Федеральное агентство по образованию

ГОУ ВПО «Челябинский государственный университет»

Институт Экономики отраслей, бизнеса и администрирования

Кафедра Экономики отраслей и рынков

РЕФЕРАТ

На тему «Теория эволюции органического мира»

По предмету «Концепции современного естествознания»

Челябинск

Введение 4

1. Становление идеи развития в биологии 5

2. Теория эволюции Чарльза Дарвина 11

3. Антидарвинизм 14

4. Основы генетики 16

5. Синтетическая теория эволюции 20

Заключение 29

Ресурсы глобальной сети Internet 32

Введение

Современный прогресс науки и техники движется с невообразимой быстротой. Именно он позволил людям познать тайны природы, научил пользоваться природными ресурсами, с его помощью люди могут оказаться как в просторах космического пространства, так и погрузиться на дно самой глубокой впадины в земной коре и еще многое другое. Но, несмотря на все это, до сих пор есть еще тайны, и одной, пожалуй, из самых загадочных тайн, которая пока лишь немного приоткрыта для людей, была и остается загадка возникновения жизни на планете Земля.

Согласно одной из гипотез жизнь началась в кусочке льда. Хотя многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима. Занесенные из космоса осколки метеоритов, выбросы из гидротермальных источников и химические реакции, происходящие при электрических разрядах в атмосфере, были источниками аммиака и таких органических соединений, как формальдегид и цианид. Попадая в воду Мирового океана, они замерзали вместе с ней. В ледяной толще молекулы органических веществ тесно сближались и вступали во взаимодействия, которые приводили к образованию глицина и других аминокислот.

Чарльз Дарвин и его современники полагали, что жизнь могла возникнуть в водоеме. Этой точки зрения многие ученые придерживаются и в настоящее время. В замкнутом и сравнительно небольшом водоеме органические вещества, приносимые впадающими в него водами, могли накапливаться в необходимых количествах.

А может быть, жизнь возникла в районах вулканической деятельности? Непосредственно после образования Земля представляла собой огнедышащий шар магмы. При извержениях вулканов и с газами, высвобождавшимися из расплавленной магмы, на земную поверхность выносились разнообразные химические вещества, необходимые для синтеза органических молекул.

1. Становление идеи развития в биологии

Идея эволюции живой природы возникла в Новое время как противопоставление креационизму (от латинского «созидание») ― учению о сотворении мира богом из ничего и неизменности созданного творцом мира. Креацианизм как мировоззрение сложился в эпоху поздней античности и в Средневековье и занял господствующие позиции в культуре.

Фундаментальную роль в мировоззрении того времени играли также идеи телеологии ― учения, по которому все в природе устроено целесообразно и всякое развитие является осуществлением заранее предопределенных целей. Телеология приписывает процессам и явлениям природы цели, которые или устанавливаются богом (Х.Вольф), или являются внутренними причинами природы (Аристотель, Лейбниц).

В преодолении идей креацианизма и телеологии важную роль сыграла концепция ограниченной изменчивости видов в пределах относительно узких подразделений (от одного единого предка) под влиянием среды ― трансформизм. Эту концепцию в развернутой форме сформулировал выдающийся естествоиспытатель 18 века Жорж Бюффон в своем 36-томном труде «Естественная история».

Трансформизм в основе своей имеет представления об изменении и превращении органических форм, происхождении одних организмов от других. Среди естествоиспытателей и философов-трансформистов 17 и 18 веков наиболее известны также Р.Гук, Ж.Ламетри, Д.Дидро, Э.Дарвин, И.Гете, Э.Сент-Илер. Все трансформисты признавали изменяемость видов организмов под действием изменений окружающей среды.

В становлении идеи эволюции органического мира существенную роль сыграла систематика ― биологическая наука о разнообразии всех существующих и вымерших организмов, о взаимоотношениях и родственных связях между их различными группами (таксонами). Основными задачами систематики являются определение путем сравнения специфических особенностей каждого вида и каждого таксона более высокого ранга, выяснение общих свойств у тех или иных таксонов. Основы систематики заложены в трудах Дж. Рея (1693) и К. Линнея (1735).

Шведский естествоиспытатель 18 века Карл Линней впервые последовательно применил бинарную номенклатуру и построил наиболее удачную искусственную классификацию растений и животных.

В 1751 году вышла его книга «Философия ботаники», в которой К.Линней писал: «Искусственная система служит только до тех пор, пока не найдена естественная. Первая учит только распознавать растения. Вторая научит нас познавать природу самого растения». И далее: «Естественный метод есть последняя цель ботаники».

То, что Линней называет «естественным методом», есть по сути некоторая фундаментальная теория живого. Заслуга Линнея в том, что через создание искусственной системы он подвел биологию к необходимости рассмотрения колоссального эмпирического материала с позиций общих теоретических принципов.

Большую роль в становлении и развитии идеи эволюции живой природы сыграла эмбриология, для которой в Новое время было характерно противостояние преформизма и эпигенеза.

Преформизм ― от лат. «предобразую» ― учение о наличии в половых клетках материальных структур, предопределяющих развитие зародыша и признаки развивающегося из него организма.

Преформизм возник на базе господствовавшего в 17-18 веках представления о преформации, согласно которому сформировавшийся организм якобы предобразован в яйце (овисты) или сперматозоиде (анималькулисты). Преформисты (Ш.Бонне, А. Галлер и др.) считали, что проблема эмбрионального развития должна получить свое разрешение с позиций всеобщих принципов бытия, постигаемых исключительно разумом, без эмпирических исследований.

Эпигенез ― это учение, согласно которому в процессе зародышевого развития происходит постепенное и последовательное новообразование органов и частей зародыша из бесструктурной субстанции оплодотворенного яйца.

Эпигенез как учение сложился в 17-18 веках в борьбе с преформизмом. Эпигенетические представления развивали У.Гарвей, Ж.Бюффон, К.Ф.Вольф. Эпигенетики отказались от идеи божественного творения живого и подошли к научной постановке проблемы происхождения жизни.

Таким образом, в 17-18 веках возникала идея исторических изменений наследственных признаков организмов, необратимого исторического развития живой природы ― идея эволюции органического мира.

Эволюция ― от лат. «развертывание» ― историческое развитие природы. В ходе эволюции, во-первых, возникают новые виды, т.е. увеличивается разнообразие форм организмов. Во-вторых, организмы адаптируются, т.е. приспосабливаются к изменениям условий внешней среды. В-третьих, в результате эволюции постепенно повышается общий уровень организации живых существ: они усложняются и совершенствуются.

Переход от представления о трансформации видов к идее эволюции, исторического развития видов предполагал, во-первых, рассмотрение процесса образования видов в его истории, учет конструктивной роли фактора времени в историческом развитии организмов, а во-вторых, развитие идей о возникновении качественно нового в таком историческом процессе. Переход от трансформизма к эволюционизму в биологии произошел на рубеже 18-19 веков.

Первые эволюционные теории были созданы двумя великими учеными 19 века ― Ж.Ламарком и Ч.Дарвином.

Жан Батист Ламарк и Чарльз Роберт Дарвин создали эволюционные теории, которые противоположны по строю, характеру аргументации, основным выводам. Их исторические судьбы также сложились по-разному. Теория Ламарка не получила широкого признания современников, в то время как теория Дарвина стала основой эволюционного учения. В настоящее время и дарвинизм, и ламаркизм продолжают оказывать влияние на научные концепции, хотя и по-разному.

В 1809 году вышла книга Ламарка «Философия зоологии», в которой была изложена первая целостная теория эволюции органического мира.

Ламарк в этой книге дал ответы на вопросы, стоящие перед эволюционной теорией, путем логических выводов из некоторых принятых им постулатов. Он впервые выделил два самых общих направления эволюции: восходящее развитие от простейших форм жизни ко все более сложным и совершенным и формирование у организмов приспособлений в зависимости от изменений внешней среды (развитие «по вертикали» и «по горизонтали»). Ламарк был одним из первых естествоиспытателей, которые развили идею эволюции органического мира до уровня теории.

Ламарк включил в свое учение качественно новое понимание роли среды в развитии органических форм, трактуя внешнюю среду как важный фактор, условие эволюции.

Ламарк полагал, что историческое развитие организмов имеет не случайный, а закономерный характер и происходит в направлении постепенного и неуклонного совершенствования. Ламарк назвал это повышение общего уровня организации градацией.

Движущей силой градаций Ламарк считал «стремление природы к прогрессу», «стремление к совершенствованию», изначально присущее всем организмам и заложенное в них Творцом. При этом организмы способны целесообразно реагировать на любые изменения внешних условий, приспосабливаться к условиям внешней среды. Это положение Ламарк конкретизировал в двух законах:

активно используемый орган усиленно развивается, а ненужный исчезает;

изменения, приобретенные организмами при активном использовании одних органов и неиспользовании других, сохраняются у потомства.

Роль среды в эволюции организмов по-разному рассматривается разными направлениями эволюционного учения.

Для направлений в эволюционном учении, которые рассматривают историческое развитие живой природы как прямое приспособление организмов к среде обитания, используется общее название ― эктогенез (от греч. слов «вне, снаружи» и «возникновение, образование»). Сторонники эктогенеза рассматривают эволюцию как процесс прямого приспособления организмов к среде и простого суммирования изменений, приобретаемых организмами под воздействием среды.

Учения, обясняющие эволюцию организмов действием только внутренних нематериальных факторов («принципом совершенствования», «силой роста» и др.), объединяются общим названием ― автогенез.

Эти учения рассматривают эволюцию живой природы как процесс, независимый от внешних условий, направляемый и регулируемый внутренними факторами. Автогенез противоположен эктогенезу.

Автогенез близок витализму ― совокупности течений в биологии, согласно которым жизненные явления объясняются присутствием в организмах нематериальной сверхъестественной силы («жизненная сила», «душа», «энтелехия», «архей»), управляющей этими явлениями. Витализм ― от латинского «жизненный» ― объясняет жизненные явления действием особого нематериального начала.

По-своему идея эволюции органического мира развивалась в теории катастроф.

Французский биолог Жорж Кювье (1769-1832) писал: «Жизнь не раз потрясала на нашей земле страшными событиями. Бесчисленные живые существа становились жертвой катастроф: одни, обитатели суши, были поглощаемы потопами, другие, населявшие недра вод, оказывались на суше вместе с внезапно приподнятым дном моря, сами их расы навеки исчезали, оставив на свете лишь немногие остатки, едва различимые для натуралистов».

Развивая такие взгляды, Кювье стал основателем теории катастроф ― концепции, в которой идея биологической эволюции выступила как производная от более общей идеи развития глобальных геологических процессов.

Теория катастроф (катастрофизм) исходит из представлений о единстве геологических и биологических аспектов эволюции.

В теории катастроф прогресс органических форм объясняется через признание неизменяемости отдельных биологических видов.

Против учения катастрофизма выступили сторонники другой концепции эволюции, которые также ориентировались преимущественно на геологическую проблематику, но исходили из представлений о тождественности современных и древних геологических процессов ― концепции униформизма.

Униформизм складывался под влиянием успехов классической механики, прежде всего небесной механики, галактической астрономии, представлений о бесконечности и безграничности природы в пространстве и времени. В 18-первой половине 19 века концепцию униформизма разработали Дж. Геттон, Ч. Лайель, М.В.Ломоносов, К.Гофф и др. Эта концепция опирается на представления об однообразии и непрерывности законов природы, их неизменности на протяжении истории Земли; отсутствии всяческих переворотов и скачков в истории Земли; суммировании мелких отклонений в течение больших периодов времени; потенциальной обратимости явлений и отрицании прогресса в развитии.

2. Теория эволюции Чарльза Дарвина

Английский ученый Чарльз Дарвин, в отличие от Ж.Б. Ламарка, обратил внимание на то, что хотя любое живое существо изменяется в течение жизни, но и рождаются особи одного вида неодинаковыми.

Учение Ч. Дарвина основано на большом фактическом материале, собранном во время путешествия и доказывающем справедливость его теории, а также на научных достижениях (геологии, химии, палеонтологии, сравнительной анатомии и др.), прежде всего, в области селекции. Дарвин впервые начал рассматривать эволюционные преобразования не у отдельных организмов, а у вида или внутривидовых группировок.

В 1859 г. вышла книга Дарвина «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь», в которой он объяснял механизм эволюционного процесса. Постоянно размышляя о движущих причинах эволюционного процесса, Ч. Дарвин пришел к важнейшему для всей теории представлению о борьбе за существование. Сущность этой идеи, на первый взгляд, очень проста: каждый вид способен к безграничному размножению, а ресурсы, необходимые для размножения, ограничены. Следствием борьбы за существование является естественный отбор, т.е. выживание и успешное производство потомства наиболее приспособленными организмами. Опираясь на факты, Ч. Дарвин смог доказать, что естественный отбор ― главнейший фактор эволюционного процесса в природе, а искусственный отбор играет такую же важную роль при создании пород животных и сортов растений.

Ч. Дарвин сформулировал представления об искусственном отборе, выделяя две его формы: методический, или сознательный, и бессознательный.

Бессознательный отбор ― наиболее ранняя форма искусственного отбора, при которой человек не ставит перед собой конкретной цели, а сохраняет лучшие, полезные для себя организмы (растительные или животные).

Методический отбор ― это творческий процесс, который характеризуется тем, что селекционер ставит перед собой задачу вывести определенную породу животных или сорт растений с хозяйственно ценными признаками.

Дарвин показал существование определенных различий между искусственным и естественным отбором.

Ч. Дарвин также сформулировал принцип расхождения признаков, очень важный для понимания процесса образования новых видов. В результате естественного отбора возникают формы, отличающиеся от исходного вида и приспособленные к конкретным условиям среды. Со временем расхождение приводит к появлению больших отличий у исходно мало отличающихся форм. В результате у них формируются различия по многим признакам. С течением длительного времени накапливается столь большое количество различий, что возникают новые виды. Именно это обеспечивает разнообразие видов на нашей планете.

В соответствии с представлениями Ч. Дарвина основными движущими силами эволюции являются наследственность, изменчивость (определенная, или групповая и неопределенная, или индивидуальная) и естественный отбор ― результат борьбы за существование, направляющий эволюционный процесс.

Определенная изменчивость ― это изменчивость группы особей одного вида под влиянием определенных факторов окружающей среды, имеющая приспособительный характер (потеря листьев растениями во время засухи или листопадными растениями умеренного пояса осенью). При отсутствии фактора, вызывающего изменение, данное изменение, как правило, исчезает.

Неопределенная изменчивость ― это индивидуальная изменчивость отдельных признаков у отдельных особей вида, не имеющая приспособительного характера (животное-альбинос, карликовое растение). Такие изменения могут передаваться по наследству независимо от условий окружающей среды. Поэтому, по мнению Дарвина, основное значение дли эволюции имела неопределенная изменчивость.

Коррелятивная изменчивость заключается в том, что при изменении одного органа или системы органов одновременно с ним изменяются другие органы или структуры. Например, развитие грудных мышц и формирование киля у птиц.

Компенсационная изменчивость выражается в том, что развитие одних органов или структур приводит к недоразвитию других.

Уже в 1860 г. ученые многих стран приняли учение Дарвина (Т. Гексли, А. Уоллес, Дж. Гукер в Англии, Э. Геккель, Ф. Мюллер в Германии, К.А. Тимирязев, И.И. Мечников, А.О. и В.О. Ковалевские, И.М. Сеченов в России, А. Грей в США). Независимо от Ч. Дарвина к подобным эволюционным идеям пришел английский зоолог Альфред Уоллес. Ч. Дарвин высоко оценил идеи молодого ученого о естественном отборе.

Основные принципы эволюционного учения Ч. Дарвина.

    Каждый вид способен к неограниченному размножению.

    Ограниченность жизненных ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства.

    Гибель или успех в борьбе за существование носят избирательный характер. Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, т.е. лучше приспособлены.

Избирательное выживание и размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором.

    Под действием естественного отбора, происходящего в разных условиях, группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Группы особей приобретают настолько существенные отличия, что превращаются в новые виды (принцип расхождения признаков).

Ч. Дарвин впервые обосновал материалистическую теорию эволюции. Он доказал реальность существования развивающегося вида, который зарождается, эволюционирует и исчезает. Дарвин обосновал принцип единства прерывности и непрерывности в возникновении вида, показал, как неопределенные случайные изменения под действием естественного отбора превращаются в адаптивные признаки вида. Ученый определил материальные причины этого явления и показал формирование относительной целесообразности. Заслуга Ч. Дарвина в науке заключается не столько в том, что он доказал существование эволюции, сколько в том, что объяснил, как она может происходить.

3. Антидарвинизм

Антидарвини́зм (от греч. «anti-» - против и дарвинизм), группа учений, в той или иной форме отрицающих ведущую роль естественного отбора в эволюции. К этой категории принадлежат как конкурирующие эволюционные теории: ламаркизм, сальтационизм, катастрофизм так и более или менее частная критика основных положений дарвинизма. Не следует отождествлять антидарвинизм и отрицание эволюции как исторического процесса (т.е. антиэволюцинизм).

Исторически антидарвинизм возник как критическая реакция на публикацию «Происхождения видов» Ч. Дарвина. Наиболее последовательно и логично эти возражения в 1871 г. резюмировал Ст. Майварт в статье «Об образовании видов»:

    поскольку отклонения от нормы обычно невелики, они не должны заметно влиять на приспособленность особей;

    так как наследуемые отклонения возникают случайно, они должны взаимно компенсироваться в череде поколений;

    накоплением и закреплением небольших отклонений трудно объяснить возникновение сложных, целостных структур, таких как глаз или внутренне ухо.

Кроме того, согласно Дарвину, в природе должны быть широко представлены переходные формы, тогда как обычно между таксонами обнаруживаются более или менее чёткие разрывы (хиатусы), особенно заметные на палеонтологическом материале. На эти возражения обращал внимание и сам Дарвин в последующих изданиях своей работы, однако не смог аргументированно их объяснить. Из-за этого во второй половине 19 века возникли конкурирующие эволюционные учения, такие как неоламаркизм и неокатастрофизм.

К началу 20 века многочисленные, часто популярные, работы механоламаркистовдемонстрировали возможность «адекватной изменчивости и наследования приобретённых признаков». Первые работы генетиков (Х. де ФризУ. Бэтсон) на практике доказывали скачкообразный, внезапный характер возникновения наследуемых изменений, а не постепенное накопление изменений под действием отбора (т.н. генетический антидарвинизм). Наконец, появилось немало работ, экспериментально доказывающих «неэффективность» естественного отбора. Так, в 1903 г. В. Иоганнсен проводил отбор в чистых линиях фасоли, разделяя семена по размеру на три группы: крупные, средние и мелкие. Он обнаружил, что в потомстве каждой группы воспроизводится полный спектр размеров семян, идентичный родительскому. С современных позиций этот результат очевиден - наследуется не сам признак, а норма реакции. Однако в начале 20 века подобные работы воспринимались как опровержение принципа естественного отбора. Эти обстоятельства обусловили т.н. кризис дарвинизма, или «агностический период в развитии эволюционного учения», продолжавшийся до 30-х годов 20 века. Естественных выходом из кризиса стал синтез генетики и популяционного подхода, а также возникновение синтетической теории эволюции

4. Основы генетики

Основная потомственная информация хранится в специфических тельцах клеточного ядра эукариот, именуемых хромосомами. Хромосома представляет собой комплекс, состоящий из одной гигантской молекулы дезоксирибонуклеиновой кислоты (ДНК) и множества белковых молекул. ДНК ― это полимер, то есть она состоит из большого числа соединенных последовательно мономеров ― нуклеотидов. Существуют четыре различных нуклеотида аденин (A), тимин (T), гуанин (G) и цитозин (C). Молекула ДНК представляет собой две полинуклеотидные цепи, закрученные в двойную спираль. Для того, чтобы двуспиральная молекула ДНК была стабильна, необходимо, чтобы напротив нуклеотида A, находящегося в одной цепи, в противоположной цепи находился нуклеотид T, и наоборот. То же самое верно и в отношении нуклеотидов G и C. Это обусловлено свойством нуклеотидов, называемым комплементарностью. Таким образом, последовательность нуклеотидов в одной цепи полностью определяет последовательность нуклеотидов во второй цепи.

Нуклеотиды A, T, G и C являются своеобразным алфавитом, с помощью которого в молекулах ДНК закодирована вся наследственная информация. Ген ― это участок хромосомы, хранящий информацию об определенном свойстве организма. (Данное определение является крайне упрощенным, но вполне годящимся для дальнейшего изложения). Каждая хромосома состоит из кодирующих участков, являющихся генами, и не кодирующих последовательностей.
В ядрах соматических клеток человека в норме находятся 46 хромосом: 44 аутосомы и 2 половые хромосомы.

Аутосомы являются парными, то есть 44 аутосомы могут быть разбиты на 22 пары гомологичных хромосом. Гомологичные хромосомы идентичны по структуре, то есть несут гены, содержащие информацию об одних и тех же свойствах организма. Однако последовательности нуклеотидов, как в кодирующих, так и в не кодирующих участках гомологичных хромосом могут отличаться. Последовательности нуклеотидов, находящиеся в одном и том же месте (локусе) на гомологичных хромосомах, но имеющие различный нуклеотидный состав, наз
ываются аллелями. Если человек имеет идентичные аллели в каком-либо локусе, то он называется гомозиготной по данному локусу. Локусы сильно различаются по количеству имеющихся аллелей. Большинство локусов имеют до двух аллелей, однако существуют так называемые высокополиморфные локусы, число аллелей у которых составляет десять и более. Совокупность аллелей данного индивида по какому-либо локусу или группе локусов называется генотипом. Совокупность аллельных вариантов локусов, лежащих на одной хромосоме, называется гаплотипом. Процесс определения генотипа или гаплотипа особи, по какому либо локусу или группе локусов, называется типированием.

Существуют два типа половых хромосом ― X и Y, сильно отличающиеся между собой как по размеру, так и по хранящимся в них генам. Содержание половых хромосом в ядрах клеток человека зависит от пола: у женщин, в норме, имеется две X-хромосомы, у мужчин ― одна X-хромосома и одна Y-хромосома.
Набор хромосом, содержащий 22 пары аутосом и две половые хромосомы, называется диплоидным набором.

Передача наследственной информации происходит при клеточном делении. Существует два типа клеточного деления ― митоз и мейоз.
В результате митоза одна материнская клетка делится на две дочерние. На определенной стадии митоза хромосомы материнской клетки удваиваются и в дальнейшем каждая дочерняя клетка получает полный диплоидный набор хромосом. По типу митоза происходит деление соматических клеток.

При создании половых клеток (яйцеклеток у женщин, сперматозоидов у мужчин) на определенном этапе происходит деление клеток по типу мейоза. При мейозе происходит два акта деления. Во время первой стадии мейоза происходит удвоение хромосом, однако две сестринские хроматиды не расходятся, а остаются вместе, соединенные в определенном участке, называемом центромерой. На определенной фазе первого деления мейоза происходит конъюгация, то есть слипание одной из сестринских хроматид с одной из хроматид гомологичной хромосомы. В это время исполняется рекомбинация, которая представляет собой обмен участками между слипшимися хроматидами гомологичных хромосом. Следует заметить, что у мужчин, клетки которых несут одну X- и одну Y-хромосому, коньюгация между половыми хромосомами происходит на очень небольшом участке. У женщин две X-хромосомы конъюгируют и рекомбинируют так же, как и аутосомы. В результате первого деления мейоза образуются две дочерние клетки, содержащие по одной из каждой пары гомологичных хромосом. Следует отметить, что расхождение гомологичных хромосом в дочерние клетки является случайным процессом, то есть предсказать заранее какая из хромосом, в какой клетке окажется, невозможно. При втором делении мейоза происходит разделение сестринских хроматид, каждая из которых попадает в дочернюю клетку. Таким образом, в итоге мейоза из одной клетки, несущей 46 хромосом, образуются четыре половые клетки, несущие по 23 хромосомы каждая (22 аутосомы и одну половую хромосому), то есть половину генетического материала, содержащегося в соматических клетках. Такой набор хромосом называется гаплоидным набором.
Заметим, что все яйцеклетки женщины несут одну X-хромосому, в то время как одна половина сперматозоидов мужчины несут X-хромосому, а другая половина несет Y-хромосому.

При оплодотворении происходит слияние ядер сперматозоида и яйцеклетки, в результате чего ядро образовавшейся зиготы получает полный диплоидный набор хромосом. Если яйцеклетка была оплодотворена сперматозоидом, в ядре которого содержалась X-хромосома, то из зиготы, в норме, развивается плод женского пола. В случае оплодотворения яйцеклетки сперматозоидом, несущим Y-хромосому, пол плода будет мужским.

Из сказанного следует, что одна половина хромосом, содержащихся в ядрах соматических клеток каждого человека, получена им от биологической матери, а другая половина ― от биологического отца. Вследствие событий рекомбинации, происходящих на первой стадии мейоза, хромосомы ребенка не являются точными копиями хромосом каждого из родителей, а представляют собой своеобразные химеры.

Кроме клеточного ядра ДНК содержится в митохондриях ― клеточных органеллах, расположенных в цитоплазме и являющихся своеобразными энергетическими станциями клетки. Митохондриальная ДНК представляет собой сравнительно небольшие (~16,5 тысяч пар нуклеотидов), замкнутые в кольцо, молекулы. Одна митохондрия в среднем содержит 4-5 идентичных копий таких молекул. Поскольку в клетке несколько сотен митохондрий, то количество молекул митохондриальной ДНК на одну клетку может достигать, например, в яйцеклетках, нескольких тысяч, однако среднее значение колеблется в районе 500. Важной особенностью человека, как и большинства млекопитающих, является тот факт, что при оплодотворении митохондрии сперматозоидов не проникают в яйцеклетку. Это означает, что в образовавшейся при оплодотворении зиготе содержатся только митохондрии (и соответственно митохондриальная ДНК) материнской яйцеклетки. Совокупность аллельных вариантов молекулы митохондриальной ДНК называется митотипом.

5. Синтетическая теория эволюции

Синтетическая теория эволюции - современный дарвинизм - возникла в начале 40-х годов XX в. Она представляет собой учение об эволюции органического мира, разработанное на основе данных современной генетики, экологии и классического дарвинизма. Термин «синтетическая» идет от названия книги известного английского эволюциониста Дж. Хаксли «Эволюция: современный синтез» (1942). В разработку синтетической теории эволюции внесли вклад многие ученые.

После переоткрытия законов Менделя, доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Р. Фишера(1918-1930), Дж. Б. С. Холдейна-мл.(1924,), С. Райта (1931; 1932), учение Дарвина приобрело прочный генетический фундамент. Но пока теоретики спорили о частоте естественного мутационного процесса, немецкий генетик растений Э. Баур в 1924 показал на львином зеве насыщенность природных популяций малыми, преимущественно физиологическими мутациями.

С. С. Четвериковав создании генетики природных популяций Он был не только генетиком, но и глубоко знающим зоологом, что позволило впервые обсудить проблемы вида и видообразования с генетической точки зрения. Поэтому эволюционный синтез как бы в зародыше содержался уже в статье Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926). Статья Четверикова составила конкретную программу популяционно-генетических исследований, которая была реализована его талантливыми учениками. Н. В. и Е. А. Тимофеевы-Ресовские«вывезли» четвериковские идеи в Европу, а Ф. Г. Добржанский- ученик ленинградского генетика-эволюциониста Ю. А. Филипченко - создал самую большую в мире международную школу эволюционных генетиков, которая и развернула невиданные по масштабам исследования в США. Таким образом, многие фундаментальные идеи будущей синтетической теории эволюции были вывезены из России.

Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-мл., издавшего ее в 1932 г. под названием «The causes of evolution». Русский перевод 1935 года выполнен с сокращениями и не отражает полноту идей автора.

Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции. Крупные эволюционные новшества очень часто возникают на основе неотении(сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека (голая обезьяна), эволюцию таких крупных таксонов, как аммоноидеи, граптолитыи фораминиферы. Учитель Четверикова Н. К. Кольцов в 1933 показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Неотения ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа.

В 1930-40-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Термин «Современный» или «Эволюционный синтез» происходит из названия книги Дж. Хаксли «Evolution: The Modern synthesis» (1942). Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Дж. Симпсоном в 1949 году.

В американской литературе среди создателей СТЭ чаще всего называют имена Ф. Добржанского, Дж. Хаксли, Э. Майра, Дж. Симпсона, Б. Ренша, Дж. Стеббинса. Это, конечно, далеко не полный список. Только из российских ученых, по меньшей мере, следовало бы назвать, А. Н. Северцова, И. И. Шмальгаузена, Н. В. Тимофеева-Ресовского, Г. Ф. ГаузеН. П. ДубининаА. Л. Тахтаджяна, Е. И. Лукина. Из британских ученых велика роль Дж. Б. С. Холдейна-мл., Д. Лэка, К. Уоддингтона, Г. де-Бира. Немецкие историки (W. Reif, Th. Junker, U. Hosfeld) среди активных создателей СТЭ называют имена Э. Баура, В. Циммермана, В. Людвига, Г. Хеберера и др.

Авторы синтетической теории расходились во мнениях по ряду фундаментальных проблем и работали в разных областях биологии, но они были практически единодушны в трактовке следующих основных положений: элементарной единицей эволюции считается локальная популяция; материалом для эволюции являются мутационная и рекомбинационная изменчивость; естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов; дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков; вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен (один вид - одна ниша); видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции; заключения о причинах макроэволюции (происхождение надвидовых таксонов) могут быть получены за счет исследования микроэволюции, построенного на основе точных экспериментальных данных, полевых наблюдений и теоретических дедукций. Вполне очевидно, что «Синтез» не был метафизической конструкцией без очерченных границ. Скорее это была четкая научная программа, выступающая в качестве организатора конкретных исследований.

Активность американских создателей СТЭ была столь высока, что они быстро создали международное общество по изучению эволюции, которое в 1946 стало учредителем журнала «Evolution». Журнал «American Naturalist» вновь вернулся к публикации работ по эволюционной тематике, делая акцент на синтезе генетики, экспериментальной и полевой биологии. В результате многочисленных и самых разнообразных исследований основные положения СТЭ прошли не только успешную проверку, но и видоизменялись, дополнялись новыми идеями.

Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ - в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского «Genetics and the Origin of Species». Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная» специализация Добржанского позволила ему первому перебросить твердый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр). Добржанского часто называли «двойником Дарвина в 20 веке». Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» - тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввел в широкий научный оборот полузабытое уравнение Харди-Вайнберга. Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, т. е. адаптивно-нейтральным путем.

В 1942 немецко-американский орнитолог и зоогеограф Э. Майр издал книгу «Систематика и происхождение видов» (русский перевод: 1947), в которой была последовательно развита концепция политипического вида и генетико-географическая модель видообразования. Майр предложил принцип основателя, который в окончательной форме был им сформулирован в 1954. Если дрейф генов, как правило, дает причинное объяснение формированию нейтральных признаков во временном измерении, то принцип основателя в пространственном (островная модель видообразования.).

После публикации трудов Добржанского и Майра систематики получили генетическое объяснение тому, во что они уже давно верили: подвиды и близкородственные виды различаются по адаптивно-нейтральным признакам. Ни один из трудов по СТЭ не может сравниться с упомянутой книгой 1942г. английского экспериментального биолога и натуралиста Дж. Хаксли. Труд Хаксли по объему анализируемого материала и широте проблематики превосходит даже книгу самого Дарвина. Хаксли на протяжении многих лет держал в уме все направления в развитии эволюционной мысли, внимательно следил за развитием родственных наук и имел личный опыт генетика-экспериментатора. Видный историк биологии так оценил труд Хаксли: «Эволюция. Современный синтез» была наиболее всесторонней по теме и документам, чем другие работы на эту тему. Книги Холдейна и Добржанского были написаны главным образом для генетиков, Майра для систематиков и Симпсона для палеонтологов. Книга Хаксли стала доминантной силой в эволюционном синтезе». (Провин)

По объему книга Хаксли не имела себе равных (645 стр.). Но самое интересное состоит в том, что все основные идеи, изложенные в книге, были очень ясно выписаны Хаксли на 20 стр. еще в 1936, когда он послал адрес Британской ассоциации содействия науки под названием: «Natural selection and evolutionary progress». В этом аспекте ни одна из публикаций по эволюционной теории, вышедшая в 1930-40-х гг., не может сравниться со статьей Хаксли. Хорошо чувствуя дух времени, Хаксли писал: «В настоящее время биология находится в фазе синтеза. До этого времени новые дисциплины работали в изоляции. Сейчас проявилась тенденция к унификации, которая является более плодотворной, чем старые односторонние взгляды на эволюцию» (Huxley, 1936, p.81). Еще в трудах 1920-х годов Хаксли показал, что наследование приобретенных признаков невозможно (Майр и Ренш в это время были ламаркистами); естественный отбор действует как фактор эволюции и как фактор стабилизации популяций и видов (эволюционный стазис); естественный отбор действует на малые и крупные мутации; географическая изоляция - важнейшее условие видообразования. Кажущаяся цель в эволюции объясняется мутациями и естественным отбором.

Основные положения статьи Хаксли 1936 г. можно очень кратко изложить в такой форме:

    Мутации и естественный отбор - комплементарные процессы, которые по отдельности не способны создать направленные эволюционные изменения.

    Отбор в природных популяциях чаще всего действует не на отдельные гены, а на комплексы генов. Мутации не могут быть полезными или вредными, но их селективная ценность варьирует в разных средах. Механизм действия отбора зависит от внешней и генотипической среды, а вектор его действия от фенотипического проявления мутаций

    Репродуктивная изоляция - главный критерий, свидетельствующий о завершении видообразования. Видообразование может быть непрерывным и линейным, непрерывным и дивергентным, резким и конвергентным.

    Градуализм и панадаптационизм не являются универсальными характеристиками эволюционного процесса. Большинству наземных растений свойственна именно прерывистость и резкое образование новых видов. Широко распространенные виды эволюционируют градуально, а малые изоляты - прерывисто и не всегда адаптивно. В основе прерывистого видообразования лежат специфические генетические механизмы (гибридизация, полиплоидия, хромосомные и геномные абберации). Виды и надвидовые таксоны, как правило, различаются по адаптивно-нейтральным признакам. Главные направления эволюционного процесса (прогресс, специализация) - компромисс между адаптивностью и нейтральностью.

    В природных популяциях широко распространены потенциально преадаптивные мутации. Этот тип мутаций играет важнейшую роль в макроэволюции, особенно в периоды резких средовых перемен.

    Онто- и филогенез. Концепция скоростей действия генов объясняет эволюционную роль гетерохроний и аллометрии. Синтез проблем генетики с концепцией рекапитуляции ведет к объяснению быстрой эволюции видов, находящихся в тупиках специализации. Через неотению происходит «омоложение» таксона, и он приобретает новые темпы эволюции. Анализ соотношения онто- и филогенеза дает возможность обнаружить эпигенетические механизмы направленности эволюции.

    В процессе прогрессивной эволюции отбор действует в сторону улучшения организации. Главным результатом эволюции было появление человека. С возникновением человека большая биологическая эволюция перерастает в психо-социальную. Эволюционная теория входит в число наук, изучающих становление и развитие человеческого общества Она создает фундамент для понимания природы человека и его будущего.

Широкий синтез данных сравнительной анатомии, эмбриологии, биогеографии, палеонтологии с принципами генетики был осуществлен в трудах И. И. Шмальгаузена (1939), А. Л. Тахтаджяна (1943), Дж. Симпсона (1944), Б. Ренша (1947). Из этих исследований выросла теория макроэволюции. Только книга Симпсона была опубликована на английском языке и в период широкой экспансии американской биологии, чаще всего она одна упоминается среди основополагающих трудов. И. И. Шмальгаузен был учеником А. Н. Северцова. Однако уже в 20-е годы определился его самостоятельный путь. Он изучал количественные закономерности роста, генетику проявления признаков, саму генетику. Одним из первых Шмальгаузен осуществил синтез генетики и дарвинизма. Из огромного наследия И. И. Шмальгаузена особо выделяется его монография «Пути и закономерности эволюционного процесса» (1939). Впервые в истории науки он сформулировал принцип единства механизмов микро- и макроэволюции. Этот тезис не просто постулировался, а прямо следовал из его теории стабилизирующего отбора, который включает популяционно-генетические и макроэволюционные компоненты (автономизация онтогенеза) в ходе прогрессивной эволюции. А. Л. Тахдаджян в монографической статье: «Соотношения онтогенеза и филогенеза у высших растений» (1943) не только активно включил ботанику в орбиту эволюционного синтеза, но фактически построил оригинальную онтогенетическую модель макроэволюции («мягкий сальтационизм»). Модель Тахтаджяна на ботаническом материале развивала многие замечательные идеи А. Н. Северцова, особенно теорию архаллаксисов (внезапное изменение органа на самых ранних стадиях его морфогенеза, приводящее к резким изменениям всего хода онтогенеза). Труднейшая проблема макроэволюции - разрывы между крупными таксонами, объяснялась Тахтаджяном ролью неотении в их происхождении. Неотения играла важную роль в происхождении многих высших таксономических групп, в том числе и цветковых. Травянистые растения произошли от древесных путем ярусной неотении

Экология популяций и сообществ вошла в эволюционную теорию благодаря синтезу закона Гаузе и генетико-географической модели видообразования. Репродуктивная изоляция была дополнена экологической нишей в качестве важнейшего критерия вида. При этом нишевой подход к виду и видообразованию оказался более общим, чем чисто генетический, так как он применим и к видам, не имеющим полового процесса.

Вхождение экологии в эволюционный синтез представляло собой заключительный этап формирования теории. С этого момента начался период использования СТЭ в практике систематики, генетики, селекции, продолжавшийся до развития молекулярной биологии и биохимической генетики.

Быть может, важнейшим вкладом молекулярной генетики в теорию эволюции было разделение генов на регуляторные и структурные (модель Р. Бриттена и Э. Дэвидсона 1971). Именно регуляторные гены контролируют возникновение репродуктивных изолирующих механизмов и высокие скорости становления новых форм. То, что гены-регуляторы, по-видимому, изменяются независимо от энзимных генов и вызывают быстрые изменения (в масштабах геологического времени) на морфологическом и физиологическом уровнях, стало одной из причин широкого возрождения идей в духе «твердого» сальтационизма. В то же время сторонники СТЭ (Ф. Добржанский, Э. Майр, А. Л. Тахаджян, Ф. Аяла) убедительно интерпретировали эти данные в рамках идей СТЭ. В частности было показано формирование репродуктивных изолирующих мезано. Но развитие новейших наук пока еще не породило концепции эволюции, которая могла бы в полной мере не только заменить, но даже конкурировать с синтетической теорией.

Основные положения синтетической теории эволюции в общих чертах можно выразить следующим образом:

    Материалом для эволюции служат наследственные изменения - мутации (как правило, генные) и их комбинации.

    Основным движущим фактором эволюции является естественный отбор, возникающий на основе борьбы за существование.

    Наименьшей единицей эволюции является популяция.

    Эволюция носит в большинстве случаев дивергентный характер, т. е. один таксон может стать предком нескольких дочерних таксонов.

    Эволюция носит постепенный и длительный характер. Видообразование как этап эволюционного процесса представляет собой последовательную смену одной временной популяции чередой последующих временных популяций.

    Вид состоит из множества соподчиненных, морфологически, физиологически, экологически, биохимически и генетически отличных, но репродуктивно не изолированных единиц - подвидов и популяций.

    Вид существует как целостное и замкнутое образование. Целостность вида поддерживается миграциями особей из одной популяции в другую, при которых наблюдается обмен аллелями («поток генов»),

    Макроэволюция на более высоком уровне, чем вид (род, семейство, отряд, класс и др.), идет путем микроэволюции. Согласно синтетической теории эволюции, не существует закономерностей макроэволюции, отличных от микроэволюции. Иными словами, для эволюции групп видов живых организмов характерны те же предпосылки и движущие силы, что и для микроэволюции.

    Любой реальный (а не сборный) таксон имеет монофилетическое происхождение.

    Эволюция имеет ненаправленный характер, т. е. не идет в направлении какой-либо конечной цели.

Синтетическая теория эволюции вскрыла глубинные механизмы эволюционного процесса, накопила множество новых фактов и доказательств эволюции живых организмов, объединила данные многих биологических наук. Тем не менее синтетическая теория эволюции (или неодарвинизм) находится в русле тех идей и направлений, которые были заложены Ч. Дарвином.

Сейчас большинство ученых пользуется выражением «современная эволюционная теория». При таком названии уже не требуется какой-либо одной концепции макроэволюции, строго вытекающей из микроэволюционных исследований. Главным достижением современной эволюционной теории является такой взгляд на эволюцию, при котором градуальные изменения могут чередоваться с сальтационными.

Заключение

Биологическая эволюция - это необратимое и в известной степени направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптации, образованием и вымиранием видов, преобразованиями биогеоценозов и биосферы в целом. Иными словами, под биологической эволюцией следует понимать процесс приспособительного исторического развития живых форм на всех уровнях организации живого.

В последнее время при изучении истории развития науки все острее встает проблема рациональной реконструкции ее исторического развития, связанная с различием между нашим пониманием происходивших в прошлом научных исследований и тем, как сами естествоиспытатели понимали свои открытия. Господствовавшая долгое время кумулятивистская модель развития науки, т.е. изложение содержания знаний в их историческом развитии, подвергается критике, так как в ее рамках знания вырываются из их исторического контекста и включаются в систему современных представлений, то есть предполагается существование некой общей для всех рациональности. В последнее время широкое распространение получила концепция революционной смены фундаментальных программ познания, и на место единой для всех приходят разные исторические типы рациональности. Изучая этапы становления идеи развития в биологии от античных до наших дней, необходимо попытаться создать рациональную реконструкцию, с одной стороны, и в то же время учитывать различия типов рациональности со сменой эпох.

Сама биологическая эволюция в настоящее время является научно установленным фактом, в котором никто из естествоиспытателей не может сомневаться. Несмотря на ее кажущуюся законченность, и в настоящее время возникает немало споров, касающихся как происхождения различных биологических видов, так и самой жизни на Земле.

Очень разнообразными были представления о происхождении жизни у античных философов. Особо стоит отметить одного из первых философов физика ― Анаксимандра с его гениальной догадкой о зарождении жизни в воде и последующем переселении живых существ на сушу. Великим систематизатором античных биологических знаний был и Аристотель.

В средние века господствовала теория креационизма, согласно которой все сущее было творением высшего существа. С того момента, когда на Западе победило христианство, принятый без оговорок авторитет библии в течение долгих веков тормозил всякие независимые и самостоятельные исследования и искания в области эволюционизма. Дословное изложение генезиса исключало возможность перехода одной формы жизни в другие. Каждый вид был обязан своим существованием акту творения, а в настоящее время существуют только те формы жизни, которые уцелели из вод потопа благодаря Ноеву ковчегу.

Все изменилось с приходом так называемого Нового времени: благодаря технической революции и Просвещению начинается бурное развитие биологии. В XVIII веке, к господствующей теории происхождения жизни, добавили теорию неизменности видов великого Карла Линнея, согласно которой растения и животные, сотворенные Богом, скорее всего до сотворения человека, пребывают неизменно такими же, размножаясь путем самопроизводства, а затем и теория ― Бюффона, который одним из первых в развернутой форме изложил концепцию трансформизма, то есть ограниченной изменчивости видов и происхождения видов в пределах относительно узких подразделений (от одного единого предка) под влиянием среды.

XIX век характеризовался бурным развитием биологической мысли: возникли теории катастрофизма Кювье, униформизма Лаейеля, великий предшественник Дарвина Ламарк выдвинул теорию о влиянии внешней среды, и самого Дарвина, которому удалось объединить все лучшее из существовавших в то время теорий.

После смерти Дарвина в его учении выделились относительно самостоятельные направления, каждое из которых по-своему понимало, дополняло и совершенствовало его воззрения.

XX век ознаменовался созданием синтетической теории и переходом к популяционной концепции эволюции. Новейшей теорией является системная теория нобелевского лауреата Пригожина, согласно которой развитие любой биологической системы связано с эволюцией систем более высокого ранга, в которые она входит в качестве элемента, при этом предполагается рассмотрение взаимодействий «сверху – вниз» от биосферы к экосистеме, сообществам, организмам и т.д.

Список используемой литературы

    Агапова О.В., Агапов В.И. Лекции по концепциям современного естествознания. Вузовский курс. ― Рязань, 2000. ― 304.

    Воронцов Н.Н. Развитие эволюционных идей в биологии. ― М.: Издат. отдел УНЦ ДО МГУ, Прогресс-Традиция, АБФ, 1999. ― 640.

    Гродницкий Д.Л. Две теории биологической эволюции. ― Саратов: Издательство «Научная книга», 2001. ― 160.

    Садохин А.П. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. - 2-е изд., перераб. и доп. - М.: ЮНИТИ-ДАНА, 2006. ― 447.

    Яблоков А.В., Юсуфов А.Г. Эволюционное учение. Учеб. пособие для студ. ун-тов. ― М., Высшая школа, 1976. ― 331.

Ресурсы глобальной сети Internet

    Биологическая картина мира. [Электронный ресурс]: Режим доступа: http://nrc.edu.ru/est/r4/5.html, свободный.

    История генетики. [Электронный ресурс]: Режим доступа: http://www.po4emu.ru/drugoe/history/index/raznoe/stat_raznoe/177.htm, свободный.

    История развития эволюционной теории. [Электронный ресурс]: Режим доступа: http://www.rsu.edu.ru/~zoo/r1g1.html, свободный.

    Иорданский Н.Н. Эволюция жизни. [Электронный ресурс]: Режим доступа: http://p16q48.firstvds.ru/evzhcont.htm, свободный.

    Макеев А.В. Основы биологии 1996 и 1997. [Электронный ресурс]: Режим доступа: http://newlibrary.ru/download/makeev_a_v_/osnovy_biologii.html, свободный.

    Научный сайт о ДНК. Основы генетики. [Электронный ресурс]: Режим доступа: http://www.aboutdna.ru/p/85, свободный.

    Сотворение мира или теория эволюции. [Электронный ресурс]: Режим доступа: http://creation.xpictoc.com/?page_id=2#awp::?page_id=2, свободный.

    Теория катастроф Кювье.[Электронный ресурс]: Режим доступа: http://www.airmed.com.ua/forum/index.php?showtopic=3267, свободный.

    Эволюция Земли. [Электронный ресурс]: Режим доступа: http://evolution.powernet.ru/history, свободный.

    Эволюционное учение. [Электронный ресурс]: Режим доступа: http://ru.wikwpedia.org/wiki, свободный.

    энциклопедия Кирилла и Мефодия [Электронный ресурс]: Режим доступа: http://www.megabook.ru/Article.asp?AID=689217, свободный.

История развития органического мира в различных периодах: палеозое, мезозое, кайнозое. Переходные роды и палеонтологические ряды. Гомологичные и аналогичные органы. Рудименты и атавизмы. Сходство зародышевого развития позвоночных. Биогенетический закон.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ГОУ ВПО Татарский Государственный Гуманитарно-Педагогический Университет

Кафедра физической географии и геоэкологии

Курсовая работа на тему:

«Эволюция органического мира (от кембрия до ныне, зарождение жизни, рост), дарвинизм»

Работу выполнил:

студент гр. 010813

Хузина Зарина

Проверила: Рафикова Ф. З.

Казань 2010

1. Введение

2. История развития органического мира в различных периодах

2.1 История развития органического мира в палеозое

2.2 Развитие органического мира в мезозое

2.3 Развитие органического мира в кайнозое

3. Доказательства эволюции органического мира

3.1 Переходные роды и палеонтологические ряды

3.2 Гомологичные и аналогичные органы

3.3 Рудименты и атавизмы

3.4 Сходство зародышевого развития позвоночных

3.5 Биогенетический закон

4. Зарождение жизни на Земле

4.1 Начало жизни

4.2 Условия происхождения жизни

5. Дарвинизм

5.1 Предпосылки

5.2 Исследования Ч. Дарвина

5.3 Основные положения

5.4 Основные результаты эволюции по Дарвину

5.5 Движущие силы эволюции по Ч. Дарвину

5.6 Вклад теории эволюции Дарвина в науку

Заключение

Список использованной литературы

1. Введение

На протяжении тысячелетий людям казалось очевидным, что живая природа была создана такой, какой мы ее знаем сейчас, и всегда оставалась неизменной.

Но уже в глубокой древности высказывались догадки о постепенном изменении, развитии (эволюции) живой природы. Одним из предтеч эволюционных идей можно назвать древнегреческого философа Гераклита (VI -V вв. до н. э.), который сформулировал положение о постоянно происходящих в природе изменениях («все течет, все изменяется»).

Другой древнегреческий мыслитель - Эмпедокл - в V в. до н. э. выдвинул, вероятно, одну из древнейших теорий эволюции. Он считал, что вначале на свет появились разрозненные части различных организмов (головы, туловища, ноги). Они соединились между собой в самых невероятных сочетаниях. Так появились, в частности, кентавры (мифические полулюди - полукони). Позднее будто бы все нежизнеспособные комбинации погибли.

Великий древнегреческий ученый Аристотель выстроил все известные ему организмы в ряд по мере их усложнения. В XVII в. эту идею развил швейцарский натуралист Шарль Бонне, создав учение о «лестнице природы». На первой ступени «лестницы» находились «тонкие материи» - огонь, воздух, вода, земля; на следующих - растения и животные по степени сложности их строения, на одной из верхних ступеней - человек, а еще выше - небесное воинство и Бог. Правда, о возможности перехода «со ступени на ступень» речи, конечно, не шло, и к эволюции эта система имеет еще весьма отдаленное отношение.

Первую последовательную теорию эволюции живых организмов разработал французский ученый Жан Батист Ламарк в книге «Философия зоологии», вышедшей в 1809 г. Ламарк предположил, что в течение жизни каждая особь изменяется, приспосабливается к окружающей среде. Приобретенные ею на протяжении всей жизни новые признаки передаются потомству. Так из поколения в поколение накапливаются изменения. Но рассуждения Ламарка содержали ошибку, которая заключалась в простом факте: приобретенные признаки не наследуются. В конце XIX в. немецкий биолог Август Вейсман поставил известный эксперимент - на протяжении 22 поколений отрезал хвосты подопытным мышам. И все равно новорожденные мышата имели хвосты ничуть не короче, чем их предки.

Английский ученый Чарлз Дарвин в отличие от Ламарка обратил внимание на то, что хотя любое живое существо изменяется в течение жизни, но и рождаются особи одного вида неодинаковыми. Дарвин писал, что опытный фермер различает каждую из овец даже в большом по численности стаде. Например, шерсть их может быть светлее или темнее, гуще или реже и т. п. В обычных условиях среды такие различия несущественны. Но при перемене условий жизни эти мелкие наследственные изменения могут давать преимущества их обладателям. Среди множества бесполезных и вредных изменений могут встречаться и полезные. Рассуждая таким образом, Дарвин пришел к идее естественного отбора. Особи с полезными отличиями лучше выживают и размножаются, передают свои признаки потомству. Поэтому в следующем поколении процент таких особей станет больше, через поколение - еще больше и т. д. Таков механизм эволюции.

2. История развития Земли

2.1 История развития органического мира в палеозое

К началу палеозойской эры жизнь миновала, может быть, самую важную и трудную часть своего пути. Сформировались четыре царства живой природы: прокариоты, или дробянки, грибы, зеленые растения, животные.

Родоначальниками царства зеленых растений были одноклеточные зеленые водоросли, распространенные еще в морях протерозоя. Наряду с плавающими формами среди низ появились и прикрепленные ко дну. Фиксированный образ жизни потребовал расчленения тела на части. Но более перспективным оказалось приобретение многоклеточности, разделение многоклеточного тела на части, выполняющие различные функции.

Решающее значение для дальнейшей эволюции имело возникновение такого важного ароморфоза как половой процесс.

Как и когда произошло разделение живого мира на растения и животные? Един ли их корень? Споры ученых вокруг этого вопроса не затихают и сегодня. Возможно, первые животные произошли от общего ствола всех эукариотов или от одноклеточных зеленых водорослей.

Кембрий - расцвет скелетных беспозвоночных. В этот период происходил очередной период горообразования, перераспределения площади суши и моря.

Климат кембрия был умеренным, материки неизменными. На суше по-прежнему жили лишь бактерии и сине-зеленые. В морях господствовали зеленые и бурые водоросли, прикрепленные ко дну; в толщах вод плавали диатомовые, золотистые, эвгленовые водоросли.

В результате увеличения смыва солей из суши, морские животные получили возможность усваивать в больших количествах минеральные соли. А это, в свою очередь, открыло перед ними широкие пути построения жесткого скелета.

Наиболее широкого распространения достигли древнейшие членистоногие - трилобиты, внешне сходные с современными ракообразными - мокрицами. Очень характерен для кембрия своеобразный тип многоклеточных животных - археоциат, который вымер к концу периода. В то время жили также разнообразные губки, кораллы, плеченогие, моллюски. Позднее появились морские ежи.

Ордовик . В морях ордовика были разнообразно представлены зеленые, бурые и красные водоросли, многочисленные трилобиты. В ордовике появились первые головоногие моллюски, родственники современных осьминогов и кальмаров, распространились плеченогие, брюхоногие моллюски. Шел интенсивный процесс образования рифов четырехлучевыми кораллами и табулятами. Широкое распространение получают граптолиты - полухордовые, сочетающие в себе признаки беспозвоночных и позвоночных животных напоминающие современных ланцетников.

В ордовике появились споровые растения - псилофиты, произростающие по берегам пресных водоемов.

Силур. На смену теплым мелководным морям ордовика пришли значительные площади суши, что привело к иссушению климата.

В силурских морях доживали свой век граптолиты, пришли в упадок трилобиты, но исключительного расцвета достигли головоногие моллюски. Кораллы постепенно вытеснили археоциат.

В силуре развились своеобразные членистоногие - гигантские ракоскорпионы, достигающие до 2 м. в длину. К концу палеозоя вся группа ракоскорпионов почти вымерла. Они напоминали современного мечехвоста.

Особенно примечательным событием этого периода было появление и распространение первых представителей позвоночных животных - панцирных “рыб”. Эти “рыбы” лишь по форме напоминали настоящих рыб, но принадлежали к другому классу позвоночных - бесчелюстными или круглоротым. Они не могли долго плавать и большей частью лежали на дне заливов и лагун. Из-за малоподвижного образа жизни они оказались неспособными к дальнейшему развитию. Из современных представителей клуглоротых известны миноги и миксины.

Характерная черта силурийского периода - интенсивное развитие наземных растений.

Одним из первых наземных, вернее земноводных, растений были псилофиты, ведущие свою родословную от зеленых водорослей. В водоемах водоросли адсорбируют воду и растворенные в ней вещества всей поверхностью тела, вот почему у них нет корней, а выросты тела, напоминающие корни, служат лишь органами прикрепления. В связи с необходимостью проведения воды от корней к листьям возникает сосудистая система.

Выход растений на сушу - один из величайших моментов Эволюции. Он был подготовлен предыдущей эволюцией органического и неорганического мира.

Девон. Девон - период рыб. Климат девона был более резко континентальный, происходили обледенения в горных районах Южной Африки. В более теплых районах климат изменился в сторону большего иссушения, появились пустынные и полупустынные области.

В морях девона большого расцвета достигли рыбы. Среди них были хрящевые рыбы, появились рыбы с костным скелетом. По строению плавников костные рыбы делятся на лучеперых и кистеперых. До недавнего времени считалось, что кистеперые вымерли в конце палеозоя. Но в 1938 г. рыболовный траулер доставил в музей Ист-Лондона такую рыбу и она была названа латимерией.

В конце палеозоя наиболее существенным этапом развития жизни было завоевание суши растениями и животными. Этому способствовало сокращение морских бассейнов, поднятием суши.

От псилофитов выделились типичные споровые растения: плауны, хвощи, папоротникообразные. На земной поверхности возникали первые леса.

К началу карбона произошло заметное потепление и увлажнение. На огромных долинах и тропических лесов в условиях непрерывного лета все росло стремительно вверх. Эволюция открыла новый путь - размножение семенами. Поэтому голосеменные растения подхватили эволюционную эстафету, а споровые растения остались боковой ветвью эволюции и отошли на задний план.

Выход позвоночных на сушу произошел еще в позднедевонский период, после завоевателей суши - псилофитов. В это время воздух был уже освоен насекомыми, а по земле стали распространяться потомки кистеперых рыб. Новый способ передвижения позволил им на некоторое время удалить от воды. Это привело к появлению существ с новым образом жизни - земноводных. Наиболее древние их представители - ихтиосхеги - обнаружены в Гренландии в девонских осадочных породах.

Расцвет древних амфибий приурочен к карбону. Именно в этот период широкое развитие получили стегоцефалы. Они обитали лишь в прибрежной части суши и не могли завоевать внутриконтинентальные массивы, расположенные вдали водоемов.

Благодаря этим особенностям строения земноводные сделали первый решительный шаг на сушу, но полными хозяевами суши стали их потомки - пресмыкающиеся. Развитие засушливого климата в пермском периоде привело к вымиранию стегоцифалов и развитию пресмыкающихся, в жизненном цикле которых нет стадий, связанных с водой. В связи с сухопутным образом жизни у пресмыкающихся возникло несколько крупных ароморфозов.

2.2 Развит ие органического мира в мезозое

Мезозой справедливо называют эрой пресмыкающихся и голосеменных. К концу мезозоя постепенно, в течении нескольких миллионов лет происходит массовое вымирание динозавров. Господство динозавров в течении целой геологической эры и почти вымирание их в конце эры составляют для палеонтологов большую загадку.

В триасе возникли первые представители теплокровных - мелкие примитивные млекопитающие.

В юре пресмыкающиеся - вторая группа животных, которая делает попытку освоить воздушную среду. Летающие ящерицы были двух типов: рамфоринхи и ширококрылые.

От поразительного разнообразного в прошлом классе пресмыкающихся в наши дни уцелело 6000 видов. Это представители пяти эволюционных ветвей: гаттерии, ящерицы, змеи, черепахи, крокодилы.

Птицы появились в юрском периоде. Они представляют собой боковую ветвь пресмыкающихся, приспособившихся к полету. Особенно большое сходство с пресмыкающимися имела юрская первоптица - археоптерикс.

Меловой период назван так в связи с обилием мела в морских отложениях того времени. Он образовался из остатков раковинок простейших животных - фораминифер. В начале мелового периода произошел следующий крупный сдвиг в эволюций растений - появились цветковые (покрытосеменные). Эти ароморфные изменения обеспечили цветковым растениям биологический прогресс, в следующую, кайнозойскую эру. Они широко заселили Землю и характеризуются большим многообразием. Некоторые их формы сохранились и поныне: тополя, ивы, дубы, эвкалипты, пальмы.

2.3 Развити е органического мира в кайнозое

Кайнозой - эра новой жизни - время расцвета цветковых растений, насекомых, птиц, млекопитающих.

Во времена существования динозавров была известна группа млекопитающих - небольших по размеру, с шерстяным покровом животных, возникших от тераспид или звереподобных. Живорождение, теплокровность, более развитый мозг и связанная с ним большая активность обеспечили, таким образом, прогресс млекопитающих, их выход на передний план эволюции.

В третичном периоде млекопитающие заняли господствующее положение, приспособившись к различным условиям на суше, в воздухе, воде, и как бы заменили мезозойских пресмыкающихся. В палеоцене и эоцене от насекомоядных произошли первые хищники, от них в олигоцене ответвились современные группы хищных. Они начали завоевывать моря. А так же от древних палеоценовых хищных произошли и первые копытные.

Из-за засушливости некоторых районов появились злаковые растения.

Уже в первой половине третичного периода успели возникнуть все современные отряды млекопитающих, а к середине периода широко распространялись общие предковые формы человекообразных обезьян и людей.

В течении четвертичного периода вымирали мастодоны, мамонты, саблезубые тигры, гигантские ленивцы, большерогие торфяные олени.

В Старом Свете человек расселился как минимум 500 тыс. лет назад. Перед оледенением охотники заселились до Огненной Земли. По мере таяния ледников происходило вторичное заселение человеком освободившихся из-под ледников территорий.

Около 10000 лет назад в умеренно теплых областях Земли началось одомашнивание животных и введение растений в культуру. Наступила “неолитическая революция”, связанная с переходом человека от собирательства и охоты к земледелию и скотоводству.

3. Доказательст ва эволюции органического мира

3.1 Переходные формы и палеонтологические ряды

Палеонтологами были обнаружены формы организмов, сочетающие признаки более древних и более молодых групп. Такие ископаемые переходные формы служат доказательством эволюции, поскольку свидетельствуют об исторической связи разных групп организмов. Примером подобной формы является ископаемая первоптица юрского периода -- археоптерикс -- связующее звено между рептилиями и птицами. Археоптерикс -- форма с длинным, как у рептилий, хвостом, несросшимися позвонками, развитыми зубами (признаки рептилий); тело покрыто перьями, передние конечности в виде крыльев; частично пневматичные кости (признаки птиц).

Другими примерами переходных форм являются кистеперые рыбы, связывающие рыб с вышедшими на сушу земноводными; семенные папоротники -- переходная форма между папоротниковидными и голосеменными.

Еще одним доказательством эволюции являются палеонтологические ряды. Палеонтологами были найдены остатки ранее живших видов, которые связаны между собой родством, т. е. свидетельствовали о происхождении одного вида от другого. Русский ученый В. О. Ковалевский, исследуя историю развития лошади, показал, что современные однопалые животные происходят от мелких пятипалых всеядных предков, живших 60--70 млн. лет назад в лесах. Изменение климата Земли, повлекшее за собой сокращение площадей лесов и увеличение площадей степей, привело к тому, что предки современных лошадей начали расселяться по степям. Необходимость защиты от хищников и передвижения на большие расстояния в поисках пищи привела к преобразованию конечностей -- уменьшению числа пальцев от пяти до одного. Параллельно изменению конечностей происходило преобразование всего организма; увеличение размеров тела, изменение формы черепа, усложнение строения зубов и др.

Ряды ископаемых форм, связанные друг с другом в процессе эволюции и отражающие ход филогенеза (греч. phylon -- род, племя, и genesis -- происхождение, возникновение), т. е. исторического развития, называются палеонтологическими, или филогенетическими, рядами. В настоящее время палеонтологические ряды обнаружены в эволюции морских ежей, слонов, китов, носорогов, некоторых родов моллюсков и других животных.

3.2 Гомологичные и аналогичные органы

Важное значение в доказательстве эволюции имело выяснение родственных отношений между ныне живущими группами организмов. Сходство в строении организмов разных таксонов, как свидетельство происхождения их от общего предка, являлось в то же время косвенным доказательством эволюции. Сравнительно-анатомические исследования показали, что конечности некоторых позвоночных, например ласты кита, лапы крота, крокодила, крылья птицы, летучей мыши, руки человека, несмотря на выполнение разных функций, имеют сходные черты строения и общее происхождение. Некоторые кости в скелете конечностей могут отсутствовать, другие -- срастаться, могут изменяться относительные размеры костей, однако во всех случаях эти органы развиваются сходным образом из одинаковых эмбриональных зачатков. Органы, которые имеют сходное строение и общее происхождение, называются гомологичными. Примерами гомологии у растений являются перистосложный лист гороха с усиками и прилистниками, кувшинчики насекомоядного растения непентеса, стеблевые чешуи хвоща, колючки барбариса, почечные чешуи.

Наличие у организмов разных групп гомологичных органов позволяет установить степень родства между ними, проследить их эволюцию.

В природе часто наблюдаются случаи сходства по внешнему виду и выполняемым функциям органов, которые имеют разное происхождение. Например, крыло птицы и крыло бабочки выполняют сходную функцию, но их происхождение и строение совершенно различные. Сходство вызвано образом жизни, приспособлением к полету, возникшим независимо у бабочек и птиц, а не происхождением этих форм. Органы, имеющие внешнее сходство и выполняющие одинаковые функции, но имеющие разное происхождение, называются аналогичными. К аналогичным органам относятся, например, колючки у барбариса (видоизмененные листья), белой акации (видоизмененные прилистники), боярышника (видоизмененный побег). Аналогичные органы свидетельствуют о сходных направлениях приспособлений организмов, вызываемых в процессе эволюции действием естественного отбора.

3.3 Рудименты и атавизмы

Одним из доказательств эволюции является наличие у некоторых организмов рудиментарных или атавистических органов. Рудименты (лат. rudimentum -- зачаток, первооснова) -- это органы, которые закладываются в ходе эмбрионального развития, но в дальнейшем перестают развиваться и остаются у взрослых форм в недоразвитом состоянии. Иными словами, рудименты -- это органы, утратившие свое первоначальное значение в ходе эволюции. Наличие рудиментов, как и гомологичных органов, свидетельствует об общности происхождения живых форм. Задние конечности у кита, скрытые внутри тела, доказывают наземное происхождение его предков. Полностью рудиментированы конечности у змей. У муравьедов руди-ментированы зубы, у двукрылых насекомых -- задняя пара крыльев, превращенных в жужжальца. Рудиментарные органы известны у человека: мышцы, двигающие ушную раковину, третье веко и др. (всего около 90).

Атавизмы (лат. atavus --- предок) -- появление у отдельных организмов данного вида признаков, которые существовали у отдаленных предков, но были утрачены в ходе эволюции. Среди тысяч однопалых животных встречаются особи, у которых развиваются трехпалые конечности. Известны случаи появления атавистических признаков у человека: развитие дополнительных пар млечных желез, волосяного покрова на всем теле, хвоста. Возникновение атавизмов указывает на историческую взаимосвязь между вымершими и ныне существующими формами.

3.4 Сходство зародышевого развития позвоночных

В пользу эволюции органического мира говорят данные эмбриологии. Эмбриологами было обнаружено и изучено сходство начальных стадий эмбрионального развития животных. Все многоклеточные -животные развиваются из одной оплодотворенной яйцеклетки. В процессе индивидуального развития они проходят стадии дробления, бластулы, гаструлы, образования трехслойного зародыша, формирования органов из зародышевых листков. Сходство зародышевого развития животных свидетельствует о единстве их происхождения.

С особой отчетливостью выступает сходство эмбриональных стадий в пределах отдельных типов или классов. Например, у всех позвоночных обнаруживается закладка жаберных дуг, сходство в форме тела, наличие хвоста, зачатков конечностей. Во многом аналогична на этих стадиях внутренняя организация зародышей. У всех представителей этого подтипа сначала закладывается хорда, кровеносная система с одним кругом кровообращения (как у рыб), одинаковое строение почек т. д. По мере развития сходство между зародышами уменьшается и начинают все более четко проявляться черты организации тех классов, к которым животные принадлежат. У наземных животных зарастают жаберные карманы; у зародышей человека особенно развивается головной отдел, включающий мозг, формируются пятипалые конечности и др.

По ходу эмбрионального развития последовательно идет расхождение признаков зародышей, приобретающих черты, характеризующие класс, отряд, род и, наконец, вид, к которому они принадлежат. Эта закономерность в развитии зародышей указывает на их родство, происхождение от одного ствола, который в ходе эволюции распался на множество ветвей.

3.5 Биогенетический закон

На основе зародышевого сходства в развитии позвоночных и многих других эмбриологических и анатомических фактов немецкие ученые Ф. Мюллер и Э. Геккель во второй половине XIX в. установили закон соотношения онтогенеза и филогенеза, который получил название биогенетического закона. Согласно этому закону, каждая особь в индивидуальном развитии (онтогенезе) повторяет историю развития своего вида (филогенез), или онтогенез есть краткое повторение филогенеза.

Например, у всех без исключения позвоночных животных в онтогенезе закладывается хорда -- признак их отдаленных предков. У головастиков бесхвостых земноводных развивается хвост. В ходе онтогенеза воспроизводятся, безусловно, не все этапы эволюции, которая совершалась на протяжении тысяч и миллионов лет. Повторение стадий исторического развития вида в зародыше происходит в сжатой форме, с выпадением ряда этапов. Кроме того, эмбрионы имеют сходство не со взрослыми формами предков, а только с их зародышами. Вместе с тем биогенетический закон, выражающий глубокую связь между онтогенезом и филогенезом, имел большое значение для выяснения родственных связей между организмами и для доказательства эволюции органического мира.

4. Зарождение жизни на Земле

4.1 Начало жизни

Жизнь находится в самой тесной, совершенно неразрывной связи с организованностью нашей планеты, в частности биосферой. В биосфере жизнь исполняет совершенно определенные геологические функции, которые не будут существовать, если жизнь на планете исчезнет. Также следует признать, что жизнь являлась неизменной, такой же как теперь, являлась частью организованности биосферы за все нам известное течение геологического времени, т. е. в продолжении 310 9 - 210 9 лет. В древнейшем археозое она составляла такую же часть в общем единого строения биосферы, какую и теперь составляет.

И наконец, нельзя сомневаться, что жизнь может существовать на нашей планете и на ней существует только благодаря непрерывному и, по-видимому, неизменному в течение геологического времени притоку космической энергии, главным образом лучистой энергии Солнца. Если жизнь поддерживается и другими источниками энергии (например, атомной благодаря радиоактивным распадам химических элементов), то все же представляется научно установленным, что главным источником жизни является энергия Солнца.

Не только жизнь - в ее современном масштабе и, по существу, в современной структуре - существовала с археозоя, т. е. с начала нам известной геологической летописи, но она имела основой одно и то же - с колебаниями в ту и в другую сторону - количество земного вещества одного и того же химического элементарного состава.

Эти положения, как будто отвечающие всем нам известным научным фактам и научно им равноценным эмпирическим обобщениям, должны быть приняты во внимание при размышлении о начале жизни на Земле.

Проблема о начале жизни связана с проблемой создания самой жизненной среды, в пределах которой идет эволюционный процесс, т. е. эта проблема логически выходит за пределы среды.

Жизненная среда - монолит жизни, живая природа - явным образом не представляет случайное, незакономерное явление. Она явным образом имеет определенную структуру, представляет форму организованности, неизменно существующую в геологическом времени и неизменно связанную с организованностью, биосферы.

Все живые организмы тесно связаны между собой в своем существовании и этим путем представляют единое целое, непрерывно существующее как единое целое в течение всего геологического времени, двух-трех миллиардов лет по крайней мере.

Аналогично современному отражалась жизнь в течение всего геологического времени. Для кембрия (меньше миллиарда лет назад) мы имеем уже ясное представление о сложности монолита жизни. Мы можем утверждать, что в это время должна была существовать наземная растительная жизнь, остатки которой не существуют, так как без нее не мог жить тот сложный мир гетеротрофных существ, который открывается в древнейших фаунах, пока изученных. Никаких сомнений в этом не может быть и для альгонкской эры. Дальше нет точных палеонтологических знаний, но изучение отражения жизни в земной среде - тех глубокого измененных осадочных и органогенных породах, которые доступны непосредственному исследованию, - показывает, что строение монолита жизни было в основных биогеохимических чертах неизменным.

Можно сделать следующие утверждения:

Жизненная среда не может быть сведена к морфологически единому организму, когда-то населявшему планету, живая среда не может быть морфологически однородна, и единая основа живых организмов, протоплазма, не охватывает всех геохимических функций жизни на нашей планете.

Уже в связи с этим живая среда не могла произойти из единого одноклеточного организма принесенного из космической среды, или из таких же разнородных неделимых. Нельзя, однако, отрицать, что проникновение в жизненную среду биосферы космических жизненных элементов весьма вероятно, ибо вещество биосферы, несомненно, постоянно принимает в себя космические тела. Но начала земной жизни оно не объясняет.

Неизбежно допустить, что, может быть, и менее сложная в основных чертах, чем теперешняя, но все же очень сложная жизненная среда сразу создалась на нашей планете как нечто целое в догеологический ее период. Создался целый монолит жизни (жизненная среда), а не отдельный вид живых организмов, к какому нас ложно приводит экстраполяция, исходящая из существования эволюционного процесса.

Последний вывод, наверное, затрудняет возможность допущения когда-то происшедшего на нашей планете абиогенеза (возникновение живого из неживого) или, вернее, археогенеза организмов в масштабе, необходимом для создания на ней жизни.

4.2 Усло вия происхождения жизни

Проблема первого появления жизни на нашей планете сейчас наукой не ставиться. Это область философской или религиозной мысли, и ученые, которые ее касаются, обычно выходят за пределы научной работы. Они касаются этих вопросов, но их исследуют не как ученые, а как философы.

Рассматривая проблему появления жизни на Земле как проблему появления биосферы, мы не только приближаемся к реальности - мы получаем новую прочную базу для научной работы, опирающуюся на огромный эмпирический материал геологии и геохимии.

Геология позволяет сейчас научно ставить вопрос о начале биосферы, а геохимия научно точно определяет условия, каким должна удовлетворять жизнь для того, чтобы могла создаться биосфера.

Необходимо иметь в виду, что говоря о появлении жизни на Земле с образованием биосферы, должно считать незыблемым принцип Реди - то великое эмпирическое обобщение, которое было установлено в XVII в. и которое неизменно подтверждается научным опытом и наблюдением. Его выражают: «Все живое происходит от живого». Принцип Реди безусловно верен, но это не философский принцип, а научное обобщение. В связи с этим его можно выразить так: «Все живое происходит из живого в биосфере, комплекс физико-химических явлений в которой точно ограничен и определен». Абиогенеза, согласно принципу Реди, нет и не было в биосфере в пределах геологического времени, т. е. в пределах времени, когда жизнь входила в организованность этой геосферы.

Как уже ранее говорилось в научной литературе высказывались разные представления о начале жизни на Земле. Вот два из них. Оба не связаны с геологическим строением Земли и с ее историей. Согласно одному, жизнь проникла на нашу планету извне, из космического пространства, может быть, проникает в нее постоянно и непрерывно и сейчас. Согласно другому взгляду, жизнь образовалась на Земле из мертвой (косной) материи каким-то неизвестным путем в один из геологических древних периодов ее бытия или, может быть, незаметно для нас непрерывно и постоянно на ней этим путем, путем «самопроизвольного зарождения», абиогенеза, образуется, но нами этот процесс не замечается. Эти взгляды, высказанные в такой неопределенной форме, противоречат нашему точному знанию.

Исходя из сведения проблемы о начале жизни к проблеме о начале биосферы, попытаемся установить условия появления биосферы и проявления в ней жизни, обязательные для всякого представления о ее начале на нашей планете.

Следующие данные геологии должны быть учтены как эмпирически установленные.

Поле жизни, т. е. температура и давление, связанный с этим климат и химический характер среды, существует непрерывно, в общем неизменно со времени архейской эры. В течение более чем полутора миллиардов лет поле жизни было аналогично современному.

Огромная часть архейской эры, может быть вся, была уже охвачена жизнью, в основных чертах аналогичной современной, с ней генетически связанной. Биосфера существовала все это время неизменно. На это указывают не только остатки жизни, но и неизменность в течении всего этого времени процесса выветривания, характер и парагенезис тех минералов, которые образуют биосферу и которые теснейшим образом в своем образовании связаны с жизнью.

Жизнь и все живые организмы являются неразрывной закономерной частью биосферы. Сама биосфера не является случайным образованием - она отвечает определенной форме организованности. Это устойчивая динамическая система, равновесие, установившееся в основных чертах своих с самого своего начала, т. е. с начала или с середины архейской эры, с археозоя, неизменно действующее в течение 1,5 млрд. лет.

В биосфере можно отличить два типа составляющего ее вещества: с одной стороны, косное вещество, а с другой живое. Косное вещество, состоящее в конце концов из минералов, остается в своих морфологических проявлениях, т. е. по своему химическому составу и физическому состоянию, неизменным. Одни и те же минералы строили его в альгонской эре и раньше, строят и теперь. Нет новых минералов, появившихся в земной коре в течение геологического времени, если не считать ими созданий человеческой техники.

Иное явление представляет другая составная часть биосферы - живое вещество, вечно, в целом и отдельных своих формах меняющееся в эволюционном процессе. Это живое вещество является носителем свободной энергии в геохимических процессах биосферы, ее активной составной частью. Его неизменные формы, как некоторые виды (однородные живые вещества) радиолярий, неизменные с альгонкской эры, или Lingula - с кембрийской, являются исключением. Они существуют в неизменном строении около миллиарда лет. Все остальные за это время коренным образом изменились, эволюционировали. Живой мир биосферы палеозоя и живой мир биосферы нашего времени резко различны, мир косной материи один и тот же.

Как уже говорилось, жизнь для нас научно известна только как закономерная часть биосферы: жизнь вне биосферы не существует - есть нереальная абстракция.

Говоря о появлении на нашей планете жизни, мы в действительности говорим только об образовании на ней биосферы.

С самого начала биосферы жизнь, в нее входящая, должна была быть уже сложным телом, а не однородным веществом, так как без жизни не могла бы создаться кора выветривания (неразрывная часть механизма биосферы), а связанные с этим проявлением жизни ее биогеохимические функции по разнообразию и сложности не могут быть одной какой-нибудь видовой формой жизни. Они на всем протяжении геологической истории и посейчас в окружающей нас природе неизменно распределены между разными формами жизни.

При рассмотрении биогеохимических функций можно сделать следующий утверждения:

Все без исключения геохимические функции живого вещества в биосфере могут быть исполнены простейшими одноклеточными организмами

Невозможен организм, который мог бы один исполнять все эти геохимические функции

В ходе геологического времени происходила смена разных организмов, замещавших друг друга в исполнении данной функции без изменения самой функции.

Вывод о необходимости одновременной чрезвычайно разнообразной геохимической функции в биосфере представителей жизни является основным условием, определяющим характер ее появления.

В настоящее время считается, что жизнь образовалась на Земле в результате закономерного процесса эволюции углеродистых соединений. При этом углеродистые соединения в межзвездной среде возникли еще до формирования нашей планеты и, следовательно, заносились на планету всегда. На ранней стадии существования Земли на ней протекали различные химические процессы, способствовавшие формированию более сложных соединений, - химическая эволюция, положившая начало биологической эволюции.

Начало серии работ по абиогенному (не биологическому) синтезу было положено американским ученым С. Миллером (1953), пропускавшим электрический разряд через смесь газов. Советские ученые А. Г. Пасынский и Т. Е. Павловская (1956) показали возможность образования аминокислот при ультрафиолетовом облучении газовой смеси формальдегида и солей аммония. Испанский ученый Х. Оро (196О) осуществил синтез компонентов нуклеиновых кислот. В 197О г. американский ученый С. Поннамперума синтезировал аденозинтрифосфорную кислоту (АТФ) - основную форму накопления энергии в живых организмах, а также аминокислоты, полипептиды и белково-подобные вещества. Этим было доказано, что абиогенное происхождение жизни во Вселенной могло произойти в результате воздействия тепловой энергии, ионизирующего излучения, электрических разрядов.

В свете современных данных, химические различия между живым веществом и его абиогенными аналогами стерлись. В одинаковых по химическому составу биогенных и абиогенных веществах количество право- и левовращающих молекул всегда неодинаково, всегда резко преобладает одна их группа, чаще левовращающая.

Ученые, занимавшиеся проблемой происхождения жизни на Земле (А. И. Опарин, Дж. Бернал, М. Руттен, Дж. Холдейн, Р. С. Юнг и др.), не допускали заноса каких-либо элементов жизни на Землю с других планет или из Космоса. Все признавали абиогенез на самой Земле. По общему мнению абиогенез происходил в условиях, отличных от ныне существующих на Земле, а именно при первичной бескислородной атмосфере.

В настоящее время вопрос о появлении жизни на Земле сводится к выяснению времени и биогеохимических условий той древней эпохи, когда создалась благоприятная обстановка для превращения абиогенных органических соединений в биогенные, а также к выяснению причины возникновения столь характерной для органического мира хиральности молекулярного состава и, в частности, появления резко диссимметричной молекулы ДНК в веществе биогенного происхождения.

5 . Дарвинизм

5.1 Предпосылки

К середине XIX в. был сделан ряд важнейших обобщений и открытий, которые противоречили креационистским взглядам и способствовали укреплению и дальнейшему развитию эволюции, составив научные предпосылки создания эволюционной теории Ч. Дарвина.

В 1830 г. английский естествоиспытатель Ч. Лайель (1797-1875) обосновал идею об изменяемости поверхности Земли под влиянием различных естественных причин и законов: климата, воды, вулканических сил, органических факторов. Лайель высказал мысль, что органический мир постепенно изменяется, что было подтверждено результатами палеонтологических исследований французского зоолога Ж. Кювье (1769-1832).

В первой половине ХIX века развивается идея о единстве всей природы. Шведский химик И. Берцелиус (1779-1848) доказал, что все животные и растения состоят из тех же элементов, которые встречаются в неживой природе, а немецкий химик Ф. Велер (1800-1882) впервые в 1824 г. в лаборатории химическим путем синтезировал щавелевую кислоту, в 1828 г. - мочевину, показав таким образом, что образование органических веществ осуществляется без участия некой «жизненной силы».

В ХVIII-XIX веках в результате колонизации огромных территорий и исследования их европейцы значительно расширили свои представления о многообразии органического мира, о закономерностях его распределения по континентам земного шара. Интенсивно развивается систематика: все многообразие органического мира потребовало своей классификации и приведения в определенную систему, что имело важное значение для развития идеи о родственности живых существ, а затем и о единстве их происхождения

Впервые термин «эволюция» (от лат. evolutio - развертывание) был использован в одной из эмбриологических работ швейцарским натуралистом Шарлем Боннэ в 1762 г. В настоящее время под эволюцией понимают происходящий во времени необратимый процесс изменения какой-либо системы, благодаря чему возникает что-то новое, разнородное, стоящее на более высокой ступени развития.

Особый смысл приобретает понятие эволюции в естествознании, где исследуется преимущественно биологическая эволюция. Биологическая эволюция - это необратимое и в известной степени направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, образованием и вымиранием видов, преобразованиями биогеоценозов и биосферы в целом. Иными словами, под биологической эволюцией следует понимать процесс приспособительного исторического развития живых форм на всех уровнях организации живого.

Теория эволюции была разработана Ч. Дарвином (1809-1882) и изложена им в книге «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь» (1859).

5.2 Исследования Ч. Дарвина

С 1837 по 1839 годы Дарвин создал серию записных книжек, в которых набросал в кратком и отрывочном виде мысли об эволюции на основе своих исследований в зоологии. В 1842 и 1844 гг. он в два приема изложил в кратком виде набросок и очерк по происхождению видов. В этих работах уже присутствуют многие идеи, которые позднее были им опубликованы в 1859г.

В 1854-1855 гг. Дарвин вплотную приступает к работе над эволюционным сочинением, собирает материалы по изменчивости, наследственности и эволюции диких видов животных и растений, а также данные по методам селекции домашних животных и культурных растений, сопоставляя результаты действия искусственного и естественного отбора. Он начал писать труд, объем которого он оценивал в 3-4 тома. К лету 1858 года он написал десять глав этого сочинения. Этот труд так и не был завершен и впервые был опубликован в Великобритании в 1975 году. Остановка в работе была вызвана получением рукописи А. Уоллеса, в которой независимо от Дарвина были изложены основы теории естественного отбора и его роли в эволюции на материале собственных исследований Уоллеса флоры и фауны Малайского архипелага. Дарвин начал писать краткое извлечение и с не свойственной ему поспешностью завершил работу за 8 месяцев. 24 ноября 1859 г. было издано «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь».

Историческая заслуга Дарвина состоит в том, что он совместно с Уоллесом вскрыл движущий фактор эволюции - естественный отбор и тем самым выявил причины протекания биологической эволюции.

Во всем мире бушевали страсти, шла борьба за Дарвина, за дарвинизм, с одной стороны, против дарвинизма - с другой. Гудели аудитории, волновались ученые и публицисты, одни клеймили Дарвина, другие им восхищались.

Дарвин написал еще три книги по вопросам эволюции. В 1868 г. выходит большой труд Дарвина по теории искусственного отбора «Изменение домашних животных и культурных растений». В этой книге, не без влияния критики, Дарвин задался вопросом о том, каким образом могут фиксироваться благоприятные уклонения в потомстве, и выдвинул «временную гипотезу пангенезиса». Гипотеза предполагала передачу с помощью гипотетических частиц - «геммул» - благоприобретенных свойств от органов тела к половым клеткам и была данью ламаркизму. Дарвин и его современники не знали, что в 1865 году австро-чешский естествоиспытатель аббат Грегор Мендель открыл законы наследственности. Гипотеза пангенезиса уже широко не нуждалась в создании.

В 1871 г., когда дарвинизм был уже принят в качестве естественнонаучной концепции, выходит книга Дарвина «Происхождение человека и половой отбор», в которой показано не только несомненное сходство, но и родство человека и приматов. Дарвин утверждал, что предок человека может быть найден по современной классификации, среди форм, которые могут быть даже ниже, чем человекообразные обезьяны. Человек и обезьяны подвергаются сходным психологическим и физиологическим процессам в ухаживании, воспроизведении, рождаемости и заботе о потомстве. Русский перевод этой книги появился в том же году. В следующем году выходит книга Дарвина « Выражение эмоций у человека и животных», в которой на основе изучения лицевых мышц и средств выражения эмоций у человека и животных еще на одном примере доказывается их родство.

5.3 Основные положения

Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.

Сущность эволюционного учения заключается в следующих основных положениях:

1. Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.

2. Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.

3. В основе преобразования видов в природе лежат такие свойства организмов, как изменчивость и наследственность, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

4. Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

5.4 Основные результаты эволюции по Дарвину

Главным результатом эволюции является совершенствование приспособленности организмов к условиям обитания, что влечет за собой совершенствование их организации. В результате действия естественного отбора сохраняются особи с полезными для их процветания признаками. Дарвин приводит множество доказательств повышения приспособленности организмов, обусловленной естественным отбором. Это, например, широкое распространение среди животных покровной окраски (под цвет местности, в которой обитают животные, или под цвет отдельных предметов. Многие животные, имеющие специальные защитные приспособления от поедания их другими животными, имеют, кроме того, предупреждающую окраску (например, ядовитые или несъедобные животные). У некоторых животных распространена угрожающая окраска в виде ярких отпугивающих пятен. Многие животные, не имеющие специальных средств защиты, по форме тела и окраске подражают защищенным (мимикрия). У многих из животных имеются иглы, колючки, хитиновый покров, панцирь, раковина, чешуя и т. п. Все эти приспособления могли появиться лишь в результате естественного отбора, обеспечивая существование вида в определенных условиях. Среди растений широко распространены самые разнообразные приспособления к перекрестному опылению, распространению плодов и семян. У животных большую роль в качестве приспособлений играют различного рода инстинкты (инстинкт заботы о потомстве, инстинкты, связанные с добыванием пищи, и т. д.).

Вместе с тем Дарвин отмечает, что приспособленность организмов к среде обитания (их целесообразность), наряду с совершенством, носит относительный характер. При резком изменении условий полезные признаки могут оказаться бесполезными или даже вредными. Например, у водных растений, поглощающих воду и растворенные в ней вещества, всей поверхностью тела, слабо развита корневая система, но хорошо развиты поверхность побега и воздухоносная ткань - аэренхима, образованная системой межклетников, пронизывающих все тело растения. Это увеличивает поверхность соприкосновения с окружающей средой, обеспечивая лучший газообмен, и позволяет растениям полнее использовать свет и поглощать углекислый газ. Но при пересыхании водоема такие растения очень быстро погибнут. Все их приспособительные признаки, обеспечивающие их процветание в водной среде, оказываются бесполезными вне ее. Другой важный результат эволюции - нарастание многообразия видов естественных групп, т. е. систематическая дифференцировка видов. Общее нарастание многообразия органических форм весьма усложняет те взаимоотношения, которые возникают между организмами в природе. Поэтому в ходе исторического развития наибольшее преимущество получают, как правило, наиболее высокоорганизованные формы. Тем самым осуществляется поступательное развитие органического мира на Земле от низших к высшим. Вместе с тем, констатируя факт прогрессивной эволюции, Дарвин не отрицает морфофизиологического регресса (т. е. эволюции форм, приспособления которых к условиям среды идут через упрощение организации), а также такого направления эволюции, которое не приводит ни к усложнению, ни к упрощению организации живых форм. Сочетание различных направлений эволюции приводит к одновременному существованию форм, различающихся по уровню организации.

5.5 Движущие силы эволюции по Ч. Дарвину

В эволюционной теории Дарвина предпосылкой эволюции является наследственная изменчивость, а движущими силами эволюции - борьба за существование и естественный отбор. При создании эволюционной теории Ч.Дарвин многократно обращается к результатам селекционной практики. Он пытается выяснить происхождение пород домашних животных и сортов растений, вскрыть причины многообразия пород и сортов и выявить методы, с помощью которых они были получены. Дарвин исходил из того, что культурные растения и домашние животные по ряду признаков сходны с определенными дикими видами, а это невозможно объяснить с позиции теории творения. Отсюда вытекала гипотеза, согласно которой культурные формы произошли от диких видов. С другой стороны, введенные в культуру растения и прирученные животные не остались неизменными: человек не только выбрал из дикой флоры и фауны интересующие его виды, но и существенно изменил их в нужном направлении, создав при этом из немногих диких видов большое количество сортов растений и пород животных. Дарвин показал, что основой многообразия сортов и пород является изменчивость - процесс возникновения отличий у потомков по сравнению с предками, которые обусловливают многообразие особей в пределах сорта, породы. Дарвин считает, что причинами изменчивости являются воздействие на организмы факторов внешней среды (прямое и косвенное, через «воспроизводительную систему»), а также природа самих организмов (так как каждый из них специфически реагирует на воздействие внешней среды). Определив для себя отношение к вопросу о причинах изменчивости, Дарвин анализирует формы изменчивости и выделяет среди них три: определенную, неопределенную и коррелятивную.

Определенная, или групповая, изменчивость - это изменчивость, которая возникает под влиянием какого-либо фактора среды, действующего одинаково на все особи сорта или породы и изменяющегося в определенном направлении. Примерами такой изменчивости могут служить увеличение массы тела у всех особей животных при хорошем кормлении изменение волосяного покрова под влиянием климата и т.д. Определенная изменчивость является массовой, охватывает все поколение и выражается у каждой особи сходным образом. Она ненаследственна, т.е. у потомков измененной группы при помещении их в другие условия среды приобретенные родителями признаки не наследуются.

Неопределенная, или индивидуальная, изменчивость проявляется специфично у каждой особи, т. е, единична, индивидуальна по своему характеру. При неопределенной изменчивости появляются разнообразные отличия у особей одного и того же сорта, породы, которыми в сходных условиях одна особь отличается от других. Данная форма изменчивости неопределенна, т.е. признак в одних и тех же условиях может изменяться в разных направлениях. Например, у одного сорта растений появляются экземпляры с разной окраской цветков, разной интенсивностью окраски лепестков и т.п. Причина такого явления Дарвину была неизвестна. Неопределенная, или индивидуальная, изменчивость имеет наследственный характер, т.е. устойчиво передается потомству. В этом заключается ее важное значение для эволюции.

Подобные документы

    Общий план строения позвоночных животных. Сравнение отдельных органов у позвоночных животных, относящихся к разным классам. Гомологичные и конвергентные органы. Рудименты и атавизмы, переходные формы. Сходство и расхождение признаков у зародышей.

    реферат , добавлен 02.10.2009

    Определение родства организмов в биологии посредством их сравнения во взрослом состоянии, эмбрионального развития и поиска переходных ископаемых форм. Систематика органического мира и бинарная классификация Линнея. Теории происхождения жизни на Земле.

    реферат , добавлен 20.12.2010

    Сущность эволюционного учения как науки о причинах, движущих силах и общих закономерностях исторического развития живой природы. Новые идеи эволюции органического мира в теориях Дарвина и Ламарка. Механизмы и закономерности эволюционного процесса.

    презентация , добавлен 13.01.2011

    История развития Земли, эры - длительные отрезки времени, каждый из которых получил свое название. География и климат ордовикского периода. Животный и растительный мир девона. Четвертичный период (Голоценовая эпоха): состояние органического мира.

    презентация , добавлен 06.05.2015

    Образование и зарождение жизни на Земле; влияние геологических процессов на изменение климата и условия существования организмов. Этапы создания типов и классов животных; эволюция "первичного бульона" до современного видового состава органического мира.

    презентация , добавлен 17.02.2012

    Научные труды Чарлза Дарвина. Происхождение биологического разнообразия в результате эволюции. История написания издания "Происхождения видов". Основание дарвинизма и материалистической теории эволюции органического мира. Теория естественного подбора.

    реферат , добавлен 06.04.2017

    Сущность теорий происхождение видов Ламарка и Дарвина. Естественная эволюция как необратимое историческое развитие органического мира с постепенным его усложнением. Видовое разнообразие царства животных и значение эмбриологии в определении их родства.

    реферат , добавлен 11.07.2009

    Теории самозарождения жизни на Земле в интерпретациях Аристотеля, Спалланцани, Пастера. Большой взрыв - толчок к созданию Вселенной. Эпохи развития: докембрийская, палеозойская, мезозойская и кайнозойская. Научные и религиозные гипотезы эволюции.

    курсовая работа , добавлен 21.01.2010

    Эволюция как учение о длительном процессе исторического развития живой природы. Объяснение многообразия видов и приспособленности живых существ к условиям жизни. Развитие описательной ботаники и зоологии. Первая теория об эволюции органического мира.

    реферат , добавлен 02.10.2009

    Геохронологическая таблица развития жизни на Земле. Характеристика климата, тектонических процессов, условий появления и развития жизни в архейской, протерозойской, палеозойской и мезозойской эре. Отслеживание процесса усложнения органического мира.

Основные понятия и ключевые термины: БИОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ. Доказательства эволюции.

Вспомните! Что такое развитие?

Подумайте!

Чем отличаются революционное и эволюционное развитие? Эти понятия рассматривают как противоположные. Революцию связывают с резкими изменениями в жизни общества, которые осуществляются иногда достаточно радикальными средствами. А что же такое эволюция и каковы её признаки?

Каковы основные признаки биологической эволюции?

Понятие эволюция (от греч. эволюция - развёртывание) впервые ввёл в науку швейцарский натуралист и философ Шарль Бонне ещё в 1762 г.

Этим понятием в современной биологии обозначают не только количественные, но и качественные изменения живого в течение длительных периодов. Биологической эволюции присущи такие общие признаки.

Необратимость эволюции. Это положение на уровне видов впервые сформулировано

Ч. Дарвином: «Вид, который исчез, никогда не может появиться снова, даже если бы снова повторились абсолютно тождественные условия жизни - органические и неорганические». Сейчас эта закономерность доказана и на других уровнях. Так, с помощью моделирования эволюции белков на молекулярном уровне было показано, что новые мутации зависят от предыдущих, и вернуться назад и удалить накопившиеся мутации без ущерба для белков становится всё сложнее.

Направленность эволюции на приспособление организмов к изменениям действия тех или иных факторов. Результатом биоло-

гической эволюции всегда является соответствие живой системы условиям её существования.

Уровневость эволюции, которая прослеживается на каждом из уровней организации жизни: молекулярном, клеточном, организ-менном, популяционно-видовом, биогеоценозном и биосферном. Биологическая эволюция тесно взаимосвязана с геологической историей Земли, с действием космических и геологических сил и факторов окружающей среды.

Итак, БИОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ - это необратимое, направленное историческое развитие живой природы, сопровождающееся изменениями на всех уровнях организации жизни.

Как происходило развитие эволюционных взглядов?

Идеи эволюции органического мира уходят в давность. Ещё античные философы (Гераклит, Демокрит) высказывали идею единства природы, согласно которой все тела и явления природы происходят от каких-то материальных начал. Такие представления объединяются в систему взглядов под названием стихийный материализм (от лат. materialis - вещественный).

В эпоху Средневековья царила метафизика (от греч. цель - над, физис - природа) - учение о сверхъестественной первооснове бытия, сверхчувствительных, недоступных опыту принципах существования мира. Взгляды о том, что мир и разные формы жизни на Земле созданы высшей, сверхъестественной силой в процессе актов творения (концепция «молодой Земли», концепция «Разумного замысла»), являются основой креационизма (от лат. creatio - творение).

В эпоху Возрождения активизировались научные исследования, чему способствовали географические открытия и накопление описательного материала. Формируются идеи видоизменяемости живого, становясь основой трансформизма (от лат. transformatio - превращение), а впоследствии и эволюционизма (от лат. evolutio - развёртывание).

В первой половине XIX в. формируется эволюционный взгляд на природу и развивается эволюционная биология - наука о причинах, движущих силах, механизмах и закономерностях исторического развития органического мира. Эта наука сформировалась на основе палеонтологии, сравнительной анатомии, эмбриологии, систематики, а несколько позже - генетики, экологии, молекулярной биологии. В связи с особенностями эволюционных преобразований на разных уровнях в современной науке возникли три основных направления исследований эволюционных процессов:

1) молекулярно-биологический (анализ молекулярной эволюции биомолекул, в частности белков и нуклеиновых кислот);

2) генетико-экологический (исследование микроэволюционных процессов на уровне популяций, видов, экосистем и биосферы с помощью методов популяционной генетики и экологии);

3) эволюционно-морфологический (исследование эволюции методами палеонтологии, сравнительной анатомии, эмбриологии).

Итак, представления об эволюции зародились ещё в древних цивилизациях и формировались в соответствии с накоплением знаний о живой природе.

Какова роль палеонтологии, молекулярной генетики в обосновании теории эволюции?

Доказательства эволюции - научные данные, подтверждающие историческое развитие всех живых существ на Земле. Способность к развитию во времени характерна для всех проявлений жизни, и поэтому доказательства биологической эволюции могут быть представлены всеми биологическими науками. Сравнительно-анатомические, эмбриологические, биогеографические, биохимические, этологические, физиологические и много других исследований исторического развития организмов подтверждают факт эволюции, выясняя признаки сходства строения, зародышевого развития, распространения, химического состава, поведения, жизненных функций и т. д., что свидетельствует о родстве и единстве органического мира.

Палеонтологические доказательства имеют наиболее надёжный и наглядный характер. Палеонтологи изучают вымершие организмы, их вид и биологические особенности, на основе чего восстанавливают ход эволюции. На сегодня установлено значительное количество последовательностей ископаемых форм (филогенетических рядов) организмов, в частности моллюсков, парнокопытных, слонов и др.

Найдены и описаны вымершие организмы, сочетающие в себе признаки двух больших систематических групп (ископаемые переходные формы). Примером таких вымерших форм является археоптерикс (ил. 117), териодонты, риниофиты, семенные папоротники.


Молекулярно-генетические доказательства позволяют сравнивать даже очень отдалённые группы организмов - бактерии, эукариоты и археи - и делать вывод об их эволюционном родстве. Универсальность генетического кода, химического состава мембран, строение белков, состоящих из 20 «волшебных» аминокислот - эти и многие другие признаки служат доказательствами общности происхождения жизни на Земле. Важным для оценки эволюционных изменений геномов является метод гибридизации ДНК. Молекулы ДНК двух разных организмов разделяют на одноцепочечные молекулы, а затем создают условия для их соединения с образованием гибридной двухцепочечной ДНК. Таким образом было обнаружено, что между геномами разных организмов много общего. Например, геном человека примерно на 90 % совпадает с геномом мыши и лишь на 1 % отличается от генома шимпанзе.

Изучение генетического родства различных групп организмов на основе молекулярно-генетических исследований РНК, ДНК, белков -суть молекулярной филогенетики. Одним из крупнейших открытий с помощью этого направления исследований стало открытие архей (К. Вёзе, 1977).

Итак, эволюция является неоспоримым научным фактом, подтверждаемым исследованиями различных наук.

ДЕЯТЕЛЬНОСТЬ

Задание на применение знаний

Научной основой формирования эволюционного учения были открытия различных биологических наук. Установив правильное соответствие между науками и их открытиями, получите название явления, с помощью которого французский зоолог Ж. Кювье мог по одной кости воссоздать облик вымершего животного.

1 Цитология

Л Идея единства организмов и условий существования

2 Эмбриология

Ц Изоляция способствует сходству флоры и фауны разных континентов

3 Палеонтология

К Все живые организмы имеют клеточное строение

4 Биохимия

О Открытие сходства этапов развития зародышей животных

5 Экология

Е Доказано химическое единство неживой и живой природы

6 Молекулярная биология

Р Установлена изменчивость флоры и фауны в прошлом Земли

7 Биогеография

И Материальными носителями наследственности являются гены и хромосомы

8 Генетика

Я 2 Единство плана строения больших групп животных и растений

9 Сравнительная анатомия

Я, Сходство белков и ДНК указывает на генетическое родство


Биология + Поэзия

В стихотворении Эразма Дарвина (деда Ч. Дарвина) «Храм природы» есть строки: «Итак, смирись же в гордыне спесивой и вечно помни, дух себялюбивый, что червь - твой родич, брат твой - муравей!» (перевод Н. Холодковского). О чём идёт речь? Сделайте вывод о единстве органического мира, которое проявляется через его разнообразие.

Задания для самоконтроля

1.Что такое биологическая эволюция? 2. Назовите основные признаки биологической эволюции. 3. Что такое эволюционная биология? 4. Назовите основные направления эволюционной биологии. 5. Что такое доказательства эволюции? 6. Что такое палеонтологические и молекулярно-генетические доказательства эволюции?

7. Каковы основные признаки биологической эволюции? 8. Как происходило развитие эволюционных взглядов? 9. Назовите основные группы доказательств эволюции?

10. Какова роль палеонтологии и молекулярной генетики в обосновании эволюции?

«...твердо помнить должно,

что видимые телесные на Земле вещи

и весь мир не в таком состоянии

были с начала от создания,

как ныне находим,

но великие происходили

в нем перемены...»

М. В. ЛОМОНОСОВ

Масса Земли составляет около 4´10 18 тонн, а возраст - около 4,5-5 млрд лет. Считают, что жизнь возникла на Земле примерно 3,5-3,8 млрд лет назад.

Она оказала существенное влияние на атмосферу, которая изменялась от окисляющей к неокисляющей.

Огромное разнообразие живых форм, населяющих сейчас Землю, является результатом длительного процесса эволюции, под которой понимают развитие организмов во времени или процесс исторического преобразования на Земле, результатом которого является многообразие современного живого мира. Термин «эволюция» (от лат. evolutio - развертываю) был введен в науку в 1762 г. швейцарским натуралистом Ш. Бонна (1720-1793).

Вначале эволюция шла очень медленно. Первыми и единственными живыми обитателями Земли в течение 3 млрд лет были микроорганизмы. Многоклеточные появились после четырех пятых времени начала существования Земли. Эволюция человека заняла несколько последних миллионов лет. Центральным моментом эволюции является филогенез (от греч. phyle - племя, genesis - развитие), - процесс возникновения и развития вида, т. е. эволюцию вида.

Представления о развитии жизни отражены в теории эволюции, которая основывается на данных об общих закономерностях и движущих силах развития живой природы. Она представляет собой синтез достижений дарвинизма, биологии, генетики, морфологии, физиологии, экологии, биогеоценологии и других наук. В наше время теория эволюции, основу которой составляет дарвинизм, - это наука об общих законах развития органической природы, методологическая основа всех специальных биологических дисциплин.

В этом разделе мы рассмотрим теорию эволюции. Будут приведены также данные о происхождении жизни, о микроэволюции и видообразовании, а также о ходе, главных направлениях и доказательствах эволюции. В самостоятельных главах мы излагаем сведения об эволюции систем органов животных и о происхождении человека.

Глава XIV

ТЕОРИЯ ЭВОЛЮЦИИ

Представления об эволюции до

ЧарлзаДарвина

Эволюция протекает на всех уровнях организации живой материи и на каждом уровне характеризуется новообразованием структур и появлением новых функций. Объединение структур и функций одного уровня сопровождается переходом живых систем на более высокий эволюционный уровень.

Проблемы происхождения и эволюции жизни на Земле принадлежали и принадлежат к числу величайших проблем естествознания. Эти проблемы привлекали к себе внимание человеческого ума с самых незапамятных времен. Они являлись предметом интереса всех философских и религиозных систем. Однако в разные эпохи и на разных ступенях развития человеческой культуры проблемы происхождения и эволюции жизни решались по-разному.

В основе современной теории эволюции лежит теория Ч. Дарвина. Но эволюционизм существовал и до Ч. Дарвина. Поэтому, чтобы лучше понимать современную теорию эволюции, важно знать о взглядах на мир до Ч. Дарвина, о том, как развивались идеи эволюционизма.

Самыми древними взглядами на природу были мистические, по которым жизнь связывали с силами природы. Но уже у самых истоков культуры в древней Греции на смену мистическим истолкованиям природы приходят начала других представлений. В тот период возникла и стала развиваться доктрина абиогенеза и спонтанного самозарождения, в соответствии с которой признавалось, что живые организмы возникают спонтанно из неживого материала. Тогда же появились и эволюционные идеи. Например, Эмпедокл (490-430 гг. до н. э.) считал, что первые живые существа возникли из четырех элементов мировой материи (огонь, воздух, вода и земля) и что для природы характерно закономерное развитие, выживание тех организмов, которые наиболее гармонично (целесообразно) устроены. Эти мысли были очень важными для дальнейшего распространения идеи о естественном происхождении живых существ.

Демокрит (460-370 гг. до н. э.) считал, что мир состоит из множества мельчайших частиц, которые находятся в движении, и что жизнь является не результатом творения, а результатом действия механических сил самой природы, приводящих к самозарождению. По Демокриту самозарождение живых существ происходит из ила и воды в результате сочетания атомов при их механическом движении, когда мельчайшие частицы влажной земли встречаются и соединяются с атомами огня. Самозарождение представлялось случайным процессом.

Предполагая, что черви, клещи и другие организмы возникают из росы, ила, навоза, волос, пота, мяса, моллюски из влажной земли, а рыбы из морской тины и т. д., Платон (427-347 гг. до н. э.) утверждал, что живые существа образуются в результате соединения пассивной материи с активным началом (формой), представляющим собой душу, которая затем движет организмом.

Аристотель (384-322 гг. до н. э.) утверждал, что растения и животные возникают из неживого материала. В частности, он утверждал, что некоторые животные возникают из разложившегося мяса. Признавая реальность материального мира и постоянство его движения, сравнивая организмы между собой, Аристотель пришел к заключению о «лестнице природы», отражающей последовательность организмов, начинающуюся с неорганических тел и продолжающуюся через растения к губкам и асцидиям, а затем к свободно живущим морским организмам. Однако, признавая развитие, Аристотель не допускал мысли о развитии низших организмов к высшим.

Взгляды Аристотеля оказали влияние на века, ибо последующие греческие и римские философские школы полностью разделили идею самопроизвольного зарождения, которая все больше и больше наполнялась мистическим содержанием. Описания различных случаев самозарождения даны Цицероном, Овидием, позднее Сенекой, Пли-нием, Плутархом и Апулеем. Идея изменяемости прослеживается во взглядах древних философов Индии, Китая, Месопотамии, Египта. Раннее христианство обосновывало доктрину абиогенеза примерами из Библии. Подчеркивалось, что самозарождение действует от сотворения мира до наших дней.

В течение средних веков (V-XV вв.) вера в самопроизвольное самозарождение была господствующей среди ученых того времени, ибо философская мысль тогда могла существовать лишь в качестве богословской мысли. Поэтому сочинения средневековых ученых содержат многочисленные описания самозарождения насекомых, червей, рыб. Тогда часто считали, что даже львы возникли из камней пустыни. Знаменитый врач средневековья Парацельс (1498-1541) приводил рецепт «изготовления» гомункулуса (человека) путем помещения спермы человека в тыкву. Как известно, Мефистофель из трагедии Гёте «Фауст» называл себя повелителем крыс, мышей, мух, лягушек, клопов и вшей, чем И. Гёте подчеркивал чрезвычайные возможности самозарождения.

Средневековье не внесло новых идей в представления о развитии органического мира. Напротив, в тот период царило креационисти-ческое представление о возникновении живого в результате акта творения, о постоянстве и неизменности существующих живых форм. Вершиной креационизма было создание лестницы тел природы: бог - ангел - человек - животные, растения, мицеллы.

Гарвей (1578-1667) допускал, что черви, насекомые и другие животные могли зарождаться в результате гниения, но при действии особых сил. Ф. Бэкон (1561-1626) считал, что мухи, муравьи и лягушки могут самопроизвольно возникать при гниении, однако к вопросу подходил материалистически, отрицая непреодолимую грань между неорганическим и органическим. Р. Декарт (1596-1650) также признавал самопроизвольное зарождение, но отрицал участие в нем духовного начала. По Р. Декарту самозарождение - это естественный процесс, наступающий при определенных (непонятных) условиях.

Оценивая взгляды выдающихся деятелей прошлого, можно сказать, что доктрина самозарождения не подвергалась сомнению вплоть до середины XVII в. Метафизичность воззрений в XVII-XVIII вв. особенно проявлялась в представлениях о неизменности видов и органической целесообразности, которые считались результатом мудрости творца и жизненной силы.

Однако вопреки господству метафизических представлений в XVI-XVII вв. все же происходит ломка догматического мышления средневековья, обостряется борьба против духовной диктатуры церкви, возникает и углубляется процесс познания, который привел в XVIII в. к существенной аргументации против теории абиогенеза и к возбуждению интереса к эволюционизму.

Осуществив в 1665 г. ряд экспериментов с мясом и мухами, Ф. Реди (1626-1697) пришел к заключению, что личинки, возникающие в гниющем мясе, являются личинками насекомых, и что такие личинки никогда не возникнут, если мясо поместить в закрытый контейнер, недоступный для насекомых, т. е. для откладывания ими яиц. Этими экспериментами Ф. Реди опроверг доктрину самозарождения высших организмов из неживого материала. Однако в материалах и рассуждениях Ф. Реди не исключалась мысль о спонтанном самозарождении микроорганизмов и гельминтов в кишечнике человека и животных. Следовательно, сама идея самозарождения еще продолжала существовать.

В 1765 г. Л. Спаланцани (1729-1799) во многих опытах показал, что развитие микробов в растительных и мясных настоях исключается кипячением последних. Он выявил также значение времени кипячения и герметичности сосудов. Его заключение сводилось к тому, что если герметичные сосуды с настоями кипятить достаточное время и исключить проникновение в них воздуха, то в таких настоях микроорганизмы никогда не возникнут. Однако Л. Спа-ланцани не сумел убедить своих современников в невозможности самозарождения микроорганизмов. Идею самозарождения жизни продолжали защищать многие выдающиеся философы и естествоиспытатели того времени (И. Кант, Г. Гегель, X. Гей-Люссак и др.).

В 1861-1862 гг. Л. Пастер представил развернутые доказательства невозможности самозарождения в настоях и растворах органических веществ. Экспериментально он доказал, что источником загрязнений всех растворов являются бактерии, находящиеся в воздухе. Исследования Л. Пастера произвели огромное впечатление на современников. Англичанин Д. Тиндаль (1820-1893) нашел, что некоторые формы микробов очень резистентны, выдерживая нагревание до 5 часов. Поэтому он разработал метод дробной стерилизации, называемый сейчас тиндализацией.

Опровержение доктрины абиогенеза сопровождалось формированием представлений о вечности жизни. В самом деле, если самозарождение жизни невозможно, рассуждали многие философы и ученые, то тогда жизнь вечна, автономна, рассеяна во Вселенной. Но как она попала на Землю? Чтобы ответить на этот вопрос, шведский ученый Аррениус (1859-1927) в начале нашего века (1912) сформулировал гипотезу панспермии, в соответствии с которой жизнь существует во вселенной и переносится в простейших формах с одного небесного тела на другое, включая Землю, под давлением световых лучей. Сторонники этой гипотезы считали, что перенос жизни на Землю возможен и с помощью метеоритов. Однако гипотеза панспермии вызывала возражения в том плане, что в космическом пространстве действуют факторы, которые губительны для микроорганизмов и что эти факторы исключают циркуляцию микроорганизмов за пределами Земной атмосферы. Становилось все более ясным, что жизнь уникальна, что истоки жизни следует искать на Земле.

Не меньшее значение в то время имел вопрос о «естественном родстве» организмов. Речь шла о группировке организмов на основе их естественного родства, о допущении, что отдельные организмы могли произойти от общих родоначальников. Например, Ж. Бюффон считал, что могли быть «общие родоначальники» для нескольких семейств, в частности для млекопитающих, им допускалось 38 общих родоначальников. В России мысль о происхождении организмов ряда видов от общих родоначальников развивал П. С. Пал-лас (1741-1811).

Далее, привлекал внимание вопрос о факторе времени в изменении организмов. В частности, значение фактора времени для существования Земли и формирования на Земле органических форм признавали И. Кант (1724-1804), Д. Дидро, Ж. Бюффон, М. В. Ломоносов (1711-1765), А. Н. Радищев (1749-1802), А. А. Каверзнев (1748-?). И. Кант определял возраст Земли в несколько миллионов лет, а М. В. Ломоносов писал, что время, которое было необходимо для создания организмов, является большим церковного исчисления. Признание фактора времени имело несомненное значение для исторического понимания развития организмов. Однако представления о времени в тот период сводились лишь к мысли о неединовременнос-ти появления организмов разных видов, но не к признанию развития организмов во времени.

Важное значение тогда имел вопрос о последовательности природных тел. Значительный вклад в формирование идеи последовательности природных тел принадлежит Ш. Боннэ и Г. Лейбницу. В России эту идею поддерживал А. Н. Радищев. Не имея достаточных знаний об организмах, Ш. Боннэ, Г. Лейбниц и другие натуралисты того времени возродили аристотелевскую «лестницу природы» . Расположив на ней организмы по ступеням (на главной ступени оказался человек), они создали «лестницу существ», в которой имелись непрерывные переходы от Земли и камней к Богу. Ступеней в лестнице было столько, сколько есть животных. Отражая мысль о единстве и связи живых форм, об усложнении организмов, «лестница существ» в целом явилась порождением метафизического мышления, ибо ее ступени отражали простое соседство, но не результат исторического развития.

Существенное внимание в те времена привлекал вопрос о «прототипе» и единстве плана строения организмов. Допуская существование исходного существа, многие признавали единый план строения организмов. Дискуссии по этому вопросу имели важное значение для последующих представлений об общности происхождения.

Для многих большой интерес привлекал вопрос о трансформации организмов. Например, французский натуралист Б. де Маис (1696-1738) считал, что в море живут вечные семена жизни, которые дают начало морским живым формам, трансформирующимся затем в земные организмы. Отмечая позитивную роль трансформизма в эволюционизме, следует все же отметить, что он был механическим и исключал мысль о развитии, об историзме.

Наконец, центром внимания в то время был вопрос о возникновении органической целесообразности. Многие философы и натуралисты признавали, что целесообразность не изначальна, что она возникла естественным путем в результате браковки дисгармонических организмов. Обсуждение этого вопроса продвигало эволюционизм, но не достигало существенного результата, ибо появление одной формы рассматривалось независимо от появления другой.

Итак, к концу XVIII в. появились идеи, противоречащие представлениям о неизменяемости видов, но они не сложились в систему взглядов, а метафизичность мышления мешала полностью отвергнуть религию и взглянуть на природу по-новому. Первым, кто специально обратился к изучению проблем эволюции, был французский ученый Ж.-Б. Ламарк (1744-1829). Созданное им учение явилось завершением предыдущих поисков многих натуралистов и философов, пытавшихся осмыслить возникновение и развитие органического мира.

Ж.-Б. Ламарк был деистом, т. к. считал, что первопричиной материи и движения является творец, но дальнейшее развитие происходит благодаря естественным причинам. По Ламарку творец осуществил лишь первый акт, создавая самые простые формы, которые затем развивались, дав начало всему многообразию на основе естественных законов. Ламарк был также антивиталистом. Считая, что живое возникает из неживого, он рассматривал самозарождение в качестве естественного закономерного процесса, являющегося начальным пунктом эволюции. Признавая развитие от простого к сложному и опираясь на «лестницу существ», Ламарк пришел к заключению о градации, в которой он увидел отражение истории жизни, развитие одних форм из других. Ламарк считал, что развитие от простейших форм до самых сложных составляет главное содержание истории всего органического мира, включая и историю человека. Однако, доказывая эволюцию видов, Ламарк полагал, что они текучи и между ними нет границ, т. е. фактически он отрицал существование видов.

Главными причинами развития живой природы по Ламарку является врожденное стремление организмов к усложнению через совершенствование. По Ламарку, эволюция идет на основе внутреннего стремления к прогрессу, а положения об упражнениях и неупражнениях органов и о передаче по наследству приобретенных под влиянием среды признаков являются законами. Как думал Ламарк, факторы среды влияют на растения и простые организмы прямо, «вылепливая» из них, как из глины, нужные формы, т. е. изменения среды приводят к изменению видов. На животных факторы среды влияют косвенно.

Изменения среды приводят к изменению потребностей животных, изменение потребностей ведет к изменению привычек, а изменение привычек сопровождается использованием или неиспользованием тех или иных органов. В обоснование этих взглядов Ламарк приводил многие примеры. Например, форма тела змей, как он считал, является результатом привычки этих животных ползать по земле, а длинная шея жирафа обязана необходимости доставать плоды на деревьях.

Использование (упражнение) органа сопровождается его дальнейшим развитием, тогда как неиспользование органа - деградацией. Изменения, индуцированные внешними условиями (обстоятельствами), наследуются потомством, накапливаются и ведут к переходу одного вида в другой.

Исторические заслуги Ламарка заключаются в том, что ему удалось показать развитие от простого к сложному и обратить внимание на неразрывную связь организма со средой. Однако обосновать эволюционное учение Ламарку все же не удалось, ибо ему не удалось выяснить подлинные механизмы эволюции. Как отмечал К. А. Тимирязев (1843-1920), Ламарку не удалось объяснить важнейший вопрос, касающийся целесообразности организмов. Учение Ламарка содержало элементы натурфилософии и идеализма, поэтому ему не удалось убедить современников в том, что эволюция действительно имеет место в природе.


Похожая информация.


Начальные этапы биологической эволюции

Появление примитивной клетки означало окончание предбиологической эволюции живого и начало биологической эволюции жизни.

Первыми возникшими на нашей планете одноклеточными организмами были примитивные бактерии, не обладавшие ядром, то есть прокариоты. Как уже указывалось, это были одноклеточные безъядерные организмы. Они были анаэробами, поскольку жили в бескислородной среде, и гетеротрофами, поскольку питались готовыми органическими соединениями «органического бульона», то есть веществами, синтезированными в ходе химической эволюции. Энергетический обмен у большинства прокариот происходил по типу брожения. Но постепенно «органический бульон» в результате активного потребления убывал. По мере его исчерпания некоторые организмы стали вырабатывать способы формирования макромолекул биохимическим путем, внутри самих клеток при помощи ферментов. В таких условиях конкурентоспособными оказались клетки, которые смогли получать большую часть необходимой энергии непосредственно от излучения Солнца. По этому пути и шел процесс формирования хлорофилла и фотосинтеза.

Переход живого к фотосинтезу и автотрофному типу питания явился поворотом в эволюции живого. Атмосфера Земли стала «наполняться» кислородом, который для анаэробов явился ядом. Поэтому многие одноклеточные анаэробы погибли, другие укрылись в бескислородных средах – болотах и, питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду. У них центральным механизмом обмена стало кислородное дыхание, которое позволило увеличить выходполезной энергии в 10–15 раз по сравнению с анаэробным типом обмена – брожением. Переход к фотосинтезу был длительным процессом и завершился около 1,8 млрд лет назад. С возникновением фотосинтеза в органическом веществе Земли накапливалось все больше энергии солнечного света, что ускоряло биологический круговорот веществ и эволюцию живого в целом.

В кислородной среде сформировались эукариоты, то есть одноклеточные, имеющие ядро организмы. Это были уже более совершенные организмы с фотосинтетической способностью. Их ДНК уже были сконцентрированы в хромосомы, тогда как у прокариотных клеток наследственное вещество было распределено по всей клетке. Хромосомы эукариотов были сконцентрированы в ядре клетки, а сама клетка уже воспроизводилась без существенных изменений. Таким образом, дочерняя клетка эукариот была почти точной копией материнской и имела столько же шансов на выживание, сколько и материнская.

Образование растений и животных

Последующая эволюция эукариотов была связана с разделением на растительные и животные клетки. Такое разделение произошло в протерозое, когда Земля была заселена одноклеточными организмами (табл. 8.2).

Таблица 8.2

Возникновение и распространение организмов в истории Земли (по З. Брему и И. Мейнке, 1999 г.)




С начала эволюции эукариоты развивались двойственно, то есть в них параллельно были группы с автотрофным и гетеротрофным питанием, что обеспечивало целостность и значительную автономность живого мира.

Растительные клетки эволюционировали в сторону уменьшения способности передвижения из-за развития жесткой целлюлозной оболочки, но в направлении использования фотосинтеза.

Животные клетки эволюционировали в сторону увеличения способности к передвижению, а также совершенствования способов поглощать и выделять продукты переработки пищи.

Следующим этапом развития живого стало половое размножение. Оно возникло примерно 900 млн лет назад.

Дальнейший шаг в эволюции живого произошел около 700–800 млн лет назад, когда появились многоклеточные организмы с дифференцированными телом, тканями и органами, выполняющими определенные функции. Это были губки, кишечнополостные, членистоногие и т. д., относящиеся к многоклеточным животным.

На протяжении всего протерозоя и в начале палеозоя растения населяют в основном моря и океаны. Это зеленые и бурые, золотистые и красные водоросли.

Впоследствии в морях кембрия уже существовали многие типы животных. В дальнейшем они специализировались и совершенствовались. Среди морских животных той поры ракообразные, губки, кораллы, моллюски, трилобиты и т. д.

В конце ордовикского периода стали появляться крупные плотоядные, а также позвоночные животные.

Дальнейшая эволюция позвоночных шла в направлении челюстных рыбообразных. В девоне стали появляться уже двоякодышащие рыбы – амфибии, а затем насекомые. Постепенно развивалась нервная система как следствие совершенствования форм отражения.

Особо важным этапом в эволюции форм живого являлись выход растительных и животных организмов из воды на сушу и дальнейшее увеличение количества видов наземных растений и животных. В дальнейшем именно из них и происходят высокоорганизованные формы жизни. Выход растений на сушу начался в конце силура, а активное завоевание суши позвоночными началось в карбоне.

Переход к жизни в воздушной среде требовал от живых организмов очень многих изменений и предполагал выработку соответствующих приспособлений. Он резко увеличил темпы эволюции живого на Земле. Вершиной эволюции живого стал человек.

Жизнь в воздушной среде «увеличила» массу тела организмов, в воздухе не содержатся питательные вещества, воздух иначе, чем вода, пропускает свет, звук, тепло, количество кислорода в нем выше. Ко всему этому необходимо было приспособиться. Первыми приспособившимися к условиям жизни на суше позвоночными были рептилии. Их яйца были снабжены пищей и кислородом для эмбриона, покрыты твердой скорлупой, не боялись высыхания.

Примерно 67 млн лет назад преимущество в естественном отборе получили птицы и млекопитающие. Благодаря теплокровности млекопитающих они быстро завоевали господствующее положение на Земле, что связано с условиями похолодания на нашей планете. В это время именно теплокровность стала решающим фактором выживания. Она обеспечивала постоянную высокую температуру тела и стабильность функционирования внутренних органов млекопитающих. Живорождение млекопитающих и вскармливание детенышей молоком явилось мощным фактором их эволюции, позволяющим размножаться в разнообразных условиях среды. Развитая нервная система способствовала разнообразию форм приспособления и защиты организмов.

Произошло разделение хищно-копытных животных на копытных и хищников, а первые насекомоядные млекопитающие положили начало эволюции плацентарных и сумчатых организмов.

Решающим этапом эволюции жизни на нашей планете явилось появление отряда приматов. В кайнозое примерно 67–27 млн лет назад приматы разделились на низших и человекообразных обезьян, являющихся древнейшими предками современного человека. Предпосылки появления современного человека в процессе эволюции формировались постепенно. Сначала был стадный образ жизни. Он позволил сформировать фундамент будущего социального общения. Причем если у насекомых (пчелы, муравьи, термиты) биосоциальность вела к потере индивидуальности, то у древних предков человека, напротив, она развивала индивидуальные черты особи. Это явилось мощной движущей силой развития коллектива.

Свой следующий шаг эволюция жизни сделала в образе появления человека разумного (Homo sapiens). Именно человек разумный обладает способностью целенаправленно изменять окружающий его мир, создавать искусственные условия своего обитания и преобразовывать облик нашей планеты.


Эволюционная теория Ч. Дарвина

Под эволюцией (от лат. evolutio – развитие, развертывание) следует понимать процесс длительных, постепенных, медленных изменений, приводящих к коренным качественно новым изменениям (образованию других структур, форм, организмов и их видов).

Идея длительного и постепенного изменения всех видов животных и растений высказывалась учеными задолго до Ч. Дарвина. В таком духе высказывались в разное время Аристотель, шведский натуралист К. Линней, французский биолог Ж. Ламарк, современник Ч. Дарвина английский натуралист А. Уоллес и другие ученые.

Несомненной заслугой Ч. Дарвина является не сама идея эволюции, а то, что именно он впервые обнаружил в природе принцип естественного отбора и обобщил отдельные эволюционные идеи в одну стройную теорию эволюции. В становлении своей теории Ч. Дарвин опирался на большой фактический материал, на эксперименты и практику селекционной работы по выведению новых сортов растений и различных пород животных.

При этом Ч. Дарвин пришел к выводу, что из множества разнообразных явлений живой природы явно выделяются три принципиальных фактора в эволюции живого, объединяемых краткой формулой: изменчивость, наследственность, естественный отбор.

Эти фундаментальные принципы основываются на следующих выводах и наблюдениях над миром живого – это:

1. Изменчивость. Она свойственна любой группе животных и растений, организмы отличаются друг от друга во многих различных отношениях. В природе невозможно обнаружить два тождественных организма. Изменчивость является неотъемлемым свойством живых организмов, она проявляется постоянно и повсеместно.

По Ч. Дарвину, в природе имеется два вида изменчивости – определенная и неопределенная.

1) Определенная изменчивость (адаптивная модификация) – это способность всех особей одного и того же вида в каких-то определенных условиях внешней среды одинаковым образом реагировать на эти условия (пищу, климат и т. д.). По современным представлениям, адаптивные модификации не передаются по наследству, а поэтому в своем большинстве не могут поставлять материал для органической эволюции.

2) Неопределенная изменчивость (мутации) вызывает существенные изменения в организме в самых различных направлениях. Эта изменчивость в отличие от определенной носит наследственный характер, при этом незначительные отклонения в первом поколении усиливаются в последующих. Неопределенная изменчивость тоже связана с изменениями окружающей среды, но не непосредственно, как в адаптивных модификациях, а опосредованно. Поэтому, по Ч. Дарвину, решающую роль в эволюции играют именно неопределенные изменения.

2. Постоянная численность вида. Число организмов каждого вида, появляющихся на свет, больше того числа, которое может найти пропитание и выжить; тем не менее численность каждого вида в естественных условиях остается относительно постоянной.

3. Конкурентные отношения особей. Поскольку рождается больше особей, чем может выжить, в природе постоянно происходит борьба за существование, конкуренция за пищу и места обитания.

4. Адаптивность, приспособляемость организмов. Изменения, облегчающие организму выживание в какой-либо определенной среде, дают своим обладателям преимущества перед другими организмами, которые менее приспособились к внешним условиям и в результате погибли. Идея «выживаемости наиболее приспособленных» является главной в теории естественного отбора. 5. Воспроизведение «удачных» благоприобретенных характеристик в потомстве. Выживающие особи дают потомство, и таким образом «удачные», позволившие выжить положительные изменения передаются последующим поколениям.

Сущность эволюционного процесса состоит в непрерывном приспособлении живых организмов к разнообразным условиям окружающей природной среды и в появлении все более сложно устроенных организмов. Поэтому биологическая эволюция направлена от простых биологических форм к более сложным формам.

Таким образом, естественный отбор, являющийся результатом борьбы за существование, есть основной фактор эволюции, направляющий и определяющий эволюционные изменения. Эти изменения становятся заметными, проходя через смену многих поколений. Именно в естественном отборе отражается одна из фундаментальных черт живого – диалектика взаимодействия органической системы и среды.

Несомненные достоинства эволюционной теории Ч. Дарвина имели и некоторые недостатки. Так, она не могла объяснить причин появления у некоторых организмов определенных структур, кажущихся бесполезными; у многих видов отсутствовали переходные формы между современными животными и ископаемыми; слабым местом были также представления о наследственности. В дальнейшем обнаружились недостатки, касающиеся основных причин и факторов органической эволюции. Уже в XX в. стало ясно, что теория Ч. Дарвина нуждается в дальнейшей доработке и совершенствовании с учетом последних достижений биологической науки. Это стало предпосылкой для создания синтетической теории эволюции (СТЭ).


Синтетическая теория эволюции

Достижения генетики в раскрытии генетического кода, успехи молекулярной биологии, эмбриологии, эволюционной морфологии, популярной генетики, экологии и некоторых других наук указывают на необходимость соединения современной генетики с теорией эволюции Ч. Дарвина. Такое объединение породило во второй половине XX в. новую биологическую парадигму – синтетическую теорию эволюции. Поскольку она основана на теории Ч. Дарвина, ее называют неодарвинистской. Эту теорию рассматривают как неклассическую биологию. Синтетическая теория эволюции позволила преодолеть противоречия между эволюционной теорией и генетикой. СТЭ пока еще не имеет физической модели эволюции, но представляет собой многостороннее комплексное учение, которое лежит в основе современной эволюционной биологии. Этот синтез генетики и эволюционного учения явился качественным скачком как в развитии самой генетики, так и современной эволюционной теории. Этот скачок ознаменовал собой создание нового центра системы биологического познания и переходбиологии на современный неклассический уровень ее развития. СТЭ часто называют общей теорией эволюции, представляющей собой совокупность эволюционных идей Ч. Дарвина, главным образом, естественного отбора с современными результатами исследований в области наследственности и изменчивости.

Основные идеи СТЭ были заложены русским генетиком С. Четвериковым еще в 1926 г. в трудах по популярной генетике. Эти идеи были поддержаны и развиты американскими генетиками Р. Фишером, С. Райтом, английским биологом и генетиком Д. Холдейном и современным русским генетиком Н. Дубининым (1906–1998).

Основной предпосылкой для синтеза генетики с теорией эволюции стали биометрические и физико-математические подходы к анализу эволюции, хромосомная теория наследственности, эмпирические исследования изменчивости природных популяций и др.

Опорная точка СТЭ – представление о том, что элементарной составляющей эволюции является не вид(по Дарвину) и не особь (по Ламарку), а популяция. Именно она есть целостная система взаимосвязи организмов, обладающая всеми данными для саморазвития. Отбору подвергаются не какие-нибудь отдельные признаки или особи, а вся популяция, ее генотип. Однако этот отбор осуществляется посредством изменения фенотипических признаков отдельных особей, что приводит к появлению новых признаков при смене биологических поколений.

Элементарной единицей наследственности служит ген. Он представляет собой участок молекулы ДНК (или хромосомы), определяющий развитие определенных признаков организма. Советский генетик Н. В. Тимофеев-Ресовский (1900–1981) сформулировал положение о явлениях и факторах эволюции. Оно заключается в следующем:

Главный определяющий фактор синтетической теории эволюции – естественный отбор, направляющий эволюционный процесс. Чисто биологическое значение особи как организма, давшего потомство, оценивается ее вкладом в генофонд популяции. Объектами отбора в популяции являются фенотипы отдельных особей. Фенотип отдельного организма определяется и формируется на основе реализующейся информации генотипа в изменяющихся условиях среды. Вследствие этого из поколения в поколение отбор по фенотипам приводит к отбору генотипов.

Эволюция является единым процессом. В СТЭ различают два уровня эволюции: микроэволюцию, проходящую на популяционно-видовом уровне за относительно короткое время на ограниченных территориях, и макроэволюцию, проходящую на подвидовом уровне, где проявляются общие закономерности и направления в историческом развитии живого.

Микроэволюция – это совокупность эволюционных процессов, протекающих в популяциях вида, приводящих к изменениям генофондов этих популяций и к образованию новых видов. Она происходит на основе мутационной изменчивости под строгим контролем естественного отбора. Единственным источником появления качественно новых признаков являются мутации. Отбор – это творческий избирательный фактор, направляющий элементарные эволюционные изменения по пути адаптации организмов к изменяющимся условиям среды. На характер процессов микроэволюции оказывают влияние изменения численности популяций (волны жизни), обмен генетической информации между ними, а также изоляция. Микроэволюция приводит либо к изменению всего генофонда вида как целого (филогенетическая эволюция), либо к обособлению их от родительского исходного вида в качестве уже новых форм (видообразование).

Макроэволюция – это эволюционные преобразования, приводящие к изменению более высокого уровня таксонов, чем вид(семейства, отряды, классы). Она не имеет характерных ей механизмов и осуществляется посредством процессов микроэволюции. Постепенно накапливаясь, микроэволюционные процессы получают свое внешнее выражение в явлениях макроэволюции. Макроэволюция есть обобщенная картина эволюционных изменений, наблюдаемая в широкой исторической перспективе. Поэтому только на уровне макроэволюции проявляются общие тенденции, закономерности и направления эволюции живой природы, не поддающиеся наблюдению на микроэволюционном уровне.

Современные представления СТЭ указывают на то, что эволюционные изменения носят случайный и ненаправленный характер, поскольку случайные мутации являются для них исходным материалом. Эволюция идет постепенно и дивергентно через отбор небольших случайных мутаций. При этом новые жизненные формы образуются через крупные наследственные изменения, право на жизнь которых определяется естественным отбором. Медленный и постепенно идущий эволюционный процесс может иметь и скачкообразный характер, связанный с изменениями условий окружающей среды в результате бифуркационных процессов развития нашей планеты.

Синтетическая теория эволюции не является каким-то каноном, застывшей системой теоретических положений. В ее возможном диапазоне формируются новые направления исследований, появляются и будут появляться фундаментальные открытия, способствующие дальнейшему познанию эволюционных процессов живого.

По современным представлениям, важной практической задачей СТЭ является выработка оптимальных способов управления эволюционным процессом в условиях постоянно нарастающего антропогенного давления на окружающую природную среду. Эта теория используется при решении проблем взаимоотношения человека и природы, природы и человеческого общества.

Однако у синтетической теории эволюции есть некоторые спорные моменты и трудности, которые дают почву для возникновения недарвинистских концепций эволюции. К ним относятся, например, теория номогенеза, концепция пунктуализма и некоторые другие.

Теория номогенеза предложена в 1922 г. русским биологом Л. Бергом. Она основана на представлениях о том, что эволюция – это уже запрограммированный процесс реализации внутренних неотъемлемых от живого определенных закономерностей. Живому организму присуща некая внутренняя сила природы, которая всегда действует независимо от внешних условий целенаправленно в сторону усложнения живых структур. В подтверждение этому Л. Берг указывал на некоторые данные по конвергентной и параллельной эволюции некоторых групп растений и животных.

Одной из недавно возникших недарвинистских концепций является пунктуализм. Сторонники этого направления считают, что процесс эволюции идет скачкообразно – путем редких и быстрых скачков, на которые приходится всего 1 % эволюционного времени. Остальные 99 % времени своего существования видпребывает в состоянии стабильности. В крайних случаях скачок к новому виду может совершиться в небольших популяциях, состоящих всего их десяти особей, в течение одного или нескольких поколений. Эта концепция опирается на генетическую базу, заложенную молекулярной генетикой и современной биохимией. Пунктуализм отвергает генетико-популяционную модель видообразования, идею Ч. Дарвина о разновидностях и подвидах как зарождающихся видах. Пунктуализм сосредоточил свое внимание на молекулярной генетике особи как носителя свойств вида. Идея разобщенности макро– и микроэволюции и независимости управляемых ими факторов придает этой концепции определенную ценность.

Вполне вероятно, что в будущем может возникнуть единая теория жизни, объединяющая синтетическую теорию эволюции с недарвинистскими концепциями развития живой природы.


Эволюционная картина мира. Глобальный эволюционизм

Идея развития мира является важнейшей идеей мировой цивилизации. В своих далеких от совершенства формах она начала проникать в естествознание еще в XVIII в. Но уже XIX в. можно смело назвать веком идей эволюции. В это время концепции развития стали проникать в геологию, биологию, социологию и гуманитарные науки. В первой половине XX в. наука признавала эволюцию природы, общества, человека, но философский общий принцип развития еще отсутствовал.

И только к концу XX столетия естествознание приобрело теоретическую и методологическую основу для создания единой модели универсальной эволюции, выявления универсальных законов направленности и движущих сил эволюции природы. Такой основой является теория самоорганизации материи, представляющая синергетику. (Как уже указывалось выше, синергетика – это наука об организации материи.) Концепция универсального эволюционизма, которая вышла на глобальный уровень, связала в единое целое происхождение Вселенной (космогенез), возникновение Солнечной системы и планеты Земля (геогенез), возникновение жизни (биогенез), человека и человеческого общества (антропосоциогенез). Такую модель развития природы называют также глобальным эволюционизмом, поскольку именно она охватывает все существующие и мысленно представляемые проявления материи в едином процессе самоорганизации природы.

Под глобальным эволюционизмом следует понимать концепцию развития Вселенной как развивающегося во времени природного целого. При этом вся история Вселенной, начиная от Большого взрыва и заканчивая возникновением человечества, рассматривается как единый процесс, где космический, химический, биологический и социальный типы эволюции преемственно и генетически тесно взаимосвязаны. Космическая, геологическая и биологическая химия в едином процессе эволюции молекулярных систем отражает их фундаментальные переходы и неизбежность превращения в живую материю. Следовательно, важнейшей закономерностью глобального эволюционизма является направленность развития мирового целого (универсума) на повышение своей структурной организации.

В концепции универсального эволюционизма важную роль играет идея естественного отбора. Здесь новое всегда возникает как результат отбора наиболее эффективных формообразований. Неэффективные новообразования отбраковываются историческим процессом. Качественно новый уровень организации материи «утверждается» историей лишь тогда, когда он оказывается способным вобрать в себя предшествующий опыт исторического развития материи. Эта закономерность особенно ярко проявляется для биологической формы движения, но она свойственна вообще всей эволюции материи.

Принцип глобального эволюционизма основан на понимании внутренней логики развития космического порядка вещей, логики развития Вселенной как единого целого. Для такого понимания важную роль играет антропный принцип. Сущность его в том, что рассмотрение и познание законов Вселенной и ее строения ведется человеком разумным. Природа такова, какова она есть, только потому, что в ней есть человек. Иначе говоря, законы построения Вселенной должны быть таковы, чтобы она непременно когда-нибудь породила наблюдателя; если бы они были иными, Вселенную просто некому было бы познавать. Антропный принцип указывает на внутреннее единство закономерностей исторической эволюции Вселенной и предпосылок возникновения и эволюции живой материи вплоть до антропосоциогенеза.

Парадигма универсального эволюционизма является дальнейшим развитием и продолжением различных мировоззренческих картин мира. Вследствие этого сама идея глобального эволюционизма имеет мировоззренческий характер. Ведущей его целью является установление направленности процессов самоорганизации и развития процессов в масштабе Вселенной. В наше время идея глобального эволюционизма выполняет двоякую роль. С одной стороны он представляет мир как целостность, позволяет осмыслить общие законы бытия в их единстве; с другой стороны – ориентирует современное естествознание на выявление определенных закономерностей эволюции материи на всех структурных уровнях ее организации и на всех этапах ее саморазвития.