Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Сложные интегралы

Данная статья завершает тему неопределенных интегралов, и в неё включены интегралы, которые я считаю достаточно сложными. Урок создан по неоднократным просьбам посетителей, которые высказывали пожелания, чтобы на сайте были разобраны и более трудные примеры.

Предполагается, что читатель сего текста хорошо подготовлен и умеет применять основные приемы интегрирования. Чайникам и людям, которые не очень уверенно разбираются в интегралах, следует обратиться к самому первому уроку – Неопределенный интеграл. Примеры решений , где можно освоить тему практически с нуля. Более опытные студенты могут ознакомиться с приемами и методами интегрирования, которые в моих статьях еще не встречались.

Какие интегралы будут рассмотрены?

Сначала мы рассмотрим интегралы с корнями, для решения которых последовательно используется замена переменной и интегрирование по частям . То есть, в одном примере комбинируются сразу два приёма . И даже больше.

Затем мы познакомимся с интересным и оригинальным методом сведения интеграла к самому себе . Данным способом решается не так уж мало интегралов.

Третьим номером программы пойдут интегралы от сложных дробей , которые пролетели мимо кассы в предыдущих статьях.

В-четвертых, будут разобраны дополнительные интегралы от тригонометрических функций . В частности, существуют методы, которые позволяют избежать трудоемкой универсальной тригонометрической подстановки .

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала .

(4) Берём оставшиеся интегралы. Обратите внимание, что в логарифме можно использовать скобки, а не модуль, так как .

(5) Проводим обратную замену, выразив из прямой замены «тэ»:

Студенты-мазохисты могут продифференцировать ответ и получить исходную подынтегральную функцию, как только что это сделал я. Нет-нет, я-то в правильном смысле выполнил проверку =)

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения:

Пример 2

Найти неопределенный интеграл

Пример 3

Найти неопределенный интеграл

Пример 4

Найти неопределенный интеграл

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений, думаю, очевидно. Почему я подобрал однотипные примеры? Часто встречаются в своем амплуа. Чаще, пожалуй, только что-нибудь вроде .

Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Методом сведения интеграла к самому себе

Остроумный и красивый метод. Немедленно рассмотрим классику жанра:

Пример 5

Найти неопределенный интеграл

Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе не сложно. Если знаешь как.

Обозначим рассматриваемый интеграл латинской буквой и начнем решение:

Интегрируем по частям:

(1) Готовим подынтегральную функцию для почленного деления.

(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишу подробнее:

(3) Используем свойство линейности неопределенного интеграла.

(4) Берём последний интеграл («длинный» логарифм).

Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!

Приравниваем начало и конец:

Переносим в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Константу , строго говоря, надо было добавить ранее, но приписал её в конце. Настоятельно рекомендую прочитать, в чём тут строгость:

Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу можно переобозначить через . Почему можно переобозначить? Потому что всё равно принимает любые значения, и в этом смысле между константами и нет никакой разницы.
В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях . И там я буду строг. А здесь такая вольность допускается мной только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.

Пример 6

Найти неопределенный интеграл

Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!

Если под квадратным корнем находится квадратный трехчлен, то решение в любом случае сводится к двум разобранным примерам.

Например, рассмотрим интеграл . Всё, что нужно сделать – предварительно выделить полный квадрат :
.
Далее проводится линейная замена, которая обходится «без всяких последствий»:
, в результате чего получается интеграл . Нечто знакомое, правда?

Или такой пример, с квадратным двучленом:
Выделяем полный квадрат:
И, после линейной замены , получаем интеграл , который также решается по уже рассмотренному алгоритму.

Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:
– интеграл от экспоненты, умноженной на синус;
– интеграл от экспоненты, умноженной на косинус.

В перечисленных интегралах по частям придется интегрировать уже два раза:

Пример 7

Найти неопределенный интеграл

Подынтегральная функция – экспонента, умноженная на синус.

Дважды интегрируем по частям и сводим интеграл к себе:


В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:

Переносим в левую часть со сменой знака и выражаем наш интеграл:

Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.

Теперь вернемся к началу примера, а точнее – к интегрированию по частям:

За мы обозначили экспоненту. Возникает вопрос, именно экспоненту всегда нужно обозначать за ? Не обязательно. На самом деле в рассмотренном интеграле принципиально без разницы , что обозначать за , можно было пойти другим путём:

Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).

То есть, за можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за , экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.

И, конечно, не забывайте, что большинство ответов данного урока достаточно легко проверить дифференцированием!

Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например: . Попутаться в подобном интеграле придется многим, частенько путаюсь и я сам. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.

На завершающем этапе часто получается примерно следующее:

Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:

Интегрирование сложных дробей

Потихоньку подбираемся к экватору урока и начинаем рассматривать интегралы от дробей. Опять же, не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Продолжаем тему корней

Пример 9

Найти неопределенный интеграл

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

Решаем:

Замена тут проста:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.
(2) Выносим из-под корня.
(3) Числитель и знаменатель сокращаем на . Заодно под корнем я переставил слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.
(4) Полученный интеграл, как вы помните из урока Интегрирование некоторых дробей , решается методом выделения полного квадрата . Выделяем полный квадрат.
(5) Интегрированием получаем заурядный «длинный» логарифм.
(6) Проводим обратную замену. Если изначально , то обратно: .
(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

Единственное, что нужно дополнительно сделать – выразить «икс» из проводимой замены:

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , метод решения которого рассматривался на уроке Интегралы от иррациональных функций .

Интеграл от неразложимого многочлена 2-й степени в степени

(многочлен в знаменателе)

Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

Но вернёмся к примеру со счастливым номером 13 (честное слово, не подгадал). Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Для интеграла вида ( – натуральное число) выведена рекуррентная формула понижения степени:
, где – интеграл степенью ниже.

Убедимся в справедливости данной формулы для прорешанного интеграла .
В данном случае: , , используем формулу:

Как видите, ответы совпадают.

Пример 14

Найти неопределенный интеграл

Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.

Если под степенью находится неразложимый на множители квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Но в моей практике такого примера не встречалось ни разу , поэтому я пропустил данный случай в статье Интегралы от дробно-рациональной функции , пропущу и сейчас. Если такой интеграл все-таки встретится, смотрите учебник – там всё просто. Не считаю целесообразным включать материал (даже несложный), вероятность встречи с которым стремится к нулю.

Интегрирование сложных тригонометрических функций

Прилагательное «сложный» для большинства примеров вновь носит во многом условный характер. Начнем с тангенсов и котангенсов в высоких степенях. С точки зрения используемых методов решения тангенс и котангенс – почти одно и тоже, поэтому я больше буду говорить о тангенсе, подразумевая, что продемонстрированный прием решения интеграла справедлив и для котангенса тоже.

На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать!

Рассмотрим еще один канонический пример, интеграл от единицы, деленной на синус:

Пример 17

Найти неопределенный интеграл

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Я приведу полное решение с комментами к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла .
(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на .
(3) По известной формуле в знаменателе превращаем дробь в тангенс.
(4) Подводим функцию под знак дифференциала.
(5) Берём интеграл.

Пара простых примеров для самостоятельного решения:

Пример 18

Найти неопределенный интеграл

Указание: Самым первым действием следует использовать формулу приведения и аккуратно провести аналогичные предыдущему примеру действия.

Пример 19

Найти неопределенный интеграл

Ну, это совсем простой пример.

Полные решения и ответы в конце урока.

Думаю, теперь ни у кого не возникнет проблем с интегралами:
и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью преобразований, тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса . То есть, речь идет о замене: . В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала .

Аналогичные рассуждения, как я уже оговаривался, можно провести для котангенса.

Существует и формальная предпосылка для применения вышеуказанной замены:

Сумма степеней косинуса и синуса – целое отрицательное ЧЁТНОЕ число , например:

для интеграла – целое отрицательное ЧЁТНОЕ число.

! Примечание :если подынтегральная функция содержит ТОЛЬКО синус или ТОЛЬКО косинус, то интеграл берётся и при отрицательной нечётной степени (простейшие случаи – в Примерах №№17, 18).

Рассмотрим пару более содержательных заданий на это правило:

Пример 20

Найти неопределенный интеграл

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное ЧЁТНОЕ число, значит, интеграл можно свести к тангенсам и его производной:

(1) Преобразуем знаменатель.
(2) По известной формуле получаем .
(3) Преобразуем знаменатель.
(4) Используем формулу .
(5) Подводим функцию под знак дифференциала.
(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.

Пример 21

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Держитесь, начинаются чемпионские раунды =)

Зачастую в подынтегральной функции находится «солянка»:

Пример 22

Найти неопределенный интеграл

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

Искусственное преобразование в самом начале и остальные шаги оставлю без комментариев, поскольку обо всем уже говорилось выше.

Пара творческих примеров для самостоятельного решения:

Пример 23

Найти неопределенный интеграл

Пример 24

Найти неопределенный интеграл

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока

Найти неопределённый интеграл (множество первообразных или "антипроизводных") означает восстановить функцию по известной производной этой функции. Восстановленное множество первообразных F (x ) + С для функции f (x ) учитывает константу интегрирования C . По скорости перемещения материальной точки (производной) может быть восстановлен закон движения этой точки (первообразная); по ускорению движения точки - её скорость и закон движения. Как видно, интегрирование - широкое поле для деятельности Шерлоков Холмсов от физики. Да и в экономике многие понятия представляются через функции и их производные и поэтому, например, можно по производительности труда в определённый момент времени (производной) восстановить объём продукции, выпущенный в соответствующее время.

Чтобы найти неопределённый интеграл, требуется довольно небольшое количество основных формул интегрирования. Но процесс его нахождения значительно труднее, чем одно лишь применение этих формул. Вся сложность относится не к интегрированию, а к приведению интегрируемого выражения к такому виду, который даёт возможность найти неопределённый интеграл по упомянутым выше основным формулам. Это означает, что для начала практики интегрирования нужно активизировать полученные в средней школе навыки преобразования выражений.

Учиться находить интегралы будем, пользуясь свойствами и таблицей неопределённых интегралов из урока об основных понятиях этой темы (откроется в новом окне).

Существует несколько методов нахождения интеграла, из которых метод замены переменной и метод интегрирования по частям - обязательный джентльменский набор каждого, кто успешно сдал высшую математику. Однако начинать осваивать интегрирование полезнее и приятнее с применением метода разложения, основанном на следующих двух теоремах о свойствах неопределённого интеграла, которые для удобства повторим здесь.

Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла, т.е.

Теорема 4. Неопределённый интеграл алгебраической суммы конечного числа функций равен алгебраической сумме неопределённых интегралов этих функций, т.е.

(2)

Кроме того, в интегрировании может пригодиться следующее правило: если выражение подынтегральной функции содержит постоянный множитель, то выражение первообразной домножается на число, обратное постоянному множителю, то есть

(3)

Поскольку этот урок - вводный в решение задач интегрирования, важно отметить две вещи, которые либо уже на самом начальном этапе, либо несколько позже могут вас удивить. Удивление связано с тем фактом, что интегрирование - операция обратная дифференцированию и неопределённый интеграл можно справедливо называть "антипроизводной".

Первая вещь, которой не следует удивляться при интегрировании. В таблице интегралов существуют формулы, которые не имеют аналогов среди формул таблицы производной . Это следующие формулы:

Однако можно убедиться в том, что производные выражений, стоящих в правых частях этих формул, совпадают с соответствующими подынтегральными функциями.

Вторая вещь, которой не следует удивляться при интегрировании . Хотя производная любой элементарной функции представляет собой также элементарную функцию, неопределённые интегралы от некоторых элементарных функций уже не являются элементарными функциями . Примерами таких интегралов могут быть следующие:

Для выработки техники интегрирования пригодятся следующие навыки: сокращение дробей, деление многочлена в числителе дроби на одночлен в знаменателе (для получения суммы неопределённых интегралов), преобразование корней в степени, умножение одночлена на многочлен, возведение в степень. Эти навыки нужны для преобразований подынтегрального выражения, в результате которых должна получиться сумма интегралов, присутствующих в таблице интегралов.

Находим неопределённые интегралы вместе

Пример 1. Найти неопределённый интеграл

.

Решение. Видим в знаменателе подынтегрального выражения многочлен, в котором икс в квадрате. Это почти верный признак того, что можно применить табличный интеграл 21 (с арктангенсом в результате). Выносим из знаменателя множитель-двойку (есть такое свойство интеграла - постоянный множитель можно выносить за знак интеграла, выше оно было упомянуто как теорема 3). Результат всего этого:

Теперь в знаменателе сумма квадратов, а это значит, что можем применить упомянутый табличный интеграл. Окончательно получаем ответ:

.

Пример 2. Найти неопределённый интеграл

Решение. Вновь применяем теорему 3 - свойство интеграла, на основании которого постоянный множитель можно выносить за знак интеграла:

Применяем формулу 7 из таблицы интегралов (переменная в степени) к подынтегральной функции:

.

Сокращаем получившиеся дроби и перед нами конечный ответ:

Пример 3. Найти неопределённый интеграл

Решение. Применяя сначала теорему 4, а затем теорему 3 о свойствах, найдём данный интеграл как сумму трёх интегралов:

Все три полученные интеграла – табличные. Используем формулу (7) из таблицы интегралов при n = 1/2, n = 2 и n = 1/5, и тогда

объединяет все три произвольные постоянные, которые были введены при нахождении трёх интегралов. Поэтому в аналогичных ситуациях следует вводить только одну произвольную постоянную (константу) интегрирования.

Пример 4. Найти неопределённый интеграл

Решение. Когда в знаменателе подынтегральной дроби - одночлен, можем почленно разделить числитель на знаменатель. Исходный интеграл превратился в сумму двух интегралов:

.

Чтобы применить табличный интеграл, преобразуем корни в степени и вот уже окончательный ответ:

Продолжаем находить неопределённые интегралы вместе

Пример 7. Найти неопределённый интеграл

Решение. Если мы преобразуем подынтегральную функцию, возведя двучлен в квадрат и разделив почленно числитель на знаменатель, то исходный интеграл станет суммой трёх интегралов.

Начнем изучение темы «Неопределенный интеграл» , а также подробно разберем примеры решений простейших (и не совсем) интегралов. Как обычно, мы ограничимся минимумом теории, которая есть в многочисленных учебниках, наша задача – научиться решать интегралы.

Что нужно знать для успешного освоения материала? Для того, чтобы справиться с интегральным исчислением, Вам необходимо уметь находить производные, минимум, на среднем уровне. Не лишним опытом будет, если у Вас за плечами несколько десятков, а лучше – сотня самостоятельно найденных производных. По крайне мере, Вас не должны ставить в тупик задания на дифференцирование простейших и наиболее распространенных функций.

Казалось бы, причем здесь вообще производные, если речь в статье пойдет об интегралах?! А дело вот в чем. Дело в том, что нахождение производных и нахождение неопределенных интегралов (дифференцирование и интегрирование) – это два взаимно обратных действия , как, например, сложение/вычитание или умножение/деление. Таким образом, без навыка и какого-никакого опыта нахождения производных, к сожалению, дальше не продвинуться.

В этой связи нам потребуются следующие методические материалы: Таблица производных и Таблица интегралов .

В чем сложность изучения неопределенных интегралов? Если в производных имеют место строго 5 правил дифференцирования, таблица производных и довольно четкий алгоритм действий, то в интегралах всё иначе. Существуют десятки способов и приемов интегрирования. И, если способ интегрирования изначально подобран неверно (т.е. Вы не знаете, как решать), то интеграл можно «колоть» буквально сутками, как самый настоящий ребус, пытаясь приметить различные приемы и ухищрения. Некоторым даже нравится.

Между прочим, нам довольно часто приходилось слышать от студентов (не гуманитарных специальностей) мнение вроде: «У меня никогда не было интереса решить предел или производную, но вот интегралы – совсем другое дело, это увлекательно, всегда есть желание «взломать» сложный интеграл». Стоп. Хватит чёрного юмора, переходим к этим самым неопределенным интегралам.



Коль скоро способов решения существует много, то с чего же начать изучение неопределенных интегралов чайнику? В интегральном исчислении существуют, на наш взгляд, три столпа или своеобразная «ось», вокруг которой вращается всё остальное. В первую очередь следует хорошо разобраться в простейших интегралах (эта статья).

Потом нужно детально проработать урок . ЭТО ВАЖНЕЙШИЙ ПРИЁМ! Может быть, даже самая важная статья из всех статей, посвященных интегралам. И, в-третьих, обязательно следует ознакомиться с методом интегрирования по частям , поскольку с помощью него интегрируется обширный класс функций. Если Вы освоите хотя бы эти три урока, то уже «не два». Вам могут «простить» незнание интегралов от тригонометрических функций , интегралов от дробей , интегралов от дробно-рациональных функций , интегралов от иррациональных функций (корней) , но вот если «сесть в лужу» на методе замены или методе интегрирования по частям – то это будет очень и очень скверно.

Итак, начинаем с простого. Посмотрим на таблицу интегралов. Как и в производных, мы замечаем несколько правил интегрирования и таблицу интегралов от некоторых элементарных функций. Любой табличный интеграл (да и вообще любой неопределенный интеграл) имеет вид:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. Что это такое, мы рассмотрим совсем скоро. Главное, что при записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

первообразная функция.

. Не нужно сильно загружаться терминами, здесь самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить неопределенный интеграл – это значит найти множество первообразных функций от данной подынтегральной функции

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части у нас превращаются в другие функции: .

Упростим наше определение:

Решить неопределенный интеграл– это значит ПРЕВРАТИТЬ его в неопределенную (с точностью до константы) функцию , пользуясь некоторыми правилами, приемами и таблицей.

Возьмем, например, табличный интеграл . Что произошло? Символическая запись превратилась в множество первообразных функций .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, или первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найденаправильно, справедливо следующее:

Иными словами, если продифференцировать правильный ответ, то обязательно должна получиться исходная подынтегральная функция.

Вернемся к тому же табличному интегралу .

Убедимся в справедливости данной формулы. Берем производную от правой части:

– это исходная подынтегральная функция.

Вот, кстати, стало понятнее, почему к функции всегда приписывается константа . При дифференцировании константа всегда превращается в ноль.

Решить неопределенный интеграл – это значит найти множество всех первообразных, а не какую-то одну функцию. В рассматриваемом табличном примере , , , и т. д. – все эти функции являются решением интеграла . Решений бесконечно много, поэтому записывают коротко:

Таким образом, любой неопределенный интеграл достаточно легко проверить. Это некоторая компенсация за большое количество интегралов разных видов.

Переходим к рассмотрению конкретных примеров. Начнем, как и при изучении производной, с двух правил интегрирования:

– константу C можно (и нужно) вынести за знак интеграла.

– интеграл суммы (разности) двух функций равен сумме (разности) двух интегралов. Данное правило справедливо для любого количества слагаемых.

Как видите, правила, в принципе, такие же, как и для производных. Иногда их называют свойствами линейности интеграла.

Пример 1

Найти неопределенный интеграл.

.

Выполнить проверку.

Решение: Удобнее преобразовать его, как.

(1) Применяем правило . На забываем записать значок дифференциала dx под каждым интегралом. Почему под каждым? dx – это полноценный множитель. Если расписывать детально, то первый шаг следует записать так:

.

(2) Согласно правилу выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом tg 5 – это константа, её также выносим.

Кроме того, на данном шаге готовим корни и степени для интегрирования. Точно так же, как и при дифференцировании, корни надо представить в виде. Корни и степени, которые располагаются в знаменателе – перенести вверх.

Примечание: в отличие от производных, корни в интегралах далеко не всегда следует приводить к виду , а степени переносить вверх.

Например, – это готовый табличный интеграл, который уже посчитали до Вас, и всякие китайские хитрости вроде совершенно не нужны. Аналогично: – это тоже табличный интеграл, нет никакого смысла представлять дробь в виде . Внимательно изучите таблицу!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: , и

для степенной функции - .

Следует отметить, что табличный интеграл – это частный случай формулы для степенной функции: .

Константу C достаточно приплюсовать один раз в конце выражения

(а не ставить их после каждого интеграла ).

(4)Записываем полученный результат в более компактном виде, когда все степени вида

снова представляем в виде корней, а степени с отрицательным показателем сбрасываем обратно в знаменатель.

Проверка. Для того чтобы выполнить проверку нужно продифференцировать полученный ответ:

Получена исходная подынтегральная функция , т. е. интеграл найден правильно. От чего плясали, к тому и вернулись. Хорошо, когда история с интегралом заканчивается именно так.

Время от времени встречается немного другой подход к проверке неопределенного интеграла, когда от ответа берется не производная, а дифференциал:

.

В итоге получаем не подынтегральную функцию, а подынтегральное выражение.

Не стоит пугаться понятия дифференциал.

Дифференциал – это производная, умноженная на dx .

Однако нам важны не теоретические тонкости, а то, что с этим дифференциалом дальше делать. Дифференциал раскрывается следующим образом: значок d убираем, справа над скобкой ставим штрих, в конце выражения приписываем множитель dx :

Получено исходное подынтегральное выражение , то есть интеграл найден правильно.

Как видите, дифференциал сводится к нахождению производной. Второй способ проверки мне нравится меньше, так как приходиться дополнительно рисовать большие скобки и тащить значок дифференциала dx до конца проверки. Хотя он корректнее, или «солиднее», что ли.

На самом деле можно было умолчать о втором способе проверки. Дело не в способе, а в том, что мы научились раскрывать дифференциал. Еще раз.

Дифференциал раскрывается следующим образом:

1) значок d убираем;

2) справа над скобкой ставим штрих (обозначение производной);

3) в конце выражения приписываем множитель dx .

Например:

Запомните это. Рассмотренный приём потребуется нам очень скоро.

Пример 2

.

Когда мы находим неопределенный интеграл, то ВСЕГДА стараемся сделать проверку , тем более, для этого есть прекрасная возможность. Далеко не все типы задач в высшей математике являются подарком с этой точки зрения. Неважно, что часто в контрольных заданиях проверки не требуется, её никто, и ничто не мешает провести на черновике. Исключение можно сделать лишь тогда, когда не хватает времени (например, на зачете, экзамене). Лично я всегда проверяю интегралы, а отсутствие проверки считаю халтурой и некачественно выполненным заданием.

Пример 3

Найти неопределенный интеграл:

. Выполнить проверку.

Решение: Анализируя интеграл, мы видим, что у нас под интегралом произведение двух функций, да еще и возведение в степень целого выражения. К сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного в виде: или .

Поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму? Рассматриваемый пример – тот случай, когда можно.

Сначала приведём полное решение, комментарии будут ниже.

Получена исходная подынтегральная функция , а значит, интеграл найден правильно.

В ходе проверки функцию всегда желательно «упаковать» до первоначального вида, вынося, в данном случае, за скобки и применяя формулу сокращенного умножения в обратном направлении: .

Пример 4

Найти неопределенный интеграл

Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

Пример 5

Найти неопределенный интеграл

. Выполнить проверку.

В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: «А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?».

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, значит, можно почленно разделить числитель на знаменатель:

Действия с дробными степенями мы не комментируем, так как о них неоднократно шла речь в статьях о производной функции.

Если Вас все-таки ставит в тупик такой пример, как

и ни в какую не получается правильный ответ ,

Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно при определенном опыте решения интегралов данные правила считают очевидным фактом и не расписывают подробно.

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

В общем случае с дробями в интегралах не всё так просто, дополнительный материал по интегрированию дробей некоторых видов можно найти в статье: Интегрирование некоторых дробей . Но, прежде чем перейти к вышеуказанной статье, необходимо ознакомиться с уроком: Метод замены в неопределенном интеграле . Дело в том, что подведение функции под дифференциал или метод замены переменной является ключевым моментом в изучении темы, поскольку встречается не только «в чистых заданиях на метод замены», но и во многих других разновидностях интегралов.

Решения и ответы:

Пример 2: Решение:


Пример 4: Решение:

В данном примере мы использовали формулу сокращенного умножения

Пример 6: Решение:


Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x ∈X справедливо равенство:

F " (x) = f(x). (8.1)

Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -

Если F(x) - какая-нибудь первобразная для функции f(x), то ∫ f(x)dx = F(x) + C, (8.2)

где С- произвольная постоянная.

Таблица интегралов

Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Список табличных интегралов

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctg x + C

8. = arcsin x + C

10. = - ctg x + C

Замена переменной

Для интегрирования многих функций применяют метод замены переменной или подстановки, позволяющий приводить интегралы к табличной форме.

Если функция f(z) непрерывна на [α,β], функция z =g(x) имеет на непрерывную производную и α ≤ g(x) ≤ β, то

∫ f(g(x)) g " (x) dx = ∫f(z)dz, (8.3)

причем после интегрирования в правой части следует сделать подстановку z=g(x).

Для доказательства достаточно записать исходный интеграл в виде:

∫ f(g(x)) g " (x) dx = ∫ f(g(x)) dg(x).

Например:

Метод интегрирования по частям

Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные . Тогда, по произведения,

d(uv))= udv + vdu или udv = d(uv) - vdu.

Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:

∫ udv = uv - ∫ vdu (8.4.)

Эта формула выражает правило интегрирования по частям . Оно приводит интегрирование выражения udv=uv"dx к интегрированию выражения vdu=vu"dx.

Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда

∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.

Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax и другие, которые вычисляются именно с помощью интегрирования по частям.

Определенный интеграл

Понятие определенного интеграла вводится следующим образом. Пусть на отрезке определена функция f(x). Разобьем отрезок [ a,b] на n частей точками a= x 0 < x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i =x i - x i-1 . Сумма вида f(ξ i)Δ x i называется интегральной суммой , а ее предел при λ = maxΔx i → 0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:

F(ξ i)Δx i (8.5).

Функция f(x) в этом случае называется интегрируемой на отрезке , числа a и b носят название нижнего и верхнего предела интеграла .

Для определенного интеграла справедливы следующие свойства:

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Последнее свойство называется теоремой о среднем значении .

Пусть f(x) непрерывна на . Тогда на этом отрезке существует неопределенный интеграл

∫f(x)dx = F(x) + C

и имеет место формула Ньютона-Лейбница , cвязывающая определенный интеграл с неопределенным:

F(b) - F(a). (8.6)

Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), прямыми x = a и x = b и отрезком оси Ox .

Несобственные интегралы

Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:

Если этот предел существует и конечен, то называется сходящимся несобственным интегралом от f(x) на интервале [а,+ ∞), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+ ∞). В противном случае про интеграл говорят, что он не существует или расходится .

Аналогично определяются несобственные интегралы на интервалах (-∞,b] и (-∞, + ∞):

Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка , кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:

если эти пределы существуют и конечны. Обозначение:

Примеры вычисления интегралов

Пример 3.30. Вычислить ∫dx/(x+2).

Решение. Обозначим t = x+2, тогда dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| + C .

Пример 3.31 . Найти ∫ tgxdx.

Решение. ∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Пусть t=cosx, тогда ∫ tgxdx = -∫ dt/t = - ln|t| + C = -ln|cosx|+C.

Пример 3.32 . Найти ∫dx/sinx

Решение.

Пример 3.33. Найти .

Решение. = .

Пример 3.34 . Найти ∫arctgxdx.

Решение. Интегрируем по частям. Обозначим u=arctgx, dv=dx. Тогда du = dx/(x 2 +1), v=x, откуда ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; так как
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Пример 3.35 . Вычислить ∫lnxdx.

Решение. Применяя формулу интегрирования по частям, получим:
u=lnx, dv=dx, du=1/x dx, v=x. Тогда ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C= xlnx - x + C.

Пример 3.36 . Вычислить ∫e x sinxdx.

Решение. Обозначим u = e x , dv = sinxdx, тогда du = e x dx, v =∫sinxdx= - cosx → ∫ e x sinxdx = - e x cosx + ∫ e x cosxdx. Интеграл ∫e x cosxdx также интегрируем по частям: u = e x , dv = cosxdx, du=e x dx, v=sinx. Имеем:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Получили соотношение ∫e x sinxdx = - e x cosx + e x sinx - ∫ e x sinxdx, откуда 2∫e x sinx dx = - e x cosx + e x sinx + С.

Пример 3.37. Вычислить J = ∫cos(lnx)dx/x.

Решение. Так как dx/x = dlnx, то J= ∫cos(lnx)d(lnx). Заменяя lnx через t, приходим к табличному интегралу J = ∫ costdt = sint + C = sin(lnx) + C.

Пример 3.38 . Вычислить J = .

Решение. Учитывая, что = d(lnx), производим подстановку lnx = t. Тогда J = .

Пример 3.39 . Вычислить интеграл J = .

Решение. Имеем: . Поэтому =
=
=. вводится так sqrt(tan(x/2)).

А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.