Все -аминокислоты, кроме глицина, содержат хиральный -углеродный атом и могут встречаться в виде энантиомеров :

Было доказано, что почти все природные -аминокислоты обладают одной и той же относительной конфигурацией при -углеродном атоме. -Углеродному атому (-)-серина была условно приписана L -конфигурация, а -углеродному атому (+)-серина - D -конфигурация. При этом, если проекция -аминокислоты по Фишеру написана так, что карбоксильная группа расположена сверху, а R - внизу, у L -аминокислоты аминогруппа будет находиться слева, а у D -аминокислоты - справа. Схема Фишера для определения конфигурации аминокислоты применима ко всем -аминокислотам, обладающим хиральным -углеродным атомом.

Из рисунка видно, что L -аминокислота может быть правовращающей (+) или левовращающей (-) в зависимости от природы радикала. Подавляющее большинство -аминокислот, встречающихся в природе, относится к L -ряду. Их энантиоморфы , т.е. D -аминокислоты, синтезируются только микроорганизмами и называются «неприродными» аминокислотами .

Согласно номенклатуре (R,S), большинство «природных» или L-аминокислот имеет S-конфигурацию.

L-Изолейцин и L-треонин, содержащие по два хиральных центра в молекуле, могут быть любыми членами пары диастереомеров в зависимости от конфигурации при -углеродном атоме. Ниже приводятся правильные абсолютные конфигурации этих аминокислот.

КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА АМИНОКИСЛОТ

Аминокислоты - амфотерные вещества, которые могут существовать в виде катионов или анионов. Это свойство объясняется наличием как кислотной (-СООН ), так и основной (-NH 2 ) группы в одной и той же молекуле. В очень кислых растворах NH 2 -группа кислоты протонируется и кислота становится катионом. В сильнощелочных растворах карбоксильная группа аминокислоты депротонируется и кислота превращается в анион.

В твердом состоянии аминокислоты существуют в виде цвиттер-ионов (биполярных ионов, внутренних солей ). В цвиттер-ионах протон переносится от карбоксильной группы к аминогруппе:

Если поместить аминокислоту в среду, обладающую проводимостью, и опустить туда пару электродов, то в кислых растворах аминокислота будет мигрировать к катоду, а в щелочных растворах - к аноду. При некотором значении рН, характерном для данной аминокислоты, она не будет передвигаться ни к аноду, ни к катоду, так как каждая молекула находится в виде цвиттер-иона (несет и положительный, и отрицательный заряд). Это значение рН называется изоэлектрической точкой (pI) данной аминокислоты.

РЕАКЦИИ АМИНОКИСЛОТ

Большинство реакций, в которые аминокислоты вступают в лабораторных условиях (in vitro ), свойственны всем аминам или карбоновым кислотам.

1. образование амидов по карбоксильной группе. При реакции карбонильной группы аминокислоты с аминогруппой амина параллельно протекает реакция поликонденсации аминокислоты, приводящей к образованию амидов. Чтобы предотвратить полимеризацию, аминогруппу кислоты блокируют с тем, чтобы в реакцию вступала только аминогруппа амина. С этой целью используют карбобензоксихлорид (карбобензилоксихлорид, бензилхлорформиат), трет -бутоксикарбоксазид и др. Для реакции с амином карбоксильную группу активируют, воздействуя на нее этилхлорформиатом. Защитную группу затем удаляют путем каталитического гидрогенолиза или действием холодного раствора бромистого водорода в уксусной кислоте.


2. образование амидов по аминогруппе. При ацилировании аминогруппы -аминокислоты образуется амид.


Реакция лучше идет в основной среде, так как при этом обеспечивается высокая концентрация свободного амина.

3. образование сложных эфиров. Карбоксильная группа аминокислоты легко этерифицируется обычными методами. Например, метиловые эфиры получают, пропуская сухой газообразный хлористый водород через раствор аминокислоты в метаноле:


Аминокислоты способны к поликонденсации, в результате которой образуется полиамид. Полиамиды, состоящие из -аминокислот, называются пептидами или полипептидами . Амидная связь в таких полимерах называется пептидной связью . Полипептиды с молекулярной массой не меньше 5000 называют белками . В состав белков входит около 25 различных аминокислот. При гидролизе данного белка могут образовываться все эти аминокислоты или некоторые из них в определенных пропорциях, характерных для отдельного белка.

Уникальная последовательность аминокислотных остатков в цепи, присущая данному белку, называется первичной структурой белка . Особенности скручивания цепей белковых молекул (взаимное расположение фрагментов в пространстве) называются вторичной структурой белков . Полипептидные цепи белков могут соединяться между собой с образованием амидных, дисульфидных, водородных и иных связей за счет боковых цепей аминокислот. В результате этого происходит закручивание спирали в клубок. Эта особенность строения называется третичной структурой белка . Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс (олигопротеин ), состоящий из нескольких полноценных белковых субъединиц. Четвертичная структура определяет степень ассоциации таких мономеров в биологически активном материале.

Белки делятся на две большие группы - фибриллярные (отношение длины молекулы к ширине больше 10) и глобулярные (отношение меньше 10). К фибриллярным белкам относится коллаген , наиболее распространенный белок позвоночных; на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов .

Аминокислоты — это органические амфотерные соединения. Они содержат в составе молекулы две функциональные группы противоположного характера: амино­группу с основными свойствами и карбоксильную группу с кис­лотными свойствами. Аминокислоты реагируют как с кислотами, так и с основаниями:

Н 2 N -СН 2 -СООН + HCl → Сl [Н 3 N-СН 2 -СООН],

Н 2 N -СН 2 -СООН + NaOH → H 2 N-CH 2 -COONa + Н 2 О.

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к ами­ногруппе. При этом образуется внутренняя соль, молекула кото­рой представляет собой биполярный ион:

H 2 N-CH 2 -СООН + Н 3 N -СН 2 -СОO — .

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей общей схемой:

Водные растворы аминокислот имеют нейтральную, щелоч­ную или кислую среду в зависимости от количества функцио­нальных групп. Так, глутаминовая кислота образует кислый рас­твор (две группы -СООН, одна -NH 2), лизин — щелочной (одна группа -СООН, две -NH 2).

Подобно первичным аминам, аминокислоты реагируют с азо­тистой кислотой, при этом аминогруппа превращается в гидроксогруппу, а аминокислота - в гидроксикислоту:

H 2 N-CH(R)-COOH + HNO 2 → HO-CH(R)-COOH + N 2 + H 2 O

Измерение объема выделившегося азота позволяет определить количество аминокислоты (метод Ван-Слайка ).

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир (точнее, в хлороводородную соль эфира):

H 2 N-CH(R)-COOH + R’OH H 2 N-CH(R)-COOR’ + Н 2 О.

Сложные эфиры аминокислот не имеют биполярной структу­ры и являются летучими соединениями.

Важнейшее свойство аминокислот - их способность к кон­денсации с образованием пептидов.

Качественные реакции .

1) Все аминокислоты окисляются нингидрином

с образованием продуктов, окрашенных в сине-фиолетовый цвет. Иминокислота пролин дает с нингидрином желтое окрашивание. Эта реакция может быть использована для количественного опре­деления аминокислот спектрофотометрическим методом.

2) При нагревании ароматических аминокислот с концентри­рованной азотной кислотой происходит нитрование бензольного кольца и образуются соединения, окрашенные в желтый цвет. Эта реакция называется ксантопротеиновой (от греч. ксантос - жел­тый).

Cвойства аминокислот можно разделить на две группы: химические и физические.

Химические свойства аминокислот

В зависимости от соединений, аминокислоты могут проявлять различные свойства.

Взаимодействие аминокислот:

Аминокислоты как амфотерные соединения образуют соли и с кислотами, и со щелочами.

Как карбоновые кислоты аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

Взаимодействие и свойства аминокислот с основаниями :
Образуются соли :

NH 2 -CH 2 -COOH + NaOH NH 2 -CH 2 -COONa + H2O

Натриевая соль + 2-аминоуксусной кислоты Натриевая соль аминоуксусной кислоты (глицина) + вода

Взаимодействие со спиртами :

Аминокислоты могут реагировать со спиртами при наличии газообразного хлороводорода, превращаясь в сложный эфир . Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

NH 2 -CH 2 -COOH + CH 3 OH NH 2 -CH 2 -COOCH 3 + H 2 O.

Метиловый эфир / 2-аминоуксусной кислоты /

Взаимодействие с аммиаком :

Образуются амиды :

NH 2 -CH(R)-COOH + H-NH 2 = NH 2 -CH(R)-CONH 2 + H 2 O

Взаимодействие аминокислот с сильными кислотами:

Получаем соли:

HOOC-CH 2 -NH 2 + HCl → Cl (или HOOC-CH 2 -NH 2 *HCl)

Таковы основные химические свойства аминокислот.

Физические свойства аминокислот

Перечислим физические свойства аминокислот :

  • Бесцветные
  • Имеют кристаллическую форму
  • Большинство аминокислот со сладким привкусом, но в зависимости от радикала (R) могут быть горькими или безвкусными
  • Хорошо растворяются в воде, но плохо растворяются во многих органических растворителях
  • Аминокислоты имеют свойство оптической активности
  • Плавятся с разложением при температуре выше 200°C
  • Нелетучие
  • Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток

1.Аминокислоты проявляют амфотерные свойства и кислот и аминов, а также специфические свойства, обусловленные совместным присутствием указанных групп. В водных растворах АМК существуют в виде внутренних солей (биполярных ионов). Водные растворы моноаминомонокарбоновых кислот на лакмус нейтральны, т.к. в их молекулах содержится равное число -NН 2 - и -СООН групп. Эти группы взаимодействуют между собой с образованием внутренних солей:

Такая молекула имеет в двух местах противоположные заряды: положительный NН 3 + и отрицательный на карбоксиле –СОО - . В связи с этим внутренняя соль АМК имеет название биполярного иона или Цвиттер–иона (Zwitter – гибрид).

Биполярный ион в кислой среде ведет себя как катион, так как подавляется диссоциация карбоксильной группы; в щелочной среде – как анион. Существуют значения рН специфические для каждой аминокислоты, в которой количество анионных форм в растворе равно количеству катионных форм. Значение рН при котором общий заряд молекулы АМК равен 0, называется изоэлектрической точкой АМК (pI АК).

Водные растворы моноаминодикарбоновых кислот обладают кислой реакцией среды:

HООС-СH 2 -СH-СOOH « - OOC-CH 2 -CH–COO - + H +

Изоэлектрическая точка моноаминодикарбоновых кислот находится в кислой среде и такие АМК называют кислыми.

Диаминомонокарбоновые кислоты обладают в водных растворах основными свойствами (участие воды в процессе диссоциации показывать обязательно):

NH 2 -(CH 2) 4 -CH-COOH + H 2 O « NH 3 + -(CH 2) 4 -CН–COO - + OH -

Изоэлектрическая точка диаминомонокарбоновых кислот находится в при рН>7 и такие АМК называют основными.

Являясь биполярными ионами, аминокислоты проявляют амфотерные свойства: они способны образовывать соли как с кислотами, так и с основаниями:

Взаимодействие с соляной кислотой HCl приводит к образованию соли:

R-CH-COOH + HCl ® R-CH-COOH

NH 2 NH 3 + Сl -

Взаимодействие с основанием приводит к образованию соли:

R-CH(NH 2)-COOH + NaOH ® R-CH(NH 2)-COONa + H 2 O

2. Образование комплексов с металлами – хелатный комплекс. Строение медной соли гликокола (глицина) можно изобразить следующей формулой:

Почти вся имеющаяся в организме человека медь (100 мг) связана с белками (аминокислотами) в виде этих устойчивых клешневидных соединений.

3. Подобно другим кислотам аминокислоты образуют сложные эфиры, галоген ангидриды, амиды.

4. Реакции декарбоксилирования протекают в организме при участии специальных ферментов декарбоксилаз: получающиеся при этом амины (триптамин, гистамин, серотинин) называются биогенными аминами и являются регуляторами ряда физиологических функций человеческого организма.

5. Взаимодействие с формальдегидом (альдегидами)

R-CH-COOH + H 2 C=О ® R-CH-COOH

Формальдегид связывает NН 2 – группу, -СООН группа остается свободной и может быть оттитрована щелочью. Поэтому данная реакция используется для количественного определения аминокислот (метод Сёренсена).

6. Взаимодействие с азотистой кислотой приводит к образованию гидроксикислот и выделению азота. По объему выделившегося азота N 2 определяют его количественное содержание в исследуемом объекте. Эта реакция применяется для количественного определения аминокислот (метод Ван–Слайка):

R-CH-COOH + HNO 2 ® R-CH-COOH + N 2 + H 2 O

Это один из способов дезаминирования АМК вне организма

7. Ацилирование аминокислот. Аминогруппу АМК можно ацилировать хлорангидридами и ангидридами кислот уже при комнатной температуре.

Продуктом записанной реакции является ацетил-α-аминопропионовая кислота.

Ацильные производные АМК широко используются при изучении последовательности их в белках и в синтезе пептидов (защита аминогруппы).

8.Специфические свойства, реакции, связанные с наличием и взаимным влиянием амино- и карбоксильной групп - образование пептидов. Общим свойством a-АМК является процесс поликонденсации , приводящий к образованию пептидов. В результате этой реакции формируются амидные связи по месту взаимодействию карбоксильной группы одной АМК и аминогруппы другой АМК. Другими словами, пептиды – это амиды, образующиеся в результате взаимодействия аминогрупп и карбоксилов аминокислот. Амидная связь в таких соединениях называется пептидной связью (разобрать строение пептидной группы и пептидной связи: трехцентровая р,p-сопряженная система)

В зависимости от числа аминокислотных остатков в молекуле различают ди-, три-, тетрапептиды и т.д. вплоть до полипептидов (до 100 остатков АМК). Олигопептиды содержат от 2 до 10 остатков АМК, белки - более100 остатков АМК.В общем виде полипептидную цепь можно представить схемой:

H 2 N-CH-CO-NH-CH-CO-NH-CH-CO-... -NH-CH-COOH

Где R 1 , R 2 , … R n – радикалы аминокислот.

Понятие о белках.

Наиболее важными биополимерами аминокислот являются белки – протеины. В организме человека насчитывается около 5млн. различных белков, которые входят в состав кожи, мышц, крови и других тканей. Белки (протеины) получили свое название от греческого слова «protos» - первый, важнейший. Белки выполняют ряд важнейших функций в организме: 1. Строительная функция; 2. Транспортная функция; 3. Защитная функция; 4. Каталитическая функция; 5. Гормональная функция; 6. Питательная функция.

Все природные белки образуются из мономеров аминокислот. При гидролизе белков образуется смесь АМК. Этих АМК – 20.

4. Иллюстративный материал: презентация

5. Литература:

Основная литература:

1. Биоорганическая химия: учебник. Тюкавкина Н.А., Бауков Ю.И. 2014г.

  1. Сейтембетов Т.С. Химия: учебник - Алматы: ТОО"ЭВЕРО", 2010. - 284 с
  2. Болысбекова С. М. Химия биогенных элементов: учебное пособие - Семей, 2012. - 219 с. : ил
  3. Веренцова Л.Г. Неорганическая,физическая и коллоидная химия: учебное пособие - Алматы: Эверо, 2009. - 214 с. : ил.
  4. Физическая и коллоидная химия /Под ред.А.П.Беляева.- М.: ГЭОТАР МЕДиа, 2008
  5. Веренцева Л.Г. Неорганическая, физическая и коллоидная химия,(проверочные тесты) 2009

Дополнительная литература:

  1. Равич-Щербо М.И., Новиков В.В. Физическая и коллоидная химия. М. 2003.

2. Слесарев В.И. Химия. Основы химии живого. С-Пб.: Химиздат, 2001

3. Ершов Ю.А. Общая химия. Биофизическая химия. Химия биогенных элементов. М.: ВШ, 2003.

4. Асанбаева Р.Д., Илиясова М.И. Теоретические основы строения и реакционной способности биологически важных органических соединений. Алматы, 2003.

  1. Руководство к лабораторным занятиям по биоорганической химии под ред. Н.А. Тюкавкиной. М., Дрофа,2003.
  2. Глинка Н.Л. Общая химия. М.,2003.
  3. Пономарев В.Д. Аналитическая химия ч.1,2 2003

6. Контрольные вопросы (обратная связь):

1. Что преопределяет структуру полипептидной цепи в целом?

2. К чему приводит денатурация белка?

3. Что называют изоэлектрической точкой?

4. Какие аминокислоты называются незаменимыми?

5. Каким же образом белки образуются в нашем организме?


Похожая информация.


Аминокислоты содержат амино - и карбоксильную группы и проявляют все свойства, характерные для соединений с такими функциональными группами. При написании реакций аминокислот пользуются формулами с неионизированными амино- и карбоксигруппами.

1)реакции по аминогруппе. Аминогруппа в аминокислотах проявляет обычные свойства аминов: амины являются основаниями, а в реакциях выступают в роли нуклеофилов.

1. Реакция аминокислот как основания. При взаимодействии аминокислоты с кислотами образуются аммонийные соли:


хлоргидрат глицина, хлороводородная соль глицина

2. Действие азотистой кислоты. При действии азотистой кислоты образуются гидроксикислоты и выделяется азот и вода:

Эту реакцию используют для количественного определения свободных аминных групп в аминокислотах, а также и в белках.

3.Образование N - ацильных производных, реакция ацилирования.

Аминокислоты реагируют с ангидридами и галогенангидридами кислот, образуя N - ацильные производные аминокислот:

Бензиловый эфир натриевая соль N карбобензоксиглицин - хлормуравьиной глицина

Ацилирование - один из способов защиты аминогруппы. N-ацильные производные имеют большое значение при синтезе пептидов, так как N-ацилпроизводные легко гидролизуются с образованием свободной аминогруппы.

4.Образование оснований Шиффа. При взаимодействии a - аминокислот с альдегидами образуются замещенные имины (основания Шиффа) через стадию образования карбиноламинов:


аланин формальдегид N-метилольное производное аланина

5.Реакция алкилирования. Амииногруппа в a -аминокислоте алкилируется с образованием N – алкилпроизводных:

Наибольшее значение имеет реакция с 2,4 - динитрофторбензолом. Получаемые динитрофенильные производные (ДНФ-производные) используются при установлении аминокислотной последовательности в пептидах и белках. Взаимодействие a- аминокислот с 2,4-динитрофторбензолом является примером реакции нуклеофильного замещения в бензольном ядре. За счет наличия в бензольном кольце двух сильных электроноакцепторных групп галоген становится подвижным и вступает в реакцию замещения:




2,4 – динитро -

фторбензол N - 2,4 - динитрофенил - a - аминокислота

(ДНФБ) ДНФ - производные a - аминокислот

6.Реакция с фенилизотиоцианатом. Эта реакция широко используется при установлении строения пептидов. Фенилизотиоцианат является производным изотиоциановой кислоты H-N=C=S. Взаимодействие a - аминокислот с фенилизотиоцианатом протекает по механизму реакции нуклеофильного присоединения. В образовавшемся продукте далее осуществляется внутримолекулярная реакция замещения, приводящая к образованию циклического замещенного амида: фенилтиогидантоин.

Циклические соединения получаются с количественным выходом и представляют собой фенильные производные тиогидантоина (ФТГ - производные) - аминокислот. ФТГ - производные различаются строением радикала R.


Кроме обычных солей a- аминокислоты могут образовывать в определенных условиях внутрикомплексные соли с катионами тяжелых металлов. Для всех a - аминокислот очень характерны красиво кристаллизующиеся, интенсивно окрашенные в синий цвет внутрикомплексные (хелатные) соли меди):
Этиловый эфир аланина

Образование сложных эфиров - один из методов защиты карбоксильной группы в синтезе пептидов.

3.Образование галогенангидридов. При действии на a- аминокислоты с защищенной аминогруппой оксидихлоридом серы (тионилхлоридом) или оксид-трихлоридом фосфора (хлорокисью фосфора) образуются хлорангидриды:

Получение галогенангидридов - один из способов активации карбоксильной группы в пептидном синтезе.

4.Получение ангидридов a - аминокислот. Галогенангидриды обладают очень высокой реакционной способностью, что снижает селективность реакции при их использовании. Поэтому более часто используемый способ активации карбоксильной группы в синтезе пептидов - это превращение ее в ангидридную. Ангидриды по сравнению с галогенангидридами кислот обладают меньшей активностью. При взаимодействии a- аминокислоты, имеющей защищенную аминогруппу, с этиловым эфиром хлормуравьиной кислоты(этилхлорформиатом) образуется ангидридная связь:

5. Декарбоксилирование. a - Аминокислоты, имеющие две электроноакцепторные группы при одном и том же атоме углерода, легко декарбоксилируются. В лабораторных условиях это осуществляется при нагревании аминокислот с гидроксидом бария.Эта реакция протекает в организме при участии ферментов декарбоксилаз с образованием биогенных аминов:


нингидрин

Отношение аминокислот к нагреванию. При нагревании a- аминокислот образуются циклические амиды, называемые дикетопиперазинами:

Дикетопиперазин


g - и d - Аминокислоты легко отщепляют воду и циклизуются с образованием внутренних амидов, лактамов:

g - лактам (бутиролактам)

В тех случаях, когда амино - и карбоксильная группы разделены пятью и более углеродными атомами, при нагревании происходит поликонденсация с образованием полимерных полиамидных цепей с отщеплением молекулы воды.