Все известные на сегодняшний день химические элементы, расположенные в таблице Менделеева, подразделяются условно на две большие группы: металлы и неметаллы. Для того чтобы они стали не просто элементами, а соединениями, химическими веществами, могли вступать во взаимодействие друг с другом, они должны существовать в виде простых и сложных веществ.

Именно для этого одни электроны стараются принять, а другие - отдать. Восполняя друг друга таким образом, элементы и образуют различные химические молекулы. Но что позволяет им удерживаться вместе? Почему существуют вещества такой прочности, разрушить которую неподвластно даже самым серьезным инструментам? А другие, наоборот, разрушаются от малейшего воздействия. Все это объясняется образованием различных типов химической связи между атомами в молекулах, формированием кристаллической решетки определенного строения.

Виды химических связей в соединениях

Всего можно выделить 4 основных типа химических связей.

  1. Ковалентная неполярная. Образуется между двумя одинаковыми неметаллами за счет обобществления электронов, формирования общих электронных пар. В образовании ее принимают участие валентные неспаренные частицы. Примеры: галогены, кислород, водород, азот, сера, фосфор.
  2. Ковалентная полярная. Образуется между двумя разными неметаллами либо между очень слабым по свойствам металлом и слабым по электроотрицательности неметаллом. В основе также общие электронные пары и перетягивание их к себе тем атомом, сродство к электрону которого выше. Примеры: NH 3, SiC, P 2 O 5 и прочие.
  3. Водородная связь. Самая нестойкая и слабая, формируется между сильно электроотрицательным атомом одной молекулы и положительным другой. Чаще всего это происходит при растворении веществ в воде (спирта, аммиака и так далее). Благодаря такой связи могут существовать макромолекулы белков, нуклеиновых кислот, сложных углеводов и так далее.
  4. Ионная связь. Формируется за счет сил электростатического притяжения разнозаряженных ионов металлов и неметаллов. Чем сильнее различие по данному показателю, тем ярче выражен именно ионный характер взаимодействия. Примеры соединений: бинарные соли, сложные соединения - основания, соли.
  5. Металлическая связь, механизм образования которой, а также свойства, будут рассмотрены дальше. Формируется в металлах, их сплавах различного рода.

Существует такое понятие, как единство химической связи. В нем как раз и говорится о том, что нельзя каждую химическую связь рассматривать эталонно. Они все лишь условно обозначенные единицы. Ведь в основе всех взаимодействий лежит единый принцип - электронностатическое взаимодействие. Поэтому ионная, металлическая, ковалентная связь и водородная имеют единую химическую природу и являются лишь граничными случаями друг друга.

Металлы и их физические свойства

Металлы находятся в подавляющем большинстве среди всех химических элементов. Это объясняется их особыми свойствами. Значительная часть из них была получена человеком ядерными реакциями в лабораторных условиях, они являются радиоактивными с небольшим периодом полураспада.

Однако большинство - это природные элементы, которые формируют целые горные породы и руды, входят в состав большинства важных соединений. Именно из них люди научились отливать сплавы и изготавливать массу прекрасных и важных изделий. Это такие, как медь, железо, алюминий, серебро, золото, хром, марганец, никель, цинк, свинец и многие другие.

Для всех металлов можно выделить общие физические свойства, которые объясняет схема образования металлической связи. Какие же это свойства?

  1. Ковкость и пластичность. Известно, что многие металлы можно прокатать даже до состояния фольги (золото, алюминий). Из других получают проволоку, металлические гибкие листы, изделия, способные деформироваться при физическом воздействии, но тут же восстанавливать форму после прекращения его. Именно эти качества металлов и называют ковкостью и пластичностью. Причина этой особенности - металлический тип связи. Ионы и электроны в кристалле скользят относительно друг друга без разрыва, что и позволяет сохранять целостность всей структуры.
  2. Металлический блеск. Это также объясняет металлическая связь, механизм образования, характеристики ее и особенности. Так, не все частицы способны поглощать или отражать световые волны одинаковой длины. Атомы большинства металлов отражают коротковолновые лучи и приобретают практически одинаковую окраску серебристого, белого, бледно-голубоватого оттенка. Исключениями являются медь и золото, их окраска рыже-красная и желтая соответственно. Они способны отражать более длинноволновое излучение.
  3. Тепло- и электропроводность. Данные свойства также объясняются строением кристаллической решетки и тем, что в ее образовании реализуется металлический тип связи. За счет "электронного газа", движущегося внутри кристалла, электрический ток и тепло мгновенно и равномерно распределяются между всеми атомами и ионами и проводятся через металл.
  4. Твердое агрегатное состояние при обычных условиях. Здесь исключением является лишь ртуть. Все остальные металлы - это обязательно прочные, твердые соединения, равно как и их сплавы. Это также результат того, что в металлах присутствует металлическая связь. Механизм образования такого типа связывания частиц полностью подтверждает свойства.

Это основные физические характеристики для металлов, которые объясняет и определяет именно схема образования металлической связи. Актуален такой способ соединения атомов именно для элементов металлов, их сплавов. То есть для них в твердом и жидком состоянии.

Металлический тип химической связи

В чем же ее особенность? Все дело в том, что такая связь формируется не за счет разнозаряженных ионов и их электростатического притяжения и не за счет разности в электроотрицательности и наличия свободных электронных пар. То есть ионная, металлическая, ковалентная связь имеют несколько разную природу и отличительные черты связываемых частиц.

Всем металлам присущи такие характеристики, как:

  • малое количество электронов на (кроме некоторых исключений, у которых их может быть 6,7 и 8);
  • большой атомный радиус;
  • низкая энергия ионизации.

Все это способствует легкому отделению внешних неспаренных электронов от ядра. При этом свободных орбиталей у атома остается очень много. Схема образования металлической связи как раз и будет показывать перекрывание многочисленных орбитальных ячеек разных атомов между собой, которые в результате и формируют общее внутрикристаллическое пространство. В него подаются электроны от каждого атома, которые начинают свободно блуждать по разным частям решетки. Периодически каждый из них присоединяется к иону в узле кристалла и превращает его в атом, затем снова отсоединяется, формируя ион.

Таким образом, металлическая связь - это связь между атомами, ионами и свободными электронами в общем кристалле металла. Электронное облако, свободно перемещающееся внутри структуры, называют "электронным газом". Именно им объясняется большинство металлов и их сплавов.

Как конкретно реализует себя металлическая химическая связь? Примеры можно привести разные. Попробуем рассмотреть на кусочке лития. Даже если взять его размером с горошину, атомов там будут тысячи. Вот и представим себе, что каждый из этих тысяч атомов отдает свой валентный единственный электрон в общее кристаллическое пространство. При этом, зная электронное строения данного элемента, можно увидеть количество пустующих орбиталей. У лития их будет 3 (р-орбитали второго энергетического уровня). По три у каждого атома из десятков тысяч - это и есть общее пространство внутри кристалла, в котором "электронный газ" свободно перемещается.

Вещество с металлической связью всегда прочное. Ведь электронный газ не позволяет кристаллу рушиться, а лишь смещает слои и тут же восстанавливает. Оно блестит, обладает определенной плотностью (чаще всего высокой), плавкостью, ковкостью и пластичностью.

Где еще реализуется металлическая связь? Примеры веществ:

  • металлы в виде простых структур;
  • все сплавы металлов друг с другом;
  • все металлы и их сплавы в жидком и твердом состоянии.

Конкретных примеров можно привести просто неимоверное количество, ведь металлов в периодической системе более 80!

Металлическая связь: механизм образования

Если рассматривать его в общем виде, то основные моменты мы уже обозначили выше. Наличие свободных и электронов, легко отрывающихся от ядра вследствие малой энергии ионизации, - вот главные условия для формирования данного типа связи. Таким образом, получается, что она реализуется между следующими частицами:

  • атомами в узлах кристаллической решетки;
  • свободными электронами, которые были у металла валентными;
  • ионами в узлах кристаллической решетки.

В итоге - металлическая связь. Механизм образования в общем виде выражается следующей записью: Ме 0 - e - ↔ Ме n+ . Из схемы очевидно, какие частицы присутствуют в кристалле металла.

Сами кристаллы могут иметь разную форму. Это зависит от конкретного вещества, с которым мы имеем дело.

Типы кристаллов металлов

Данная структура металла или его сплава характеризуется очень плотной упаковкой частиц. Ее обеспечивают ионы в узлах кристалла. Сами по себе решетки могут быть разных геометрических форм в пространстве.

  1. Объемноцентрическая кубическая решетка - щелочные металлы.
  2. Гексагональная компактная структура - все щелочноземельные, кроме бария.
  3. Гранецентрическая кубическая - алюминий, медь, цинк, многие переходные металлы.
  4. Ромбоэдрическая структура - у ртути.
  5. Тетрагональная - индий.

Чем и чем ниже он располагается в периодической системе, тем сложнее его упаковка и пространственная организация кристалла. При этом металлическая химическая связь, примеры которой можно привести для каждого существующего металла, является определяющей при построении кристалла. Сплавы имеют очень разнообразные организации в пространстве, некоторые из них до сих пор еще не до конца изучены.

Характеристики связи: ненаправленность

Ковалентная и металлическая связь имеют одну очень ярко выраженную отличительную черту. В отличие от первой, металлическая связь не является направленной. Что это значит? То есть электронное облако внутри кристалла движется совершенно свободно в его пределах в разных направлениях, каждый из электронов способен присоединяться к абсолютно любому иону в узлах структуры. То есть взаимодействие осуществляется по разным направлениям. Отсюда и говорят о том, что металлическая связь - ненаправленная.

Механизм ковалентной связи подразумевает образование общих электронных пар, то есть облаков перекрывания атомов. Причем происходит оно строго по определенной линии, соединяющей их центры. Поэтому говорят о направленности такой связи.

Насыщаемость

Данная характеристика отражает способность атомов к ограниченному или неограниченному взаимодействию с другими. Так, ковалентная и металлическая связь по этому показателю опять же являются противоположностями.

Первая является насыщаемой. Атомы, принимающие участие в ее образовании, имеют строго определенное количество валентных внешних электронов, принимающих непосредственное участие в образовании соединения. Больше, чем есть, у него электронов не будет. Поэтому и количество формируемых связей ограничено валентностью. Отсюда насыщаемость связи. Благодаря данной характеристике большинство соединений имеет постоянный химический состав.

Металлическая и водородная связи, напротив, ненасыщаемые. Это объясняется наличием многочисленных свободных электронов и орбиталей внутри кристалла. Также роль играют ионы в узлах кристаллической решетки, каждый из которых может стать атомом и снова ионом в любой момент времени.

Еще одна характеристика металлической связи - делокализация внутреннего электронного облака. Она проявляется в способности небольшого количества общих электронов связывать между собой множество атомных ядер металлов. То есть плотность как бы делокализуется, распределяется равномерно между всеми звеньями кристалла.

Примеры образования связи в металлах

Рассмотрим несколько конкретных вариантов, которые иллюстрируют, как образуется металлическая связь. Примеры веществ следующие:

  • цинк;
  • алюминий;
  • калий;
  • хром.

Образование металлической связи между атомами цинка: Zn 0 - 2e - ↔ Zn 2+ . Атом цинка имеет четыре энергетических уровня. Свободных орбиталей, исходя из электронного строения, у него 15 - 3 на р-орбитали, 5 на 4 d и 7 на 4f. Электронное строение следующее: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 0 4d 0 4f 0 , всего в атоме 30 электронов. То есть две свободные валентные отрицательные частицы способны перемещаться в пределах 15 просторных и никем не занятых орбиталей. И так у каждого атома. В итоге - огромное общее пространство, состоящее из пустующих орбиталей, и небольшое количество электронов, связывающих всю структуру воедино.

Металлическая связь между атомами алюминия: AL 0 - e - ↔ AL 3+ . Тринадцать электронов атома алюминия располагаются на трех энергетических уровнях, которых им явно хватает с избытком. Электронное строение: 1s 2 2s 2 2p 6 3s 2 3p 1 3d 0 . Свободных орбиталей - 7 штук. Очевидно, что электронное облако будет небольшим по сравнению с общим внутренним свободным пространством в кристалле.

Металлическая связь хрома. Данный элемент особый по своему электронному строению. Ведь для стабилизации системы происходит провал электрона с 4s на 3d орбиталь: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 4p 0 4d 0 4f 0 . Всего 24 электрона, из которых валентных получается шесть. Именно они уходят в общее электронное пространство на образование химической связи. Свободных орбиталей 15, то есть все равно намного больше, чем требуется для заполнения. Поэтому хром - также типичный пример металла с соответствующей связью в молекуле.

Одним из самых активных металлов, реагирующих даже с обычной водой с возгоранием, является калий. Чем объясняются такие свойства? Опять же во многом - металлическим типом связи. Электронов у этого элемента всего 19, но вот располагаются они аж на 4 энергетических уровнях. То есть на 30 орбиталях разных подуровней. Электронное строение: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 0 4p 0 4d 0 4f 0 . Всего два с очень низкой энергией ионизации. Свободно отрываются и уходят в общее электронное пространство. Орбиталей для перемещения на один атом 22 штуки, то есть очень обширное свободное пространство для "электронного газа".

Сходство и различие с другими видами связей

В целом данный вопрос уже рассматривался выше. Можно только обобщить и сделать вывод. Главными отличительными от всех других типов связи чертами именно металлических кристаллов являются:

  • несколько видов частиц, принимающих участие в процессе связывания (атомы, ионы или атом-ионы, электроны);
  • различное пространственное геометрическое строение кристаллов.

С водородной и ионной связью металлическую объединяет ненасыщаемость и ненаправленность. С ковалентной полярной - сильное электростатическое притяжение между частицами. Отдельно с ионной - тип частиц в узлах кристаллической решетки (ионы). С ковалентной неполярной - атомы в узлах кристалла.

Типы связей в металлах разного агрегатного состояния

Как мы уже отмечали выше, металлическая химическая связь, примеры которой приведены в статье, образуется в двух агрегатных состояниях металлов и их сплавов: твердом и жидком.

Возникает вопрос: какой тип связи в парах металлов? Ответ: ковалентная полярная и неполярная. Как и во всех соединениях, находящихся в виде газа. То есть при длительном нагревании металла и перевода его из твердого состояния в жидкое связи не рвутся и кристаллическая структура сохраняется. Однако когда речь заходит о переводе жидкости в парообразное состояние, кристалл разрушается и металлическая связь преобразуется в ковалентную.

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

Механизм металлической связи

Во всех узлах кристаллической решётки расположены положительные ионы металла . Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены.

Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. Если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

Другие свойства

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой - металлической связью.


Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всему образцу с большой скоростью.

Становится понятной и электрическая проводимость металлов. Если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала: этот поток электронов, движущихся в одном направлении, и представляет собой всем знакомый электрический ток.

Цель урока

  • Дать представление о металлической химической связи.
  • Научится записывать схемы образования металлической связи.
  • Научится четко разделять виды химических связей .

Задачи урока

  • Узнать, как взаимодействуют между собой атомы металлов
  • Определить, каким образом влияет металлическая связь на свойства образованных ею веществ

Основные термины:

  • Электроотрицательность - химическое свойство атома, которое является количественной характеристикой способности атома в молекуле притягивать к себе общие электронные пары.
  • Химическая связь -явление взаимодействия атомов, из-за перекрытия электронных облаков взаимодействующих атомов.
  • Металическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.
  • Ковалентная связь - химическая связь, образуется с помощью перекрытия пары валентных электроннов. Обеспечивающие связь электроны называются общей электронной парой. Бывает 2-х видов: полярная и не полярная.
  • Ионная связь - химическая связь,которая образуется между атомами неметалов, при которой общая электронная пара переходит к атому с большей электроотрицательностью. В итоге атомы притягиваются, как разноименно заряженные тела.
  • Водородная связь - химическая связь между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

    ХОД УРОКА

Металлическая химическая связь

Определите элементы ставшие не в ту «очередь».Почему?
Ca Fe P K Al Mg Na
Какие элементы из таблицы Менделеева называются металлами?
Сегодня мы узнаем какие свойства есть у металлов, и как они зависят от связи которая образуется между йонами металов.
Для начала вспомним месторасполажения металлов в периодической системе?
Металлы как мы все знаем обычно существуют не в виде изолированных атомов, а в форме куска, слитка или металлического изделия. Выясним, что собирает атомы металла в целостном объеме.

На примере мы видим кусок золота. И кстати уникальным металлом является золото. С помощью ковки из чистого золота можно сделать фольгу толщиной 0,002 мм! такой нончайший лист фольги почти прозрачный и имеет зелёный оттенок просвете. В итоге из слитка золота размером со спичечный коробок можно получить тонкую фольгу, которая покроет площадь тенисного корта.
В химическом отношении все металы характеризуются легкостью отдачи валентных электронов, и как следствие образование положительно заряженных ионов и проявлять только положительную окисленность. Именно поэтому металы в свободном состоянии являются востановителями. Общей особенностью атомов металов являются большие размеры по отношению к неметалам. Внешние эллектроны находятся на больших расстояниях от ядра и поэтому слабо с ним связаны, следовательно легко отрываются.
Атомы большего колличества металлов на внешнем уровне имеют маленькое колличество электронов – 1,2,3. Эти электроны легко отрываются и атомы металлов становятся ионами.
Ме0 – n ē ⇆ Men+
атомы метала – електроны внешн. орбиты ⇆ ионы метала

Таким образом оторвавшиеся электроны могут перемещатся от одного иона к другому тоесть становятся свободными, и как бы связывая их в единое целое.Поэтому получается, что все оторвавшиеся электроны евляются общими, так как нельзя понять какой эллектрон принадлежит какому из атомов металла.
Электроны могут обьединятся с катионами, тогда временно образуются атомы, от которых сопять потом отрываются электроны. Этот процесс происходит постоянно и без остановки. Получается, что в объеме металла атомы непрерывно превращаются в ионы и наоборот. При этом небольшое число общих электронов связывает большое число атомов и ионов металла. Но важно, что число электронов в металле равно общему заряду положительных ионов, тоесть получается, что в целом металл остается электронейтральным.
Такой процесс представляют как модель - ионы металла находятся в облаке из электронов. Такое электронное облако называют «электронным газом».

Вот например на данной картинке мы видим как электрончики двигаются среди неподвижныхйонов внутри кристалической решетки метала.

Рис. 2. Движение электроннов

Для того чтоб лучше понять, что такое Электронный газ и как он ведет себя в химических реакциях разных металлов посмотрим интересное видео. (золото в этом видео упоминается исключительно как цвет!)

Теперь мы можем записать определение: металлическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.

Давайте сравним все виды связей которые мы знаем И закрепим, чтобы лучше различать их, для этого посмотрим видео.

Металлическая связь бывает не только в чистых металах но также характерна для смесей разных металов, сплавов в разных агрегатных состояниях.
Металлическая связь имеет важное значение и обуславливает основные свойства металлов
- электропроводность – беспорядочное движение електронов в объеме металла. Но при небольшой разности потенциалов, чтобы электроны двигались упорядоченно. Металами с лучшей проводимостью являются Ag, Cu, Au, Al.
- пластичность
Связи между слоями металла не очень значительны, это позволяет перемещать слои под нагрузкой (деформировать металл не ломая его). Наилучше деформирующиеся металы (мягкие)Au, Ag, Cu.
- металлический блеск
Электронный газ отражает почти все световые лучи. Вот почему чистые металлы так сильно блестят и чаще всего имеют сенрый или белый цвет. Металы являющиеся наилучшими отражателями Ag, Cu, Al, Pd, Hg

Домашнее задание

Упражнение 1
Выбрать формулы веществ которые имеют
а) ковалентную полярную связь: Cl2, KCl, NH3, O2, MgO, CCl4, SO2;
б) с ионную связь: HCl, KBr, P4, H2S, Na2O, CO2, CaS.
Упражнение 2
Вычеркните лишнее:
а) CuCl2, Al, MgS
б) N2, HCl, O2
в) Ca, CO2, Fe
г) MgCl2, NH3, H2

Металлический натрий , металлический литий, и остальные щелочные металлы меняют цвет пламени. Металлический литий и его соли придают огню --красный цвет, металлический натрий и соли натрия - жёлтый, металлический калий и его соли - фиолетовый, а рубидия и цезия - тоже фиолетовый, но более светлый.

Рис. 4. Кусок металического лития

Рис. 5. Окрашивание пламени металами

Литий (Li). Металлический литий, как и металлический натрий, относится к щелочным металлам. Оба растворяются в воде. Натрий, растворяясь в воде образует едкий натр –очень сильную кислоту. При растворении щелочных металов в воде выделяется много тепла и газа (водорода). Такие металы желательно не трогать руками, так как можно обжечся.

Список литературы

1. Урок по теме «Металлическая химическая связь», учителя химии Тухта Валентины Анатольевны МОУ "Есеновичская СОШ"
2. Ф. А. Деркач "Химия", - научно-методическое пособие. – Киев, 2008.
3. Л. Б. Цветкова «Неорганическая химия» – 2-е издание, исправленное и дополненное. – Львов, 2006.
4. В. В. Малиновский, П. Г. Нагорный «Неорганическая химия» - Киев, 2009.
5. Глинка Н.Л. Общая химия. – 27 изд./ Под. ред. В.А. Рабиновича. – Л.: Химия, 2008. – 704 с.ил.

Отредактировано и выслано Лисняк А.В.

Над уроком работали:

Тухта В.А.

Лисняк А.В.

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Химия 8 класс

Вы узнали, как взаимодействуют между собой атомы элементов-металлов и элементов-неметаллов (электроны переходят от первых ко вторым), а также атомы элементов-неметаллов между собой (неспаренные электроны внешних электронных слоёв их атомов объединяются в общие электронные пары). Теперь мы познакомимся с тем, как взаимодействуют между собой атомы элементов-металлов. Металлы обычно существуют не в виде изолированных атомов, а в виде слитка или металлического изделия. Что удерживает атомы металла в едином объёме?

Атомы большинства элементов-металлов на внешнем уровне содержат небольшое число электронов - 1, 2, 3. Эти электроны легко отрываются, а атомы превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому, связывая их в единое целое.

Разобраться, какой электрон принадлежал какому атому, просто невозможно. Все оторвавшиеся электроны стали общими. Соединяясь с ионами, эти электроны временно образуют атомы, потом снова отрываются и соединяются уже с другим ионом и т. д. Бесконечно происходит процесс, который можно изобразить схемой:

Следовательно, в объёме металла атомы непрерывно превращаются в ионы и наоборот. Их так и называют атом-ионами.

На рисунке 41 схематически изображено строение фрагмента металла натрия. Каждый атом натрия окружён восемью соседними атомами.

Рис. 41.
Схема строения фрагмента кристаллического натрия

Оторвавшиеся внешние электроны свободно движутся от одного образовавшегося иона к другому, соединяя, будто склеивая, ионный остов натрия в один гигантский металлический кристалл (рис. 42).

Рис. 42.
Схема металлической связи

Металлическая связь имеет некоторое сходство с ковалентной, так как основана на обобществлении внешних электронов. Однако при образовании ковалентной связи обобществляются внешние неспаренные электроны только двух соседних атомов, в то время, как при образовании металлической связи в обобществлении этих электронов участвуют все атомы. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической, как правило, пластичны, электропроводны и имеют металлический блеск.

На рисунке 43 изображена древняя золотая фигурка оленя, которой уже более 3,5 тыс. лет, но она не потеряла характерного для золота - этого самого пластичного из металлов - благородного металлического блеска.


рис. 43. Золотой олень. VI в. до н. э.

Металлическая связь характерна как для чистых металлов, так и для смесей различных металлов - сплавов, находящихся в твёрдом и жидком состояниях. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью (например, парами натрия заполняют лампы жёлтого света для освещения улиц больших городов). Пары металлов состоят из отдельных молекул (одноатомных и двухатомных).

Вопрос о химических связях - центральный вопрос науки химии. Вы познакомились с начальными представлениями о типах химической связи. В дальнейшем вы узнаете много интересного о природе химической связи. Например, что в большинстве металлов, кроме металлической связи, есть ещё и ковалентная связь, что существуют и другие типы химических связей.

Ключевые слова и словосочетания

  1. Металлическая связь.
  2. Атом-ионы.
  3. Обобществлённые электроны.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Металлическая связь имеет черты сходства с ковалентной связью. Сравните эти химические связи между собой.
  2. Металлическая связь имеет черты сходства с ионной связью. Сравните эти химические связи между собой.
  3. Как можно повысить твёрдость металлов и сплавов?
  4. По формулам веществ определите тип химической связи в них: Ва, ВаВr 2 , НВr, Вr 2 .

Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

Типы взаимодействия в химии

Типы химической связи можно представить в виде следующей таблицы:

Характеристика ионной связи

Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

Примеры образования

Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

Na 0 - 1 е = Na + (катион)

Cl 0 + 1 е = Cl — (анион)

В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

Ba 0 - 2 е = Ba 2+

S 0 + 2 е = S 2-

Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

Металлическая химическая связь

Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

Можно привести следующие примеры:

Mg - 2е <-> Mg 2+

Cs - e <-> Cs +

Ca - 2e <-> Ca 2+

Fe - 3e <-> Fe 3+

Ковалентная: полярная и неполярная

Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

Ковалентные разделяются по кратности на:

  • простые или одинарные;
  • двойные;
  • тройные.

Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

  • неполярную;
  • полярную.

Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

Свойства и характеристика ковалентности

Основные характеристики ковалентной связи:

  • Длина определяется расстоянием между ядрами взаимодействующих атомов.
  • Полярность определяется смещением электронного облака к одному из атомов.
  • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
  • Насыщаемость определяется способностью образовывать ограниченное число связей.
  • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
  • Энергия необходимая для разрушения связи, определяющая её прочность.

Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

H· + ·H → H-H молекула имеет одинарную неполярную связь,

O: + :O → O=O молекула имеет двойную неполярную,

Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.