Традиционно в каждом ЦТ встречаются задания на полимеры , которые получают путём реакций полимеризации и поликонденсации . Но справляются с этими заданиями далеко не все абитуриенты. Вот я и решил устранить этот пробел в ваших знаниях.

Я сделал выборку всех полимеров, которые встречались в ЦТ всех лет с учётом реакций их получения. А также сделал видео-решение одного из самых сложных заданий на полимеры из ЦТ по химии 2008.

Полимериза́ция (др.-греч. πολυμερής - состоящий из многих частей) - процесс образования высокомолекулярного вещества (полимера) путём многократного присоединения молекул низкомолекулярного вещества (мономера, олигомера) к активным центрам в растущей молекуле полимера. Молекула мономера, входящая в состав полимера, образует так называемое мономерное (структурное) звено. Элементный состав (молекулярные формулы) мономера и полимера приблизительно одинаков.

Поликонденсация - процесс синтеза полимеров из полифункциональных (чаще всего бифункциональных) соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.) при взаимодействии функциональных групп.

Т.е при поликонденсации помимо полимера образуется ещё какое-либо низкомолекулярное вещество, а при полимеризации — только полимер!

Полимеризацией получают:

1) плексиглас: из метилметакрилата

2) полистирол

4) хлоропреновый каучук (полихлоропрен): из 2-хлорбутадиена-1,3

5) бутадиеноввй каучук

6) тефлон (политетрафторэтилен)

7) полипропилен, полиэтилен и т.п.

Поликонденсацией получают:

1) лавсан (полиэтилентерефталат): терефталевая кислота + этиленгликоль

2) кевлар: фенилен-1,4-диамин (пара-фенилендиамин) + терефталоилхлорид (дихлорангидрид терефталевой кислоты)

3) найлон: адипиновая кислота + гексаметилендиамин

4) полипептиды: из аминокислот

5) фенолформальдегидные смолы: фенол + формальдегид

При реакции полимеризации на выходе получают только полимеры. В ходе поликонденсации продуктом реакций становится полимеры и низкомолекулярные вещества.

Определение

В процессе полимеризации последовательно соединяются как одинаковые, так и различные молекулы мономеров, выстраивая одну сложную молекулу полимера (высокомолекулярного вещества) без выделения и образования побочных продуктов – низкомолекулярных соединений. Поэтому на выходе получают полимер с точно таким же элементарным составом, что и мономер.

В процессе поликонденсации молекулы одного либо нескольких мономеров, соединяясь между собой, образуют макромолекулу полимера и побочно выделяют тот или иной низкомолекулярный продукт (воду, спирт, хлороводород или аммиак). Поликонденсация лежит в основе биосинтеза целлюлозы, нуклеиновых кислот и, конечно, белков.

Сравнение

Эти два процесса схожи тем, что в его начале в реакцию вступает исходный мономер. А дальше при полимеризации в реакционной системе на всех стадиях текущего процесса присутствуют увеличивающиеся активные цепи, исходный мономер и закончившие рост макромолекулы. А в процессе поликонденсации мономер, как правило, исчерпывается на начальных стадиях происходящей реакции, и в дальнейшем в системе остаются лишь полимеры (олигомеры), взаимодействующие один с другим.

Для полимеризации и поликонденсации одинаково важна реакционная способность нужных мономеров и, конечно, их строение. В ходе полимеризации реакции, возникающие между увеличивающимися молекулами, как правило заканчиваются обрывом цепей.

А при поликонденсации реакции, протекающие между увеличивающимися молекулами, – это основные реакции роста полимерных цепей. Длинные цепи формируются за счет взаимодействия олигомеров. Полимеризация протекает по трем стадиям: инициированию, росту цепи и обрыву цепи. При этом центрами роста полимерной цепи являются катионы, свободные радикалы или анионы. Функциональность (количество реакционных центров в молекуле) влияет на образование трехмерных, разветвленных или линейных макромолекул.

Выводы сайт

  1. Для поликонденсации характерно выделением побочных продуктов – низкомолекулярных веществ, таких как вода или спирт.
  2. При полимеризации продуктами реакции становятся только полимеры.
  3. Биосинтез целлюлозы, белков и нуклеиновых кислот возможен благодаря реакции поликонденсации.

Конденсация - это основа создания полимерных синтетических материалов: поливинилхлорида, олефинов. При использовании базовых вариантов мономеров можно путем сополиконденсации получать миллионы тонн новых полимерных веществ. В настоящее время существуют различные методы, которые позволяют не только создавать вещества, но и влиять на молекулярно-массовое распределение полимеров.

Особенности процесса

Реакция поликонденсации - это процесс получения полимера при стадийном присоединении друг к другу молекул полифункциональных мономеров. При этом происходит выделение низкомолекулярных продуктов.

В качестве основы этого процесса можно рассматривать Благодаря выделению побочных продуктов, существуют отличия в элементарном составе полимера и исходного мономера.

Реакция поликонденсации аминокислоты связана с образованием молекул воды в ходе взаимодействия амино- и карбоксильной группы соседних молекул. В этом случае первая стадия реакции связана с образованием димеров, затем они превращаются в высокомолекулярные вещества.

Реакция поликонденсации, пример которой мы рассматриваем, отличается способностью образования на каждом этапе устойчивых веществ. Получаемые при взаимодействии аминокислот димеры, тримеры и полимеры можно выделять на всех промежуточных стадиях из реакционной смеси.

Итак, поликонденсация - это ступенчатый процесс. Для его протекания нужны молекулы мономеров, в составе которых от двух функциональных групп, способных взаимодействовать между собой.

Наличие функциональных групп позволяет олигомерам реагировать не только между собой, но и с мономерами. Подобное взаимодействие характеризует рост цепи полимера. Если у исходных мономеров по две функциональные группы, цепь растет в одном направлении, что приводит к образованию линейных молекул.

Поликонденсация - это реакция, результатом которой будут продукты, способные к последующему взаимодействию.

Классификация

Реакция поликонденсации, пример которой можно записать для многих органических веществ, дает представление о сложности протекающего взаимодействия.

В настоящее время подобные процессы принято классифицировать по определенным признакам:

  • тип связи между звеньями;
  • количество мономеров, принимающих участие в реакции;
  • механизм процесса.

Чем отличается реакция поликонденсации для разных классов органических веществ? Например, при полиамидировании в качестве исходных компонентов используют амины и карбоновые кислоты. В ходе ступенчатого взаимодействия между мономерами наблюдается образование полимера и молекул воды.

При этерификации исходными веществами являются спирт и карбоновая кислота, а условием получения сложного эфира является применение концентрированной серной кислоты в виде катализатора.

Как происходит поликонденсация? Примеры взаимодействий свидетельствуют о том, что в зависимости от числа мономеров можно выделить гомо- и гетерополиконденсацию. Например, при гомополиконденсации в качестве мономеров будут выступать вещества, имеющие сходные функциональные группы. В этом случае конденсация - это объединение исходных веществ с выделением воды. В качестве примера можно привести реакцию между несколькими аминокислотами, в результате которой будет образовываться полипептид (молекула белка).

Механизм процесса

В зависимости от особенностей протекания выделяют обратимую (равновесную) и необратимую (неравновесную) поликонденсацию. Подобное деление можно объяснить присутствием либо отсутствием деструктивных реакций, которые предполагают использование низкомолекулярных процессов, различной активности мономеров, а также допускают отличия в кинетических и термодинамических факторах. Для таких взаимодействий характерны невысокие константы равновесия, незначительная скорость процесса, длительность реакции, высокие температуры.

Во многих случаях для необратимых процессов характерно использование мономеров, отличающихся высокой реакционной способностью.

Высокие скорости процесса с применением мономера такого типа объясняют выбор низкотемпературной и межфазной поликонденсации в растворе. Необратимость процесса обуславливается невысокой температурой реакционной смеси, получением малоактивного химического вещества. В органической химии есть и такие варианты неравновесной поликонденсации, которые протекают в расплавах при высоких температурах. Примером такого процесса является процесс получения из диолов и дигалогенпроизводных полиэфиров.

Уравнение Карозерса

Глубина поликонденсации связана с тщательностью удаления из реакционной среды продуктов низкомолекулярного вида, которые мешают смещению процесса в сторону образования полимерного соединения.

Между глубиной процесса и степенью полимеризации есть зависимость, которая была объединена в математическую формулу. При реакции поликонденсации происходит исчезновение двух функциональных групп и одной молекулы мономера. Так как за время прохождения процесса происходит расходование какого-то количества молекул, глубина реакции связана с долей прореагировавших функциональных групп.

Чем больше будет взаимодействие, тем выше окажется степень полимеризации. Глубина процесса характеризуется продолжительностью реакции, величиной макромолекул. Чем отличается полимеризация от поликонденсации? В первую очередь характером протекания, а также скоростью процесса.

Причины прекращения процесса

Остановка роста цепи полимера вызывается различными причинами химического и физического характера. В качестве основных факторов, способствующих остановке процесса синтеза полимерного соединения, выделим:

  • повышение вязкости среды;
  • снижение скорости процесса диффузии;
  • уменьшение концентрации взаимодействующих веществ;
  • понижение температуры.

При повышении вязкости реакционной среды, а также понижении концентрации функциональных групп идет снижение вероятности столкновения молекул с последующей остановкой процесса роста.

Среди химических причин торможения поликонденсации лидируют:

  • изменение химического состава функциональных групп;
  • непропорциональное количество мономеров;
  • присутствие в системе низкомолекулярного продукта реакции;
  • равновесие между прямой и обратной реакциями.

Специфика кинетики

Реакции полимеризации и поликонденсации связаны с изменением скорости взаимодействия. Проанализируем основные кинетические процессы на примере процесса полиэтерификации.

Кислотный катализ протекает в две стадии. Сначала наблюдается протонирование кислоты - исходного реагента кислотой, выступающей в роли катализатора.

В ходе атаки реагентом спиртовой группы происходит распад интермедиата до продукта реакции. Для протекания прямой реакции важно своевременно удалять из реакционной смеси молекулы воды. Постепенно наблюдается уменьшение скорости процесса, вызываемое увеличением относительной молекулярной массы продукта поликонденсации.

В случае применения эквивалентных количеств функциональных групп на концах молекул взаимодействие может осуществляться длительный промежуток времени, пока не будет создана гигантская макромолекула.

Варианты проведения процессов

Полимеризация и поликонденсация - это важные процессы, используемые в современном химическом производстве. Выделяют несколько лабораторных и промышленных способов проведения процесса поликонденсации:

  • в растворе;
  • в расплаве;
  • в виде межфазного процесса;
  • в эмульсии;
  • на матрицах.

Реакции в расплавах необходимы для получения полиамидов и полиэфиров. В основном в расплаве равновесная поликонденсация протекает в две стадии. Сначала взаимодействие осуществляется в вакууме, что позволяет избежать термоокислительной деструкции мономеров, а также продуктов поликонденсации, гарантирует постепенное нагревание реакционной смеси, полное удаление низкомолекулярных продуктов.

Важные факты

Большая часть реакций проводится без использования катализатора. Вакуумирование расплава на второй стадии реакции сопровождается полной очисткой полимера, поэтому нет необходимости дополнительно проводить трудоемкий процесс переосаждения. Не допускается резкого повышения температуры на первом этапе взаимодействия, поскольку это может привести к частичному испарению мономеров, нарушению количественного соотношения взаимодействующих реагентов.

Полимеризация: особенности и примеры

Данный процесс характеризуется использованием одного исходного мономера. Например, путем такой реакции можно получать полиэтилен из исходного алкена.

Особенностью полимеризации является формирование крупных молекул полимера с заданным количеством повторяющихся структурных звеньев.

Заключение

Путем поликонденсации можно получить множество полимеров, востребованных в различных современных производствах. Например, в ходе этого процесса можно выделить фенолформальдегидные смолы. Взаимодействие формальдегида и фенола сопровождается образованием на первом этапе промежуточного соединения (фенолспирта). Затем наблюдается конденсация, приводящая к получению высокомолекулярного соединения - фенолформальдегидной смолы.

Полученный путем поликонденсации продукт нашел свое применение в создании множества современных материалов. Фенопласты, в основе которых есть данное соединение, обладают прекрасными теплоизоляционными характеристиками, поэтому востребованы в строительстве.

Полиэфиры, полиамиды, полученные путем поликонденсации, используют в медицине, технике, химическом производстве.

Полиамиды . Рассмотрим процесс образования полиамидов, представителями которых являются многочисленные разновидности найлона. Некоторые из них образуются конденсацией диаминов с хлоропроизводными дикарбоновых кислот. Например, найлон-6,6 образуется при нагревании гексан-1,6-диоилдихлорида (дихлорангидрида адипиновой кислоты) с гексан-1,6-диамином:

Каждый мономер содержит по две функциональные группы. Процесс сопровождается выделением низкомолекулярного соединения – НС1. Состав элементарного звена молекулы полимера не соответствует составу молекулы исходных мономеров. Найлон-6,6 используется либо как волокно, либо как пластик (щетки, изготовление шестерен и деталей в механизмах и др.).

Полиэфиры также представляют собой продукты поликонденсации. Они используются как синтетические волокна. Например, "терилен" ("лавсан", "дакрон") образуется при нагревании 1,2 – этандиола (этиленгликоля) с терефталевой кислотой. Оба этих мономера являются бифункциональными. Первый из них представляет собой двухатомной спирт, а второй – дикарбоновую кислоту:

Фенолформальдегидные смолы получают реакцией поликонденсации фенола С6Н5ОН и формальдегида СН2О. В зависимости от соотношения компонентов и условий процесса поликонденсации образуются новолачные или резольные смолы.

Новолачные смолы образуются при небольшом избытке фенола с катализатором – соляной кислотой при нагревании. Сначала получается преимущественно о-оксибензиловый спирт, а затем в результате его поликонденсации – новолачная смола:

Резольные смолы получают при небольшом избытке формальдегида с щелочным катализатором:

При нагревании резольных смол до 150–170°С происходит сшивание цепных молекул посредством СН2-мостиков и возникает структура резита:

Отверждение новолачных смол можно провести путем добавления отвердителя – уротропина (CH2)6N4 и нагревания.

Примером ступенчатой полимеризации, проходящей без выделения низкомолекулярных соединений, является получение полиуретанов.

Схема реакции получения полиуретанов линейного строения:

Карбамидные – мочевиноформальдегидные и меламиноформальдегидные смолы.

Мочевина также способна к реакции конденсации с формальдегидом, в результате которой получают мочевиноформальдегидные смолы. Реакция протекает аналогично образованию фенолформальдегидных смол. При этом получаются моно- и ди- метилольные производные, которые далее, реагируя с мочевиной, образуют конечную структуру смолы:

Итоговая схема следующая:

Атомы водорода имидной группы линейного полимера могут далее замещаться метилольными группировками в присутствии избытка формальдегида:

Структура конечного продукта, как и при конденсации фенолформальдегидных смол, зависит от соотношения мочевины и формальдегида в исходной смеси. Так при нагреве линейного полимера в присутствии избытка формальдегида образуется трехмерный полимер:

Меланин и формальдегид также могут реагировать, образуя метилольные производные меламина:

Конденсация метилольных производных меламина с большим количеством меламина приводит к получению линейного полимера. Этот полимер при дальнейшей конденсации с избытком формальдегида образует трехмерный сетчатый полимер, нерастворимый во многих растворителях:

Несшитые мочевиноформальдегидные и меламиноформальдегидные смолы водорастворимы и их используют как связующие, например в производстве фанеры.

Меламиновые смолы используют в производстве древесностружечных и древесноволокнистых плит.

Меламиноформальдегидные смолы обладают более высокой термо- и влагостойкостью в сравнении с мочевиноформальдегидными смолами

Эпоксидные полимеры

Эпоксидные полимеры. – это простые полиэфиры. Один из эпоксидных полимеров (или эпоксидных смол) получают из этилхлоргидрина и бисфенола А. Реакцию проводят в избытке эпихлоргидрина

Вместо бисфенола А могут использоваться и гликоли, глицерин, резорцин и их производные.

Полученные эпоксидные смолы представляют собой высоковязкие жидкости или твердые тела с высокими температурами плавления. Эпоксидные смолы могут далее отверждаться добавками аминов, полисульфидов, полиамидов. Эпоксидные смолы находят весьма широкое и разнообразное применение благодаря своей химической устойчивости и хорошей адгезии. Эпоксидные смолы являются конструкционными клеями. После полного отверждения эпоксидные смолы – это прочные материалы, что позволяет их использовать для покрытия полов в промышленных зданиях в качестве герметизирующих композиций.

Синтетические полимеры получают в результате реакций полимеризации, поли-конденсации и превращений в цепях макромолекул.

Полимеризация - это процесс соединения друг с другом большого числа молекул мономера за счет разрыва кратных связей (С= С, С = О, С = N, С = С и т. д.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования и выделения низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав.

Поликонденсация - это процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две или более функциональные группы (ОН, СООН, COCl, NH 2 и др.), способных к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов (Н 2 О, HCl и др.). Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам, поэтому структуру их макромолекул рассматривают с точки зрения повторяющегося, а не мономерного звена.

Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей. Макромолекула при цепной полимеризации образуется очень быстро и сразу же приобретает конечные размеры.


Принципиальное отличие цепной полимеризации от ступенчатой и от поликон­денсации состоит в том, что на разных стадиях процесса реакционная смесь всегда состоит из мономера и полимера и не содержит ди-, три-, тетрамеров. С увеличением продолжительности реакции растет лишь число макромолекул полимера, а мономер расходуется постепенно Молекулярная масса полимера не зависит от степени завер­шенности реакции или, что то же, от конверсии мономера, которая определяет только выход полимера.

Многие полимеры нельзя получить ни полимеризацией, ни поликонденсацией, поскольку или неизвестны исходные мономеры, или мономеры не могут образовывать высокомолекулярных соединений. Синтез таких полимеров осуществляют, исходя из высокомолекулярных соединений, макромолекулы которых содержат реак- ционноспособные функциональные группы. По этим группам полимеры вступают в те же реакции, что и содержащие такие группы низкомолекулярные соединения.



Превращение функциональных групп у полимеров протекает с меньшей скоростью, чем у низкомолекулярных веществ. Это связано с влиянием на реакционную способность функциональных групп полимеров структуры их цепей, стерических факторов, формы макромолекул (рыхлый или плотный клубок), фазового состояния полимеров (кристаллическое или аморфное), диффузионных процессов. Перечисленные факторы определяют доступность функциональных групп макромолекул для химического реагента.

Реакции в цепях полимеров могут происходить без существенного изменения молекулярной массы полимера (так называемые полимераналогичные превращения), с увеличением молекулярной массы полимера (синтез привитых и блоксополимеров) или с уменьшением молекулярной массы (деструкция макромолекул).

Полимераналогичные превращения представляют собой реакции полимеров с низ­комолекулярными веществами, в результате которых в полимерах происходит замена одних функциональных групп на другие без изменения длины основной цепи мак­ромолекул. Например, поливиниловый спирт нельзя получить полимеризацией мономера - винилового спирта, так как последний неустойчив и при получении сразу же изомеризуется в ацетальдегид:


Реакцией полимераналогичных превращений получают в промышленности различные поливинилацетали, эфиры целлюлозы и т. д.

Реакции в цепях полимеров, сопровождающиеся изменением их молекулярной мас­сы, протекают в трех случаях: при взаимодействии какого-либо мономера с полимером, который служит для него инициатором; при взаимодействии различных полимеров или олигомеров (интерполимерное взаимодействие) за счет содержащихся в них реакционноспособных функциональных групп; при рекомбинации (соединении) двух макрорадикалов, которые возникают при облучении или механическом воздействии на смесь полимеров. В промышленности подобными реакциями получают ударопрочный полистирол и АБС-пластики.

Деструкция полимеров сопровождается уменьшением ММ вследствие разрыва основной цепи макромолекулы. Факторами, вызывающими деструкцию, являются теплота, свет, кислород, проникающая радиация, механические напряжения и т. д. При деструкции уменьшается молекулярная масса полимера, ухудшаются его физико-механические свойства. Стойкость полимеров к деструкции зависит от их химической структуры, формы макромолекул, степени кристалличности, частоты пространственной сетки.

Реакции деструкции протекают преимущественно по радикальному (реже ионному) механизму. Различают термическую, термоокислительную, фотохимическую, радиационную, механическую и химическую деструкцию. Реакции деструкции лежат в основе старения полимеров, при котором они ухудшают или утрачивают свои полезные свойства.