\ y \end{array}} \right)} \] необходимо выполнить следующие действия:

    Найти собственные значения матрицы, решив характеристическое уравнение \[{\lambda ^2} - \left({{a_{11}} + {a_{22}}} \right)\lambda + {a_{11}}{a_{22}} - {a_{12}}{a_{21}} = 0.\]

    Определить тип положения равновесия и характер устойчивости.

    Примечание: Тип положения равновесия можно также определить на основе бифуркационной диаграммы (рис.\(17\)), зная след и определитель матрицы: \[ {\text{tr}\,A = {a_{11}} + {a_{22}},}\;\; {\det A = \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right| } = {{a_{11}}{a_{22}} - {a_{12}}{a_{21}}.} \]

    Найти уравнение изоклин : \[ {\frac{{dx}}{{dt}} = {a_{11}}x + {a_{12}}y}\;\; {\left(\text{вертикальная изоклина} \right),} \] \[ {\frac{{dy}}{{dt}} = {a_{21}}x + {a_{22}}y}\;\; {\left(\text{горизонтальная изоклина} \right).} \]

    Если положение равновесия является узлом или , то необходимо вычислить собственные векторы и начертить параллельные им асимптоты, проходящие через начало координат.

    Схематически начертить фазовый портрет.

    Показать направление движения по фазовым траекториям (это зависит от устойчивости или неустойчивости точки равновесия). В случае фокуса следует определить направление закручивания траекторий. Это можно сделать, вычислив вектор скорости \(\left({\large\frac{{dx}}{{dt}}\normalsize,\large\frac{{dy}}{{dt}}\normalsize} \right)\)в произвольной точке, например, в точке \(\left({1,0} \right).\) Аналогичным образом определяется направление движения, если положение равновесия является центром .

Описанный алгоритм не является жесткой схемой. При исследовании конкретной системы вполне допустимы различные вариации и другие приемы, позволяющие в итоге изобразить фазовый портрет.

Раздел механики, в котором изучаются условия равновесия тел, называется статикой. Проще всего рассмотреть условия равновесия абсолютно твердого тела, т. е. такого тела, размеры и форму которого можно считать неизменными. Понятие абсолютно твердого тела является абстракцией, поскольку все реальные тела под влиянием приложенных к ним сил в той или иной степени деформируются, т. е. меняют свою форму и размеры. Величина деформаций зависит как от приложенных к телу сил, так и от свойств самого тела - его формы и свойств материала, из которого оно изготовлено. Во многих практически важных случаях деформации бывают малыми и использование представлений об абсолютно твердом теле является оправданным.

Модель абсолютно твердого тела. Однако не всегда малость деформаций является достаточным условием для того, чтобы тело можно было считать абсолютно твердым. Чтобы пояснить это, рассмотрим следующий пример. Доска, лежащая на двух опорах (рис. 140а), может рассматриваться как абсолютно твердое тело, несмотря на то, что она слегка прогибается под действием сил тяжести. Действительно, в этом случае условия механического равновесия позволяют определить силы реакции опор не учитывая деформации доски.

Но если та же доска лежит на тех же опорах (рис. 1406), то представление об абсолютно твердом теле является неприменимым. В самом деле, пусть крайние опоры находятся на одной горизонтали, а средняя - чуть ниже. Если доска абсолютно твердая, т. е. вообще не прогибается, то она совсем не давит на среднюю опору Если же доска прогибается, то она давит на среднюю опору, причем тем сильнее, чем больше деформация. Условия

равновесия абсолютно твердого тела в этом случае не позволяют определить силы реакции опор так как приводят к двум уравнениям для трех неизвестных величин.

Рис. 140. Силы реакции, действующие на доску, лежащую на двух (а) и на трех (б) опорах

Такие системы носят название статически неопределимых. Для их расчета необходимо учитывать упругие свойства тел.

Приведенный пример показывает, что применимость модели абсолютно твердого тела в статике определяется не столько свойствами самого тела, сколько условиями, в которых оно находится. Так, в рассмотренном примере даже тонкую соломинку можно считать абсолютно твердым телом, если она лежит на двух опорах. Но даже очень жесткую балку нельзя считать абсолютно твердым телом, если она лежит на трех опорах.

Условия равновесия. Условия равновесия абсолютно твердого тела представляют собой частный случай динамических уравнений, когда ускорение отсутствует, хотя исторически статика возникла из потребностей строительной техники почти на два тысячелетия раньше динамики. В инерциальной системе отсчета твердое тело находится в равновесии, если векторная сумма всех действующих на тело внешних сил и векторная сумма моментов этих сил равны нулю. При выполнении первого условия равно нулю ускорение центра масс тела. При выполнении второго условия отсутствует угловое ускорение вращения. Поэтому если в начальный момент тело покоилось, то оно будет оставаться в покое и дальше.

В дальнейшем мы ограничимся изучением сравнительно простых систем, в которых все действующие силы лежат в одной плоскости. В этом случае векторное условие

сводится к двум скалярным:

если расположить оси плоскости действия сил. Некоторые из входящих в условия равновесия (1) действующих на тело внешних сил могут быть заданы, т. е. их модули и направления известны. Что же касается сил реакции связей или опор, ограничивающих возможное перемещение тела, то они, как правило, заранее не заданы и сами подлежат определению. В отсутствие трения силы реакции перпендикулярны поверхности соприкосновения тел.

Рис. 141. К определению направления сил реакции

Силы реакции. Иногда возникают сомнения в определении направления силы реакции связи, как, например, на рис. 141, где изображен стержень, опирающийся в точке А о гладкую вогнутую поверхность чашки и в точке В на острый край чашки.

Для определения направления сил реакции в этом случае можно мысленно немного подвинуть стержень, не нарушая его контакта с чашкой. Сила реакции будет направлена перпендикулярно поверхности, по которой скользит точка контакта. Так, в точке А действующая на стержень сила реакции перпендикулярна поверхности чашки, а в точке В - перпендикулярна стержню.

Момент силы. Моментом М силы относительно некоторой точки

О называется векторное произведение радиуса-вектора проведенного из О в точку приложения силы, на вектор силы

Вектор М момента силы перпендикулярен плоскости, в которой лежат векторы

Уравнение моментов. Если на тело действует несколько сил, то второе, связанное с моментами сил условие равновесия записывается в виде

При этом точка О, из которой проводятся радиусы-векторы должна выбираться общей для всех действующих сил.

Для плоской системы сил векторы моментов всех сил направлены перпендикулярно плоскости, в которой лежат силы, если моменты рассматриваются относительно точки, лежащей в этой же плоскости. Поэтому векторное условие (4) для моментов сводится к одному скалярному: в положении равновесия алгебраическая сумма моментов всех внешних действующих сил равна нулю. Модуль момента силы относительно точки О равен произведению модуля

силы на расстояние от точки О до линии, вдоль которой действует сила При этом моменты, стремящиеся повернуть тело по часовой стрелке, берутся с одним знаком, против часовой стрелки - с противоположным. Выбор точки, относительно которой рассматриваются моменты сил, производится исключительно из соображений удобства: уравнение моментов будет тем проще, чем больше сил будут иметь равные нулю моменты.

Пример равновесия. Для иллюстрации применения условий равновесия абсолютно твердого тела рассмотрим следующий пример. Легкая лестница-стремянка состоит из двух одинаковых частей, шарнирно соединенных вверху и связанных веревкой у основания (рис. 142). Определим, какова сила натяжения веревки, с какими силами взаимодействуют половинки лестницы в шарнире и с какими силами они давят на пол, если на середине одной из них стоит человек весом Р.

Рассматриваемая система состоит из двух твердых тел - половинок лестницы, и условия равновесия можно применять как для системы в целом, так и для ее частей. Применяя условия равновесия ко всей системе в целом, можно найти силы реакции пола и (рис. 142). При отсутствии трения эти силы направлены вертикально вверх и условие равенства нулю векторной суммы внешних сил (1) принимает вид

Условие равновесия моментов внешних сил относительно точки А записывается следующим образом:

где - длина лестницы, угол, образованный лестницей с полом. Решая систему уравнений (5) и (6), находим

Рис. 142. Векторная сумма внешних сил и сумма моментов внешних сил в равновесии равна нулю

Разумеется, вместо уравнения моментов (6) относительно точки А можно было бы написать уравнение моментов относительно точки В (или любой другой точки). При этом получилась бы система уравнений, эквивалентная использованной системе (5) и (6).

Сила натяжения веревки и силы взаимодействия в шарнире для рассматриваемой физической системы являются внутренними и поэтому не могут быть определены из условий равновесия всей системы как целого. Для определения этих сил необходимо рассматривать условия равновесия отдельных частей системы. При этом

удачным выбором точки, относительно которой составляется уравнение моментов сил, можно добиться упрощения алгебраической системы уравнений. Так, например, в данной системе можно рассмотреть условие равновесия моментов сил, действующих на левую половинку лестницы, относительно точки С, в которой находится шарнир.

При таком выборе точки С силы, действующие в шарнире, не войдут в это условие, и мы сразу находим силу натяжения веревки Т:

откуда, учитывая, что получаем

Условие (7) означает, что равнодействующая сил Т и проходит через точку С, т. е. направлена вдоль лестницы. Поэтому равновесие этой половинки лестницы возможно, только если сила действующая на нее в шарнире, также направлена вдоль лестницы (рис. 143), а ее модуль равен модулю равнодействующей сил Т и

Рис. 143. Линии действия всех трех сил, действующих на левую половинку лестницы, проходят через одну точку

Абсолютное значение силы действующей в шарнире на другую половинку лестницы, на основании третьего закона Ньютона равно а ее направление противоположно направлению вектора Направление силы можно было бы определить непосредственно из рис. 143, учитывая, что при равновесии тела под действием трех сил линии, по которым действуют эти силы, пересекаются в одной точке. Действительно, рассмотрим точку пересечения линий действия двух из этих трех сил и составим уравнение моментов относительно этой точки. Моменты первых двух сил относительно этой точки равны нулю; значит, должен равняться нулю и момент третьей силы, что в соответствии с (3) возможно, только если линия ее действия также проходит через эту точку.

Золотое правило механики. Иногда задачу статики можно решить, вообще не рассматривая условий равновесия, а используя закон сохранения энергии применительно к механизмам без трения: ни один механизм не дает выигрыша в работе. Этот закон

называют золотым правилом механики. Для иллюстрации такого подхода рассмотрим следующий пример: тяжелый груз весом Р подвешен на невесомом шарнире с тремя звеньями (рис. 144). Какую силу натяжения должна выдержать нить, соединяющая точки А и В?

Рис. 144. К определению силы натяжения нити в трехзвенном шарнире, поддерживающем груз весом Р

Попробуем с помощью этого механизма поднимать груз Р. Отвязав нить в точке А, потянем ее вверх так, чтобы точка В медленно поднялась на расстояние Это расстояние ограничено тем, что сила натяжения нити Т должна оставаться неизменной в процессе перемещения. В данном случае, как будет видно из ответа, сила Т вообще не зависит от того, насколько сжат или растянут шарнир. Совершенная при этом работа . В результате груз Р поднимается на высоту которая, как ясно из геометрических соображений, равна Так как при отсутствии трения никаких потерь энергии не происходит, можно утверждать, что изменение потенциальной энергии груза, равное определяется совершенной при подъеме работой. Поэтому

Очевидно, что для шарнира, содержащего произвольное число одинаковых звеньев,

Нетрудно найти силу натяжения нити и в том случае, когда требуется учитывать вес самого шарнира совершаемую при подъеме работу следует приравнять сумме изменений потенциальных энергий груза и шарнира. Для шарнира из одинаковых звеньев центр масс его поднимается на Поэтому

Сформулированный принцип («золотое правило механики») применим и тогда, когда в процессе перемещений не происходит изменения потенциальной энергии, а механизм используется для преобразования силы. Редукторы, трансмиссии, вороты, системы рычагов и блоков - во всех таких системах преобразованную силу можно определить, приравнивая работы преобразованной и приложенной сил. Другими словами, при отсутствии трения отношение этих сил определяется только геометрией устройства.

Рассмотрим с этой точки зрения разобранный выше пример со стремянкой. Конечно, использовать стремянку в качестве подъемного механизма, т. е. поднимать человека, сближая половинки стремянки, вряд ли целесообразно. Однако это не может помешать нам применить описанный метод для нахождения силы натяжения веревки. Приравнивая работу, совершаемую при сближении частей стремянки, изменению потенциальной энергии человека на стремянке и связывая из геометрических соображений перемещение нижнего конца лестницы с изменением высоты груза (рис. 145), получаем, как и следовало ожидать, приведенный ранее результат:

Как уже отмечалось, перемещение следует выбрать таким, чтобы в процессе его можно было считать действующую силу постоянной. Легко убедиться, что в примере с шарниром это условие не накладывает ограничений на перемещение, так как сила натяжения нити не зависит от угла (рис. 144). Напротив, в задаче о стремянке перемещение следует выбирать малым, ибо сила натяжения веревки зависит от угла а.

Устойчивость равновесия. Равновесие бывает устойчивым, неустойчивым и безразличным. Равновесие устойчиво (рис. 146а), если при малых перемещениях тела из положения равновесия действующие силы стремятся вернуть его обратно, и неустойчиво (рис. 1466), если силы уводят его дальше от положения равновесия.

Рис. 145. Перемещения нижних концов лестницы и перемещение груза при сближении половинок стремянки

Рис. 146. Устойчивое (а), неустойчивое (б) и безразличное (в) равновесия

Если же при малых смещениях действующие на тело силы и их моменты по-прежнему уравновешиваются, то равновесие безразличное (рис. 146в). При безразличном равновесии соседние положения тела также являются равновесными.

Рассмотрим примеры исследования устойчивости равновесия.

1. Устойчивому равновесию соответствует минимум потенциальной энергии тела по отношению к ее значениям в соседних положениях тела. Этим свойством часто удобно пользоваться при отыскании положения равновесия и при исследовании характера равновесия.

Рис. 147. Устойчивость равновесия тела и положение центра масс

Вертикальная свободно стоящая колонна находится в устойчивом равновесии, поскольку при малых наклонах ее центр масс приподнимается. Так происходит до тех пор, пока вертикальная проекция центра масс не выйдет за пределы площади опоры, т. е. угол отклонения от вертикали не превысит некоторого максимального значения. Другими словами, область устойчивости простирается от минимума потенциальной энергии (при вертикальном положении) до ближайшего к нему максимума (рис. 147). Когда центр масс расположен точно над границей площади опоры, колонна также находится в равновесии, но неустойчивом. Горизонтально лежащей колонне соответствует гораздо более широкая область устойчивости.

2. Имеются два круглых карандаша с радиусами и Один из них расположен горизонтально, другой уравновешен на нем в горизонтальном положении так, что оси карандашей взаимно перпендикулярны (рис. 148а). При каком соотношении между радиусами равновесие устойчиво? На какой максимальный угол можно при этом отклонить от горизонтали верхний карандаш? Коэффициент трения карандашей друг о друга равен

На первый взгляд может показаться, что равновесие верхнего карандаша вообще неустойчиво, так как центр масс верхнего карандаша лежит выше оси, вокруг которой он может поворачиваться. Однако здесь положение оси вращения не остается неизменным, поэтому этот случай требует специального исследования. Поскольку верхний карандаш уравновешен в горизонтальном положении, центры масс карандашей лежат на этой вертикали (рис. ).

Отклоним верхний карандаш на некоторый угол от горизонтали. При отсутствии трения покоя он немедленно соскользнул бы вниз. Чтобы не думать пока о возможном соскальзывании, будем считать трение достаточно большим. При этом верхний карандаш «прокатывается» по нижнему без проскальзывания. Точка опоры из положения А перемещается в новое положение С, а та точка, которой верхний карандаш до отклонения опирался о нижний,

переходит в положение В. Поскольку проскальзывание отсутствует, длина дуги равна длине отрезка

Рис. 148. Верхний карандаш уравновешен в горизонтальном положении на нижнем карандаше (а); к исследованию устойчивости равновесия (б)

Центр масс верхнего карандаша переходит в положение . Если вертикаль, проведенная через проходит левее новой точки опоры С, то сила тяжести стремится вернуть верхний карандаш в положение равновесия.

Выразим это условие математически. Проведя вертикаль через точку В, видим, что должно выполняться условие

Так как то из условия (8) получаем

Поскольку сила тяжести будет стремиться возвратить верхний карандаш в положение равновесия только при Следовательно, устойчивое равновесие верхнего карандаша на нижнем возможно только тогда, когда его радиус меньше радиуса нижнего карандаша.

Роль трения. Для ответа на второй вопрос следует выяснить, какие причины ограничивают допустимый угол отклонения. Во-первых, при больших углах отклонения вертикаль, проведенная через центр масс верхнего карандаша, может пройти правее точки опоры С. Из условия (9) видно, что при заданном отношении радиусов карандашей максимальный угол отклонения

Всегда ли условий равновесия твердого тела достаточно для определения сил реакции?

Как практически можно определить направление сил реакции при отсутствии трения?

Как можно использовать золотое правило механики при анализе условий равновесия?

Если в шарнире, показанном на рис. 144, нитью соединить не точки А и В, а точки Л и С, то какой будет ее сила натяжения?

Как связана устойчивость равновесия системы с ее потенциальной энергией?

Какими условиями определяется максимальный угол отклонения тела, опирающегося на плоскость в трех точках, чтобы не была утрачена его устойчивость?

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1 положение 2). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1 положение 1). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1 положение 3).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О, изображенная на рисунке 2), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 2,1), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 2,2), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 2,3), то положение равновесия безразличное.

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 2 изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2. Если же его отклонить на угол (положение 3), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.

В статике абсолютно твёрдого тела различают три вида равновесия.

1. Рассмотрим шарик, который находится на вогнутой поверхности. В поло­жении, показанном на рис. 88, шарик на­ходится в равновесии: сила реакции опо­ры уравновешивает силу тяжести .

Если отклонить шарик от положения равновесия, то векторная сумма сил тя­жести и реакции опоры уже не равна ну­лю: возникает сила , которая стремится вернуть шарик в первоначаль­ное положение равновесия (в точку О ).

Это пример устойчивого равновесия.

У с т о й ч и в ы м называется такой вид равновесия, при выходе из которого возникают силы или моменты сил, которые стремятся вернуть тело в положение равновесия.

Потенциальная энергия шарика в лю­бой точке вогнутой поверхности больше, чем потенциальная энергия в положении равновесия (в точке О ). Например, в точ­ке А (рис. 88) потенциальная энергия больше, чем потенциальная энергия в точке О на величину Е п (А ) - Е п (0) = mgh .

В положении устойчивого равновесия потенци- альная энергия тела имеет мини­мальное значение по сравнению с соседними положениями.

2. Шарик на выпуклой поверхности находится в положении равновесия в верхней точке (рис. 89), где сила тяжести уравновешена силой реакции опо­ры . Если отклонить шарик от точки О , то возникает сила , направлен­ная в сторону от положения равновесия.

Под действием силы шарик будет уда­ляться от точки О . Это пример неустой­чивого равновесия.

Н е у с т о й ч и в ы м называется такой вид равновесия, при выходе из которого возникают силы или моменты сил, которые стремятся увести тело ещё дальше от положения равновесия.

Потенциальная энергия шарика на вы­пуклой поверхности имеет наибольшее значение (максимум) в точке О . В любой другой точке потенциальная энергия ша­рика меньше. Например, в точке А (рис. 89) потенциальная энергия меньше, чем в точке О , на величину Е п (0 ) - Е п (А ) = mgh .

В положении неустойчивого равнове­сия потен-циальная энергия тела имеет максимальное значение по сравнению с соседними положениями.

3. На горизонтальной поверхности силы, действующие на шарик, уравновешены в любой точке: (рис. 90). Если, например, сместить шарик из точки О в точку А , то равнодействующая сил
тяжести и реакции опоры по-прежнему равна нулю, т.е. в точке А шарик также находится в положении равновесия.

Это пример безразличного равнове­сия.

Б е з р а з л и ч н ы м называется такой вид равновесия, при выходе из которого тело остаётся в новом положении в равновесии.

Потенциальная энергия шарика во всех точках горизонтальной поверхности (рис. 90) одинакова.

В положениях безразличного равнове­сия потен- циальная энергия одинакова.

Иногда на практике приходится опре­делять вид равновесия тел различной формы в поле сил тяжести. Для этого нужно запомнить следующие правила:

1. Тело может находиться в положении устой- чивого равновесия, если точка приложения силы реакции опоры находится выше центра тяжести тела. При этом эти точки лежат на одной вертикали (рис. 91).

На рис. 91, б роль силы реакции опоры играет сила натяжения нити .

2. Когда точка приложения силы реакции опоры находится ниже центра тяжести, возможны два случая:

Если опора точечная (площадь поверхности опоры мала), то равновесие неустойчивое (рис. 92). При небольшом отклонении от положения равновесия момент сил и стремится увеличить от­клонение от начального положения;

Если опора неточечная (площадь поверх- ности опоры велика), то положение равновесия устой- чивое в том случае, когда линия действия силы тяжести АА " пересекает поверхность опоры тела
(рис. 93). В этом случае при небольшом отклонении тела от положения равновесия возникает момент сил и , кото­рый возвращает тело в первоначальное положение.


??? ОТВЕТЬТЕ НА ВОПРОСЫ:

1. Как изменяется положение центра тяжести тела, если тело вывести из положения: а) устой­чивого равновесия? б) неустойчивого равновесия?

2. Как изменяется потенциальная энергия те­ла, если изменить его положение при безразлич­ном равновесии?