Науке к технике. Вода, столь широко распространенная я природе, всегда содержит растворенные вещества. В пресной воде рек и озер их мало, в то время как в морской воде содержится около 3.6% растворенных солей.

В первичном океане (во время появления жизни на Земле) массовая доля солей, по предположениям, была низка, около 1 %.

Именно в этом растворе впервые развились живые организмы, и из ятого рнстнора они получили ноны и молекулы, необходимые дли их роста и жизни... С течением времени живые организмы риз пинались и изменялись. ЧТО позволило им покинуть водную среду и перейти на сушу и затем подняться н воздух. Они приобрели эту способность, сохранин и своих организмах водный раствор в виде жидкостей, содержащих необходимый запас ионов и молекул» - вот так оценивает роль растворов в возникновении и развитии жизни на Земле известный американский химик, лауреат Нобелевской премии Лайнус Полинг Внутри нас, в каждой вашей клеточке - воспоминание о первичном океане, в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.
В каждом живом организме бесконечно течет по сосудам - артериям, венам и капиллярам - волшебный раствор, составляющий основу крови, массовая доля солей в нем такая же, как в первичном океане. - 0,0%. Сложные физико-химические процессы, происходящие в организмах человека и животных, также протекают в растворах. Усвоение нищи связано с переводом питательных веществ в раствор. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Многие технологические процессы в химической и других отраслях промышленности, например получения соды, удобрений, кислот, металлов, бумаги, протекают в растворах. Изучение свойств растворов занимает очень важное место в современной науке. Так что же такое раствор?

Отличие раствора от других смесей в том. что частицы составных частей распределяются в нем равномерно, и в любом микрообъеме такой смеси состав одинаков.

Поэтому под растворами понимали однородные смеси, состоящие из двух или более однородных частей. Это представление исходило пз физической теории растворов.

Сторонники физической теории растворов, которую развивали Вант Гофф, Лррениус и Оствальд, считали, что процесс растворения является результатом диффузии , то есть проникновения, растворенного вещества в промежутки между молекулами воды.

В противоположность представлениям физической теории растворов. Д. И. Менделеев и сторонники химической теории растворов доказывали, что растворение является результатом химического взаимодействия растворенного вещества с молекулами воды. Поэтому правильнее (точнее) определять раствор как однородную систему, состоящую из частиц растворенною вещества, растворителя и продуктов их взаимодействия.

В результате химического взаимодействия растворенного вещества с водой образуются соединения гидраты. О химическом взаимодействии говорят такие признаки химических реакций, как тепловые явления при растворении. Например, вспомните, что растворение серной кислоты в воде протекает с выделением такого большого количества теплоты, что раствор может закипеть, а потому льют кислоту в воду (а не наоборот). Растворение других веществ, например хлорида натрия, нитрата аммония, сопровождается поглощением теплоты.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

В обычной неассоциированной жидкости, например в такой, как бензин, молекулы свободного скользят одна вокруг другой. В воде же они скорее катятся, чем скользят. Молекулы воды, как известно, соединены между собой водородными связями, поэтому прежде чем произойдет какое-либо смещение, нужно разорвать хотя бы одну из этих связей. Эта особенность и определяет вязкость воды.

Диэлектрической постоянной воды называется ее способность нейтрализовать притяжение, существующее между электрическими зарядами. Растворение твердых веществ в воде - сложный процесс, который обусловливается взаимодействием частиц растворенного вещества и частиц воды.

При изучении строения веществ с помощью рентгеновских лучей было установлено, что большинство твердых тел имеет кристаллическое строение, т. е. частицы вещества расположены в пространстве в определенном порядке. Частицы одних веществ расположены так, будто бы они находятся в углах крошечного куба, частицы других - в углах, центре и в середине сторон тетраэдра, призмы, пирамиды и пр. Каждая из этих форм является мельчайшей ячейкой более крупных кристаллов аналогичной формы. У одних веществ в узлах их кристаллической решетки находятся молекулы (у большинства органических соединений), у других (например, у неорганических солей) - ионы, т. е. частицы, состоящие из одного или нескольких атомов, имеющих положительные или отрицательные заряды. Силами, удерживающими ионы в определенном, ориентированном в пространстве порядке кристаллической решетки, являются силы электростатического притяжения разноименно заряженных ионов, составляющих кристаллическую решетку.

Если, например, растворить в воде хлористый натрий, то положительно заряженные ионы натрия и отрицательно заряженные ионы хлора будут отталкиваться друг от друга.

Это отталкивание происходит потому, что у воды высокая диэлектрическая постоянная, т. е. выше, чем у любой другой жидкости. Она уменьшает силу взаимного притяжения между противоположно заряженными ионами в 100 раз. Причину сильно нейтрализующего действия воды нужно искать в расположении ее молекул. Водородный атом в них не делит поровну свой электрон с тем атомом кислорода, к которому он прикреплен. Этот электрон всегда ближе к кислороду, чем к водороду. Поэтому водородные атомы заряжены положительно, а кислородные - отрицательно.

Когда какое-либо вещество, растворяясь, распадается на ионы, кислородные атомы притягиваются к положительным ионам, а водородные - к отрицательным. Молекулы воды, окружающие положительный ион, направляют к нему свои кислородные атомы, а молекулы, которые окружают отрицательный ион, устремляются к нему своими атомами водорода. Таким образом молекулы воды образуют как бы решетку, которая отделяет ионы друг от друга и нейтрализует их притяжение (рис. 12). Чтобы оторвать друг от друга ионы, находящиеся в кристаллической решетке, и перевести их в раствор, необходимо преодолеть силу притяжения этой решетки. При растворении солей такой силой является притяжение ионов решетки молекулами воды, характеризуемое так называемой энергией гидратации. Если при этом энергия гидратации по сравнению с энергией кристаллической решетки будет достаточно велика, то ионы будут отрываться от последней и перейдут в раствор.

Взаимосвязь между молекулами воды и ионами, оторванными от решетки, в растворе не только не ослабевает, а становится еще теснее.

Как уже отмечалось, в растворе ионы окружаются и разобщаются молекулами воды, которые, ориентируясь на них своими противоположными по заряду частями, образуют так называемую гидратную оболочку (рис. 13). Величина этой оболочки различна у разных ионов и зависит от заряда иона, его размера и, кроме того, от концентрации ионов в растворе.

В продолжение нескольких лет физико-химики изучали воду в основном как растворитель электролитов. В результате получено много сведений об электролитах, но очень мало о самой воде. Как ни странно, но только в последние годы появились работы, посвященные изучению отношения воды к веществам, которые в ней практически не растворяются.

Наблюдалось немало поразительных явлений. Например, однажды труба, по которой шел природный газ при t = 19°С, оказалась забитой, мокрым снегом с водой. Стало ясным, что дело здесь не в температуре, а в других свойствах воды. Возник ряд вопросов: почему вода замерзла при столь высокой температуре, как вода могла соединиться с веществами, которые в ней нерастворимы.

Эта тайна еще не была раскрыта, когда обнаружилось, что даже такие благородные газы, как аргон и ксенон, которые не вступают ни в какие химические реакции, могут связываться с водой, образуя некоторое подобие соединений.

Рис. 13. Разъединение ионов Na + и С1 - полярными молекулами воды, образующими вокруг них гидратную оболочку.

Интересные результаты по растворимости в воде метана были получены в Иллинойсе. Молекулы метана не образуют ионов в воде и не воспринимают водородных связей; притяжение между ними и молекулами воды очень слабое. Однако метан все же, хотя и плохо, растворяется в воде, и его диссоциированные молекулы образуют с ней соединения - гидраты, в которых несколько молекул воды присоединены к одной молекуле метана. При этой реакции высвобождается в 10 раз больше тепла, чем при растворении метана в гексане (метан растворяется в гексане лучше, чем в воде).

Факт растворения метана в воде представляет большой интерес. Ведь по объему молекула метана вдвое больше молекулы воды. Чтобы метан растворился в воде, между ее молекулами должны образоваться довольно большие «дырки». Для этого требуется значительная затрата энергии, большая чем для испарения воды (примерно 10 000 калорий на каждый моль). Откуда же появляется столько энергии? Силы притяжения между молекулами метана и воды слишком слабы, они не могут дать столько энергии. Поэтому существует другая возможность: структура поды изменяется в присутствии метана. Предположим, что молекула растворенного метана окружена оболочкой из 10-20 молекул воды. При образовании таких ассоциаций молекул выделяется теплота. В пространстве, занятом молекулой метана, исчезают силы взаимного притяжения между молекулами воды, а значит, и внутреннее давление. В таких условиях, как мы видели, вода замерзает при температуре выше нуля.

Вот почему молекулы, находящиеся в промежутке между метаном и водой, могут кристаллизоваться, что и произошло в описанном выше случае. Замороженные гидраты могут поглощаться раствором и выделяться из него. Эта теория известна как теория айсбергов. Практически, как показывают исследования, все непроводящие вещества, которые подвергались испытанию, образуют устойчивые кристаллические гидраты. В то же время у электролитов такая тенденция выражена слабо. Все это ведет к совершенно новому пониманию растворимости.

Считалось, что растворение электролитов происходит в результате действия сил притяжения. Теперь же доказано, что растворение неэлектролитов происходит не благодаря силам притяжения между этими веществами и водой, а в результате недостаточного притяжения между ними. Вещества, не распадающиеся на ионы, соединяются с водой, так как они устраняют внутреннее давление и тем самым способствуют появлению кристаллических образований.

Чтобы лучше понять образование таких гидратов, целесообразно рассмотреть их молекулярную структуру.

Доказано, что образующиеся гидраты имеют кубическую структуру (решетку) в отличие от гексагональной структуры льда. Дальнейшие работы исследователей показали что гидрат может иметь две кубические решетки: в одной из них промежутки между молекулами равны 12, в другой - 17 А. В меньшей решетке 46 молекул воды, в большей 136. Дырки молекул газа в меньшей решетке имеют 12-14 граней, а в большей - 12-16, к тому же они разнятся по своим размерам и заполняются молекулами различной величины, причем могут быть заполнены не все дырки. Такая модель с большой степенью точности объясняет действительное строение гидратов.

Роль таких гидратов в жизненных процессах трудно переоценить. Эти процессы происходят в основном в промежутках между молекулами воды и протеина. Вода при этом имеет сильную тенденцию к кристаллизации, так как в протеиновой молекуле содержится много неионных, или неполярных, групп. Всякий такой гидрат образуется при меньшей плотности, чем лед, поэтому его образование может вести к значительному разрушительному расширению.

Итак, вода - это своеобразное и сложное вещество с определенными и разнообразными химическими свойствами. Она имеет стройную и в то же время меняющуюся физическую структуру.

Развитие всей живой и в значительной части неживой природы неразрывно связано с характерными особенностями воды.

Маргарита Халисова
Конспект занятия «Вода - растворитель. Очищение воды»

Тема : Вода – растворитель . Очищение воды .

Цель : закрепить понимание того, что вещества в воде не исчезают, а растворяются .

Задачи :

1. Выявить вещества, которые растворяются в воде и которые не растворяются в воде .

2. Познакомить со способом очистки воды – фильтрованием .

3. Создать условия для выявления и проверки различных способов очистки воды .

4. Закрепить знания о правилах безопасного поведения при работе с различными веществами.

5. Развивать логическое мышление путем моделирования проблемных ситуаций и их решения.

6. Воспитывать аккуратность и безопасное поведение при работе с различными веществами.

7. Воспитывать интерес к познавательной деятельности, экспериментированию.

Образовательные области :

Познавательное развитие

Социально – коммуникативное развитие

Физическое развитие

Словарная работа :

обогащение : фильтр, фильтрование

активизация : воронка

Предварительная работа : беседы о воде, её роли в жизни человека; проводили наблюдения за водой в детском саду, дома; опыты с водой; рассматривали иллюстрации на тему «Вода » ; знакомились с правилами безопасности во время исследования и экспериментирования; загадывание загадок о воде; чтение художественной литературы, экологические сказки; игры о воде.

Демонстрационно-наглядный материал : кукла в синем костюме «Капелька» .

Раздаточный материал : стаканы пустые, с водой; растворители : сахар, соль, мука, песок, пищевой краситель, растительное масло ; пластмассовые ложечки, воронки, марлевые салфетки, ватные диски, фартуки клеёнчатые, кружки с чаем, лимон, варенье, одноразовые тарелки, клеёнка на столы.

Ход НОД

Воспитатель : - Ребята, прежде чем начать с вами беседу, я хочу загадать вам загадку :

В морях и реках обитает

Но часто по небу летает.

А как наскучит ей летать

На землю падает опять. (вода )

Догадались, о чём будет беседа? Правильно, о воде. Мы уже знаем, что вода – это жидкость .

Давайте вспомним какие свойства воды мы с вами установили с помощью опытов на других занятиях . Перечислите.

Дети :

1. У воды нет запаха .

2. Нет вкуса.

3. Она прозрачная.

4. Бесцветная.

5. Вода принимает форму того сосуда, в который её наливают.

6. Имеет вес.

Воспитатель : - Правильно. А хотите опять поэкспериментировать с водой. Для этого нужно нам ненадолго превратиться в учёных и заглянуть в нашу лабораторию экспериментирования :

Вправо, влево повернись,

В лаборатории окажись.

(дети подходят к мини-лаборатории) .

Воспитатель : - Ребята, посмотрите, кто опять у нас в гостях? И что нового появилось в лаборатории?

Дети : - «Капелька» , внучка деда Зная и красивая коробка.

Хотите узнать что лежит в этой коробке? Отгадайте загадки :

1. Отдельно – я не так вкусна,

Но в пище – каждому нужна (соль)

2. Я бел как снег,

В чести у всех.

В рот попал –

Там и пропал. (сахар)

3. Из меня пекут ватрушки,

И оладьи, и блины.

Если делаете тесто,

Положить меня должны (мука)

4. Жёлтое, а не солнце,

Льётся, а не вода ,

На сковороде пенится,

Брызгается и шипит (масло)

Пищевой краситель – применяется в кулинарии для украшения тортов, покраски яиц.

Песок – для строительства, играть с ним в песочнице.

Дети рассматривают пробирки с веществами.

Воспитатель : - Все эти вещества принесла «Капелька» для того, чтобы мы помогли ей разобраться в том, что произойдёт с водой при взаимодействии с ними.

Воспитатель : - Что нам нужно для того, чтобы начать нашу работу с водой?

Дети : - Фартуки.

(дети надевают клеёнчатые фартуки и подходят к столу, где на подносе стоят стаканы с чистой водой).

Воспитатель : - Давайте вспомним правила, перед тем как начать работу с этими веществами :

Дети :

1. Нельзя пробовать вещества на вкус – есть возможность отравиться.

2. Нюхать надо осторожно, так как вещества могут быть очень едкими и можно обжечь дыхательные пути.

Воспитатель : - Данил покажет, как правильно это делать (направляя запах от стакана ладошкой) .

I. Исследовательская работа :

Воспитатель : - Ребята, как вы думаете, что изменится, если растворить эти вещества в воде ?

Выслушиваю предполагаемый результат детей до смешивания веществ с водой.

Воспитатель : - Давайте проверим.

Предлагаю детям взять каждому стакан с водой.

Воспитатель : - Посмотрите и определите, какая там вода ?

Дети : - Вода прозрачная , бесцветная, без запаха, холодная.

Воспитатель : - Возьмите пробирку с веществом, которое вы выбрали и растворите в стакане с водой , помешивая ложечкой.

Рассматриваем. Выслушиваю ответы детей. Правильно ли они предполагали.

Воспитатель : - Что произошло с сахаром, солью?

Соль и сахар быстро растворяются в воде , вода остаётся прозрачной , бесцветной.

Мука тоже растворяются в воде , но вода становится мутной .

Но после того как вода немного постоит , мука оседает на дно, но раствор продолжает оставаться мутным.

Вода с песком стала грязной, мутной, если больше не мешать, то песок опустился на дно стакана, его видно, т. е. он не растворился .

Порошок пищевого растворителя быстро изменил цвет воды , значит, растворяется хорошо .

Масло не растворяется в воде : оно либо растекается по её поверхности тонкой плёнкой, либо плавает в воде в виде жёлтых капелек.

Вода – растворитель ! Но не все вещества растворяются в ней .

Воспитатель : - Ребята, мы с вами поработали и «Капелька» предлагает нам отдохнуть.

(Дети садятся за другой стол и проводится игра.

Игра : «Угадай напиток на вкус (чай) ».

Чаепитие с разными вкусами : сахаром, вареньем, лимоном.

II Экспериментальная работа.

Подходим к 1 столу.

Воспитатель : - Ребята, а можно ли воду очистить от этих веществ, которые мы растворяли ? Вернуть ей прежнее состояние прозрачности, без осадка. Как это сделать?

Предлагаю взять свои стаканы с растворами и подойти ко 2 столу.

Воспитатель : - Можно её профильтровать. Для этого нужен фильтр. Из чего можно сделать фильтр? Мы сделаем его с помощью марлевой салфетки и ватного диска. Показываю (в воронку вкладываю марлевую салфетку, сложенную в несколько слоёв, ватный диск и ставлю её в пустой стакан).

Делаем фильтры с детьми.

Показываю способ фильтрования, а затем дети сами фильтруют воду с веществом, который они выбрали.

Напоминаю, чтобы дети не торопились, вливали маленькой струйкой раствор в воронку с фильтром. Говорю пословицу : «Поспешишь – людей насмешишь» .

Рассматриваем, что же произошло после фильтрования воды с разными веществами.

Масло удалось отфильтровать быстро, потому что оно не растворилось в воде , на фильтре хорошо видны следы масла. Так же произошло с песком. Практически не отфильтровались вещества, которые хорошо растворились в воде : сахар, соль.

Вода с мукой после фильтрования стала более прозрачной. Большая часть муки осела на фильтре, только совсем маленькие частицы проскользнули сквозь фильтр и оказались в стакане, поэтому вода не совсем прозрачная.

После фильтрования красителя цвет фильтра изменился, но отфильтрованный раствор тоже остался цветным.

Итог НОД :

1. Какие вещества растворяются в воде ? – сахар, соль, краситель, мука.

2. Какие вещества не растворяются в воде – песок , масло.

3. С каким способом очистки воды мы познакомились ? – фильтрование.

4. С помощью чего? – фильтра.

5. Все ли соблюдали правила безопасности? (один пример) .

6. Что интересного (нового) вы сегодня узнали?

Воспитатель : - Вы сегодня узнали что вода – растворитель , проверили какие вещества растворяются в воде и как можно очистить воду от разных веществ.

«Капелька» благодарит вас за оказанную помощь и дарит вам альбом для зарисовки опытов. На этом наши исследования закончены, возвращаемся из лаборатории в группу :

Вправо, влево повернись.

В группе снова очутись.

Литература :

1. А. И. Иванова Экологические наблюдения и эксперименты в детском саду

2. Г. П. Тугушева, А. Е. Чистякова Экспериментальная деятельность детей среднего и старшего дошкольного возраста СПб : Детство-Пресс 2010.

3. Познавательно исследовательская деятельность старших дошкольников - Ребёнок в детском саду №3,4,5 2003год.

4. Исследовательская деятельность дошкольника - Д/в №7 2001год.

5. Экспериментирование с водой и воздухом – Д/В №6 2008год.

6. Экспериментальная деятельность в детском саду – Воспитатель ДОУ №9 2009год.

7. Игры – экспериментирования младшего дошкольникаДошкольная педагогика №5 2010год.

Раствором называется термодинамически устойчивая гомогенная (однофазная) система переменного состава, состоящая из двух или более компонентов (химических веществ). Компонентами, составляющими раствор, являются растворитель и растворенное вещество. Обычно растворителем считается тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, в случае водного раствора соли растворителем является, конечно, вода). Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

Растворы бывают жидкими, твердыми и газообразными.

Жидкие растворы – это растворы солей, сахара, спирта в воде. Жидкие растворы могут быть водными и неводными. Водные растворы – это растворы, в которых растворителем является вода. Неводные растворы – это растворы, в которых растворителями являются органические жидкости (бензол, спирт, эфир и т.д.). Твёрдые растворы – сплавы металлов. Газообразные растворы – воздух и другие смеси газов.

Процесс растворения . Растворение – это сложный физико-химический процесс. При физическом процессе происходит разрушение структуры растворяемого вещества и распределение его частиц между молекулами растворителя. Химический процесс – это взаимодействие молекул растворителя с частицами растворенного вещества. В результате этого взаимодействия образуются сольваты. Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией, процесс образования гидратов – гидратацией. При упаривании водных растворов образуются кристаллогидраты – это кристаллические вещества, в состав которых входит определенное число молекул воды (кристаллизационная вода). Примеры кристаллогидратов: CuSO 4 . 5H 2 O – пентагидрат сульфата меди (II); FeSO 4 . 7H 2 O – гептагидрат сульфата железа (II).

Физический процесс растворения идёт с поглощением энергии, химический – с выделением . Если в результате гидратации (сольватации) выделяется больше энергии, чем ее поглощается при разрушении структуры вещества, то растворение – экзотермический процесс. Выделение энергии происходит при растворении NaOH, H 2 SO 4 , Na 2 CO 3 , ZnSO 4 и других веществ. Если для разрушения структуры вещества надо больше энергии, чем её выделяется при гидратации, то растворение – эндотермический процесс. Поглощение энергии происходит при растворении в воде NaNO 3 , KCl, NH 4 NO 3 , K 2 SO 4 , NH 4 Cl и некоторых других веществ.

Количество энергии, которое выделяется или поглощается при растворении, называется тепловым эффектом растворения .

Растворимостью вещества называется его способность распределяться в другом веществе в виде атомов, ионов или молекул с образованием термодинамически устойчивой системы переменного состава. Количественной характеристикой растворимости является коэффициент растворимости , который показывает, какая максимальная масса вещества может раствориться в 1000 или 100 г воды при данной температуре. Растворимость вещества зависит от природы растворителя и вещества, от температуры и давления (для газов). Растворимость твердых веществ в основном увеличивается при повышении температуры. Растворимость газов с повышением температуры уменьшается, но при повышении давления увеличивается.

По растворимости в воде вещества делят на три группы:

1. Хорошо растворимые (р.). Растворимость веществ больше 10 г в 1000г воды. Например, 2000 г сахара растворяется в 1000 г воды, или в 1 л воды.

2. Малорастворимые (м.). Растворимость веществ от 0,01 г до 10 г в 1000 г воды. Например, 2 г гипса (CaSO 4 . 2 H 2 O) растворяется в 1000 г воды.

3. Практически нерастворимые (н.). Растворимость веществ меньше 0,01 г в 1000 г воды. Например, в 1000 г воды растворяется 1,5 . 10 -3 г AgCl.

При растворении веществ могут образоваться насыщенные, ненасыщенные и пересыщенные растворы.

Насыщенный раствор – это раствор, который содержит максимальное количество растворяемого вещества при данных условиях. При добавлении вещества в такой раствор вещество больше не растворяется.

Ненасыщенный раствор – это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данных условиях. При добавлении вещества в такой раствор вещество еще растворяется.

Иногда удается получить раствор, в котором растворенного вещества содержится больше, чем в насыщенном растворе при данной температуре. Такой раствор называется пересыщенным. Этот раствор получают при осторожном охлаждении насыщенного раствора до комнатной температуры. Пересыщенные растворы очень неустойчивы. Кристаллизацию вещества в таком растворе можно вызвать путем потирания стеклянной палочкой стенок сосуда, в котором находится данный раствор. Этот способ применяется при выполнении некоторых качественных реакций.

Растворимость вещества может выражаться и молярной концентрацией его насыщенного раствора (п.2.2).

Константа растворимости. Рассмотрим процессы, возникающие при взаимодействии малорастворимого, но сильного электролита сульфата бария BaSO 4 с водой. Под действием диполей воды ионы Ba 2+ и SO 4 2 - из кристаллической решетки BaSO 4 будут переходить в жидкую фазу. Одновременно с этим процессом под влиянием электростатического поля кристаллической решетки часть ионов Ba 2+ и SO 4 2 - вновь будет осаждаться (рис.3). При данной температуре в гетерогенной системе, наконец, установится равновесие: скорость процесса растворения (V 1) будет равна скорости процесса осаждения (V 2), т.е.

BaSO 4 ⇄ Ba 2+ + SO 4 2 -

твёрдая раствор

Рис. 3. Насыщенный раствор сульфата бария

Раствор, находящийся в равновесии с твердой фазой BaSO 4 , называется насыщенным относительно сульфата бария.

Насыщенный раствор представляет собой равновесную гетерогенную систему, которая характеризуется константой химического равновесия:

, (1)

где a (Ba 2+) – активность ионов бария; a(SO 4 2-) – активность сульфат-ионов;

a (BaSO 4) – активность молекул сульфата бария.

Знаменатель этой дроби – активность кристаллического BaSO 4 – является постоянной величиной, равной единице. Произведение двух констант дает новую постоянную величину, которую называют термодинамической константой растворимости и обозначают К s °:

К s ° = a(Ba 2+) . a(SO 4 2-). (2)

Эту величину раньше называли произведением растворимости и обозначали ПР.

Таким образом, в насыщенном растворе малорастворимого сильного электролита произведение равновесных активностей его ионов есть величина постоянная при данной температуре.

Если принять, что в насыщенном растворе малорастворимого электролита коэффициент активности f ~1, то активность ионов в таком случае можно заменить их концентрациями, так как а(X ) = f (X ) . С(X ). Термодинамическая константа растворимости К s ° перейдет в концентрационную константу растворимости К s:

К s = С(Ba 2+) . С(SO 4 2-), (3)

где С(Ba 2+) и С(SO 4 2 -) – равновесные концентрации ионов Ba 2+ и SO 4 2 - (моль/л) в насыщенном растворе сульфата бария.

Для упрощения расчётов обычно пользуются концентрационной константой растворимости К s , принимая f (Х ) = 1 (приложение 2).

Если малорастворимый сильный электролит образует при диссоциации несколько ионов, то в выражение К s (или К s °) входят соответствующие степени, равные стехиометрическим коэффициентам:

PbCl 2 ⇄ Pb 2+ + 2 Cl - ; K s = С (Pb 2+) . С 2 (Cl -);

Ag 3 PO 4 ⇄ 3 Ag + + PO 4 3 - ; K s = С 3 (Ag +) . С (PO 4 3 -).

В общем виде выражение концентрационной константы растворимости для электролита A m B n ⇄ m A n+ + n B m - имеет вид

K s = С m (A n+) . С n (B m -),

где С - концентрации ионов A n+ и B m - в насыщенном растворе электролита в моль/л.

Величиной K s принято пользоваться только в отношении электролитов, растворимость которых в воде не превышает 0,01 моль/л.

Условия образования осадков

Предположим, с - фактическая концентрация ионов трудно растворимого электролита в растворе.

Если С m (A n +) . С n (B m -) > K s , то произойдет образование осадка, т.к. раствор становится пересыщенным.

Если С m (A n +) . С n (B m -) < K s , то раствор является ненасыщенным и осадок не образуется.

Свойства растворов . Ниже рассмотрим свойства растворов неэлектролитов. В случае электролитов в приведённые формулы вводится поправочный изотонический коэффициент.

Если в жидкости растворено нелетучее вещество, то давление насыщенного пара над раствором меньше давления насыщенного пара над чистым растворителем. Одновременно с понижением давления пара над раствором наблюдается изменение его температуры кипения и замерзания; температуры кипения растворов повышаются, а температуры замерзания понижаются по сравнению с температурами, характеризующими чистые растворители.

Относительное понижение температуры замерзания или относительное повышение температуры кипения раствора пропорционально его концентрации.

Задача: показать детям растворимость и нерастворимость в воде различных веществ.

Материалы: мука, сахарный песок, речной песок, пищевой краситель, стиральный порошок, стаканы с чистой водой, ложки или палочки, подносы, картинки с изображением представленных веществ.

Описание. Перед детьми на подносах стаканы с водой, палочки, ложки и вещества в различных емкостях. Дети рассматривают воду, вспоминают ее свойства. Как вы думаете, что произойдет, если в воду добавить сахарный песок? Дед Знай добавляет сахар, перемешивает, и все вместе наблюдают, что изменилось. Что произойдет, если мы добавим в воду речной песок? До-бавляет к воде речной песок, перемешивает. Изменилась ли вода? Стала ли она мутной или осталась прозрачной? Растворился ли речной песок?

Что произойдет с водой, если мы добавим в нее пищевую краску? Добавляет краску, перемешивает. Что изменилось? (Вода изменила цвет.) Растворилась ли краска? (Краска растворилась и изменила цвет воды, вода стала непрозрачной.)

Растворится ли в воде мука? Дети добавляют в воду муку, перемешивают. Какой стала вода? Мутной или прозрачной? Растворилась ли мука в воде?

Растворится ли в воде стиральный порошок? Добавляется стиральный порошок, перемешивается. Растворился ли порошок в воде? Что вы заметили необычного? Окуните в смесь пальцы и проверьте, осталась ли она на ощупь такой же, как чистая вода? (Вода стала мыльной.) Какие вещества у нас растворились в воде? Какие вещества не растворились в воде?

(Результаты фиксируются на фланелеграфе.)

ЦВЕТНОЙ ПЕСОК

Задачи: познакомить детей со способом изготовления цветного песка (перемешав с цветным мелом); научить пользоваться теркой.

Материалы: цветные мелки, песок, прозрачная емкость, мелкие предметы, 2 мешочка, мелкие терки, миски, ложки (палочки), небольшие банки с крышками.

Описание. К детям прилетел галчонок Любознайка. Он просит детей отгадать, что у него в мешочках. Дети пробуют определить на ощупь.(В одном мешочке-песок, в другом-кусочки мела.) Воспитатель открывает мешочки, дети проверяют предположения. Воспитатель с детьми рассматривают содержимое мешочков. Что это? Какой песок? Что с ним можно делать? Какого цвета мел? Какой на ощупь? Можно ли его сломать? Для чего он нужен? Галчонок спрашивает: «Может ли песок быть цветным? Как его сделать цветным? Что будет, если мы песок перемешаем с мелом? Как сделать, чтобы мел был таким же сыпучим, как песок?» Галчонок хвастается, что у него есть инструмент для превращения мела в мелкий порошок.

Показывает детям терку. Что это? Как ею пользоваться? Дети по примеру галчонка берут миски, терки и трут мел. Что получилось? Какого цвета у тебя порошок? (Галчонок спрашивает каждого ребенка) Как теперь сделать песок цветным? Дети насыпают песок в миску и перемешивают его ложками или палочками. Дети рассматривают цветной песок. Как мы можем использовать этот песок? (Делать красивые картинки.)

Галчонок предлагает поиграть. Показывает прозрачную емкость, заполненную разноцветными слоями песка, и спрашивает детей: «Как можно быстро найти спрятанный предмет?» Дети предлагают свои варианты. Воспитатель объясняет, что перемешивать песок руками, палочкой или ложкой нельзя, и показывает способ выталкивания из песка предмета путем встряхивания сосуда.

Что произошло с разноцветным песком? Дети отмечают, что таким образом мы и предмет быстро нашли, и песок перемешали.

Дети прячут в прозрачные банки мелкие предметы, засыпают их слоями разноцветного песка, закрывают банки крышками и показывают галчонку, как они быстро находят спрятанный предмет и перемешивают песок. Галчонок на прощание дарит детям коробочку с цветным мелом.

ИГРЫ С ПЕСКОМ

Задачи: закрепить представления детей о свойствах песка, развить любознательность, наблюдательность, активизировать речь детей, развить конструктивные умения.

Материалы: большая детская песочница, в которой оставлены следы от пластмассовых животных, игрушки-животные, совки, детские грабли, лейки, план участка для прогулок данной группы.

Описание. Дети выходят на улицу и осматривают площадку для прогулок. Воспитатель обращает их внимание на необычные следы в песочнице. Почему следы так хорошо видны на песке? Чьи это следы? Почему вы так думаете?

Дети находят пластмассовых животных и проверяют свои предположения: берут игрушки, ставят лапами на песок и ищут такой же отпечаток. А какой след останется от ладошки? Дети оставляют свои следы. Чья ладошка больше? Чья меньше? Проверяют прикладывая.

Воспитатель в лапках медвежонка обнаруживает письмо, достает из него план участка. Что изображено? Какое место обведено красным кружком? (Песочница.) Что там может быть еще интересного? Наверное, какой-то сюрприз? Дети, погрузив руки в песок, отыскивают игрушки. Кто это?

У каждого животного есть свой дом. У лисы... (нора), у медведя... (берлога), у собачки... (конура). Давайте построим для каждого животного свой дом из песка. Из какого песка лучше всего строить? Как сделать его влажным?

Дети берут лейки, поливают песок. Куда пропадает водичка? Почему песок стал влажным? Дети строят домики и играют с животными.