Органических (и неорганических) соединений.

Процесс фотосинтеза выражают суммарным уравнением:

6СО 2 + 6Н 2 О ® С 6 Н 12 О 6 + 6О 2 .

На свету в зеленом растении из предельно окисленных веществ - диокси-да углерода и воды образуются органические вещества, и высво-бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО 2 , но и нитраты или сульфаты, а энергия может быть направлена на различные эндэргонические процессы, в том числе на транспорт веществ.

Общее уравнение фотосинтеза может быть представлено в виде:

12 Н 2 О → 12 [Н 2 ] + 6 О 2 (световая реакция)

6 СО 2 + 12 [Н 2 ] → С 6 Н 12 О 6 + 6 Н 2 О (темновая реакция)

6 СО 2 + 12 Н 2 О → С 6 Н 12 О 6 + 6 Н 2 О + 6 О 2

или в расчете на 1 моль СО 2:

СО 2 + Н 2 О СН 2 О + О 2

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО 2 . Методами меченых атомов было получено, что Н 2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды.

Доказательством образования О 2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н 2 О, а не разложении СО 2 . Способные к фотосинтетической ассимиляции СО 2 бактерии (кроме цианобактерий) используют в качестве восстановителей Н 2 S, Н 2 , СН 3 и другие, и не выделяют О 2 .

Такой тип фотосинтеза называется фоторедукцией:

СО 2 + Н 2 S → [СН 2 О] + Н 2 О + S 2 или

СО 2 + Н 2 А → [СН 2 О] + Н 2 О + 2А,

где Н 2 А - окисляет субстрат, донор водорода (у высших растений - это Н 2 О), а 2А - это О 2 . Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО 2 , а [ОН] участвует в реакциях освобождения О 2 и образования Н 2 О.

Солнечная энергия при участии зеленых растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединений.

Для осуществления этого уникального процесса в ходе эволюции был создан фо-тосинтетический аппарат, содержащий:

I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и

2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии.


Прежде всего эторедокс-энергия, свя-занная с образованием высоковосстановленных соединений, энергия электрохимического потенциала, обусловленная образованием электрических и про-тонных градиентов на сопрягающей мембране (Δμ H +), энергия фосфатных свя-зей АТФ и других макроэргических соединений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии могут быть использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма , т.е. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет «космическую» роль зеленых растений, о которой писал великий русский физиолог К.А. Тимирязев .

Процесс фотосинтеза представляет собой очень сложную систему по про-странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте-за включает различные по скорости реакции - от 10 -15 с (в фемтосекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю-чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посевов.

Принципиальная схема фотосинтеза.

Весь сложный комплекс реакций, со-ставляющих процесс фотосинтеза, может быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно-сти процессов, происходящих на каждой стадии:

I стадия - физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон-ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 - 10 -9 с. Первичные ре-акции поглощения энергии локализованы в светособирающих антенных комп-лексах (ССК).

II стадия - фотохимическая. Реакции локализованы в реакционных цент-рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек-тронного возбуждения пигмента (П (РЦ)) реакционного центра используется для разделения зарядов. При этом электрон с высоким энергетическим потен-циалом передается на первичный акцептор А, и образующаяся система с разделенными зарядами (П (РЦ) - А) содержит определенное количество энер-гии уже в химической форме. Окисленный пигмент П (РЦ) восстанавливает свою структуру за счет окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу-ющее жестких условий структурной организации системы. В настоящее время молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель-ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П * , А -) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. Поэтому необходи-ма быстрая дальнейшая стабилизация образованных восстановленных продук-тов с высоким энергетическим потенциалом, что осуществляется на следу-ющей, III стадии фотосинтеза.

III стадия - реакции транспорта электронов. Цепь переносчиков с раз-личной величиной окислительно-восстановительного потенциала (Е n ) обра-зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех основных функциональных ком-плексов - фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b 6 f -комп-лекса, что обеспечивает высокую скорость электронного потока и возмож-ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов-ленные продукты: восстановленный ферредоксин (ФД восст) и НАДФН, а так-же богатые энергией молекулы АТФ, которые используются в темновых реак-циях восстановления СО 2 , составляющих IV стадию фотосинтеза.

IV стадия - «темновые» реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте-за, в форме которых запасается солнечная энергия, поглощенная и преобразо-ванная в «световых» реакциях фотосинтеза. Скорость «темновых» энзиматических реакций - 10 -2 - 10 4 с.

Таким образом, весь ход фотосинтеза осуществляется при взаимодействии трех пото-ков - потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

Наименование параметра Значение
Тема статьи: Суммарное уравнение фотосинтеза
Рубрика (тематическая категория) Образование

Фотосинтез - ϶ᴛᴏ процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединœений.

Процесс фотосинтеза выражают суммарным уравнением:

6СО 2 + 6Н 2 О ® С 6 Н 12 О 6 + 6О 2 .

На свету в зелœеном растении из предельно окисленных веществ - диокси­да углерода и воды образуются органические вещества, и высво­бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО 2 , но и нитраты или сульфаты, а энергия должна быть направлена на различные эндэргонические процессы, в т.ч. на транспорт веществ.

Общее уравнение фотосинтеза должна быть представлено в виде:

12 Н 2 О → 12 [Н 2 ] + 6 О 2 (световая реакция)

6 СО 2 + 12 [Н 2 ] → С 6 Н 12 О 6 + 6 Н 2 О (темновая реакция)

6 СО 2 + 12 Н 2 О → С 6 Н 12 О 6 + 6 Н 2 О + 6 О 2

или в расчете на 1 моль СО 2:

СО 2 + Н 2 О СН 2 О + О 2

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО 2 . Методами меченых атомов было получено, что Н 2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды. Доказательством образования О 2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н 2 О, а не разложении СО 2 . Способные к фотосинтетической ассимиляции СО 2 бактерии (кроме цианобактерий) используют в качестве восстановителœей Н 2 S, Н 2 , СН 3 и другие, и не выделяют О 2 . Такой тип фотосинтеза принято называть фоторедукцией:

СО 2 + Н 2 S → [СН 2 О] + Н 2 О + S 2 или

СО 2 + Н 2 А → [СН 2 О] + Н 2 О + 2А,

где Н 2 А – окисляет субстрат, донор водорода (у высших растений - ϶ᴛᴏ Н 2 О), а 2А - ϶ᴛᴏ О 2 . Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО 2 , а [ОН] участвует в реакциях освобождения О 2 и образования Н 2 О.

Солнечная энергия при участии зелœеных растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединœений. Для осуществления этого уникального процесса в ходе эволюции был создан фо­тосинтетический аппарат, содержащий: I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определœенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и 2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии. Прежде всœего эторедокс-энергия, свя­занная с образованием высоковосстановленных соединœений, энергия электрохимического потенциала, обусловленная образованием электрических и про­тонных градиентов на сопрягающей мембране (Δμ H +),энергия фосфатных свя­зей АТФ и других макроэргических соединœений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии бывают использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма, ᴛ.ᴇ. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет ʼʼкосмическуюʼʼ роль зелœеных растений, о которой писал великий русский физиологК.А. Тимирязев.

Процесс фотосинтеза представляет собой очень сложную систему по про­странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте­за включает различные по скорости реакции - от 10 -15 с (в фемтосœекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю­чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посœевов.

Принципиальная схема фотосинтеза. Весь сложный комплекс реакций, со­ставляющих процесс фотосинтеза, должна быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно­сти процессов, происходящих на каждой стадии:

I стадия – физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон­ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 - 10 -9 с. Первичные ре­акции поглощения энергии локализованы в светособирающих антенных комп­лексах (ССК).

II стадия - фотохимическая. Реакции локализованы в реакционных цент­рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек­тронного возбуждения пигмента (П (РЦ)) реакционного центра используется для разделœения зарядов. При этом электрон с высоким энергетическим потен­циалом передается на первичный акцептор А, и образующаяся система с разделœенными зарядами (П (РЦ) - А) содержит определœенное количество энер­гии уже в химической форме. Окисленный пигмент П (РЦ) восстанавливает свою структуру за счёт окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу­ющее жестких условий структурной организации системы. Сегодня молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель­ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П * , А -) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. По этой причине необходи­ма быстрая дальнейшая стабилизация образованных восстановленных продук­тов с высоким энергетическим потенциалом, что осуществляется на следу­ющей, III стадии фотосинтеза.

III стадия - реакции транспорта электронов. Цепь переносчиков с раз­личной величиной окислительно-восстановительного потенциала (Е n ) обра­зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех базовых функциональных ком­плексов - фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b 6 f -комп­лекса, что обеспечивает высокую скорость электронного потока и возмож­ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов­ленные продукты: восстановленный ферредоксин (ФД восст) и НАДФН, а так­же богатые энергией молекулы АТФ, которые используются в темновых реак­циях восстановления СО 2 , составляющих IV стадию фотосинтеза.

IV стадия - ʼʼтемновыеʼʼ реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте­за, в форме которых запасается солнечная энергия, поглощенная и преобразо­ванная в ʼʼсветовыхʼʼ реакциях фотосинтеза. Скорость ʼʼтемновыхʼʼ энзиматических реакций – 10 -2 - 10 4 с.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, весь ход фотосинтеза осуществляется при взаимодействии трех пото­ков - потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

Суммарное уравнение фотосинтеза - понятие и виды. Классификация и особенности категории "Суммарное уравнение фотосинтеза" 2017, 2018.

Фотосинтетическое фосфорилирование было обнаружено Д. Арноном с сотрудниками и другими исследователями в опытах с изолированными хлоропластами высших растений и с бесклеточными препаратами из различных фотосинтезирующих бактерий и водорослей. При фотосинтезе происходят два типа фотоосинтетического фосфорилирования: циклическое и нециклическое. При обоих видах фотофосфорилирования синтез АТР из ADP и неорганического фосфата происходит на этапе передачи электронов от цитохрома b6 к цитохрому f.

Синтез АТР осуществляется при участии АТР-азного комплекса, «вмонтированного» в белково-липидную мембрану тилакоида с eе внешней стороны. Согласно теории Митчелла, так же, как и в случае окислительного фосфорилирования в митохондрии, находящаяся в мембране тилакоида цепь переноса электронов функционирует как «протонный насос», создавая градиент концентрации протонов. Однако в данном случае происходящий при поглощении света перенос электронов вызывает их перемещение снаружи во внутрь тилакоида и возникающий трансмембранный потенциал (между внутренней и внешней поверхностью мембраны) обратен тому, который образуется в мембране митохондрии. Электростатическая энергия и энергия градиента протонов используется для синтеза АТР ATP-синтетазой.

При нециклическом фотофосфорилировании электроны, поступившие от воды и соединения Z к фотосистеме 2, а затем к фотосистеме 1, направляются к промежуточному соединению Х, а затем используются на восстановление NADP+ до NADPH; их путь здесь заканчивается. При циклическом фотофосфорилировании электроны, поступившие от фотосистемы 1 к соединению Х, направляются снова к цитохрому b6 и от него далее к цитохрому У, участвуя на этом последнем этапе своего пути в синтезе АТР из ADP и неорганического фосфата. Таким образом, при нециклическом фотофосфорилировании перемещение электронов сопровождается синтезом АТР и NADPH. При циклическом фотофосфорилировании происходит только синтез АТР, а NADPH не образуется. АТР, образовавшийся в процессе фотофосфорилирования и дыхания, используется не только при восстановлении фосфоглицериновой кислоты до углевода, но и в других синтетических реакциях - при синтезе крахмала, белков, липидов, нуклеиновых кислот и пигментов. Он также служит источником энергии для процессов движения, транспорта метаболитов, поддержания ионного баланса и т.д.

Роль пластохинонов в фотосинтезе

В хлоропластах открыты пять форм пластохинонов, обозначаемых буквами А, В, С, D и Е, являющихся производными бензохинона. Так, например, пластохинон А представляет собой 2,З-диметил-5-соланезилбензохинон. Пластохиноны весьма близки по строению к убихинонам (коэнзимам Q), играющим важную роль в процессе переноса электронов при дыхании. Важная роль пластохинонов в процессе фотосинтеза следует из того факта, что если их экстрагировать из хлоропластов петролейным эфиром, то фотолиз воды и фотофосфорилирование прекращаются, но возобновляются после добавки пластохинонов. Каковы детали функциональной взаимосвязи различных пигментов и переносчиков электронов, участвующих в процессе фотосинтеза, - цитохромов, ферредоксина, пластоцианина и пластохинонов, - должны показать дальнейшие исследования. Во всяком случае, каковы бы ни были детали этого процесса, в настоящее время очевидно, что световая фаза фотосинтеза приводит к образованию трех специфических продуктов: NADPH, АТР и молекулярного кислорода.

Какие соединения образуются в результате третьего, темнового этапа фотосинтеза?

Существенные результаты, проливающие свет на природу первичных продуктов, образующихся при фотосинтезе, получены с помощью изотопной методики. В этих исследованиях растения ячменя, а также одноклеточные зеленые водоросли Chlorella и Scenedesmus получали в качестве источника углерода углекислый газ, содержавший меченый радиоактивный углерод 14C. После чрезвычайно кратковременного облучения подопытных растений, исключавшего возможность вторичных реакций, исследовалось распределение изотопного углерода в различных продуктах фотосинтеза. Было установлено, что первый продукт фотосинтеза - фосфоглицериновая кислота; вместе с тем при весьма кратковременном облучении растений наряду с фосфоглицериновой кислотой образуется незначительное количество фосфоенолпировиноградной и яблочной кислот. Например, в опытах с одноклеточной зеленой водорослью Sceriedesmus после фотосинтеза, продолжавшегося пять секунд, 87% изотопного углерода было обнаружено в составе фосфоглицериновой кислоты, 10% - в фосфоенолпировиноградной кислоте и 3% -- в яблочной кислоте. По-видимому, фосфоенолпировиноградная кислота является продуктом вторичного превращения фосфоглицериновой кислоты. При более длительном фотосинтезе, продолжающемся 15-60 секунд, радиоактивный углерод 14C обнаруживается также в гликолевой кислоте, триозофосфатах, сахарозе, аспарагиновой кислоте, аланине, серине, гликоколе, а также в белках. Позже всего меченый углерод обнаруживается в глюкозе, фруктозе, янтарной, фумаровой и лимонной кислотах, а также в некоторых аминокислотах и амидах (треонин, фенилаланин, тирозин, глютамин, аспарагин). Таким образом, опыты с усвоением растениями углекислого газа, содержащего меченый углерод, показали, что первым продуктом фотосинтеза является фосфоглицериновая кислота.

К какому веществу присоединяется углекислый газ в процессе фотосинтеза?

Работы М. Кальвина, проведенные с помощью радиоактивного углерода 14С, показали, что у большинства растений соединением, к которому присоединяется СО2, является рибулозодифосфат. Присоединяя СО2, он дает две молекулы фосфоглицериновой кислоты. Последняя фосфоорилируется при участии АТР с образованием дифосфоглицериновой кислоты, которая при участии NADPH восстанавливается и образует фосфоглицериновый альдегид, частично превращающийся в фосфодиоксиацетон. Благодаря синтетическому действию фермента альдолазы, фосфоглицериновый альдегид и фосфодиоксиацетон, соединяясь, образуют молекулу фруктозодифосфата, из которого далее синтезируются сахароза и различные полисахариды. Рибулозодифосфат - акцептор СО2, образуется в результате ряда ферментативных превращений фосфоглицеринового альдегида, фосфодиоксиацетона и фруктозодифосфата. В качестве промежуточных продуктов при этом возникают эритрозофосфат, седогептулозофосфат, ксилулозофосфат, рибозофосфат и рибулозофосфат. Ферментные системы, катализирующие все эти превращения, найдены в клетках хлореллы, в листьях шпината и в других растениях. Согласно М. Кальвину, процесс образования фосфоглицериновой кислоты из рибулозодифосфата и СО2 носит циклический характер. Ассимиляция углекислого газа с образованием фосфоглицериновой кислоты происходит без участия света и хлорофилла и является темновым процессом. Водород воды в конечном счете используется на восстановление фосфоглицериновой кислоты до фосфоглицеринового альдегида. Этот процесс катализируется ферментом дегидрогеназой фосфоглицеринового альдегида и в качестве источника водорода требует участия NADPH. Так как этот процесс в темноте немедленно прекращается, очевидно, что восстановление NADP осуществляется водородом, образующимся при фотолизе воды.

Уравнение Кальвина для фотосинтеза

Суммарное уравнение цикла Кальвина имеет следующий вид:

6СО2 + 12NADPH + 12Н+ + 18АТР + 11Н2О = фруктозо-б-фосфат + 12NADP+ + 18ADP + 17Р неорг

Таким образом, для синтеза одной молекулы гексозы требуется шесть молекул СО2. Для превращения одной молекулы СО2 нужно две молекулы NADPH и три молекулы АТР (1: 1,5). Так как при нециклическом фотофосфорилировании отношение образующихся NADPH:АТР составляет 1:1, добавочное необходимое количество АТР синтезируется в процессе циклического фотофосфорилирования.

Путь углерода при фотосинтезе изучался Кальвином при сравнительно высоких концентрациях СО2. При более низких концентрациях, приближающихся к атмосферным (0,03%), в хлоропласте под действием рибулозодифосфаткарбоксилазы образуется значительное количество фосфогликолевой кислоты. Последняя в процессе транспорта через мембрану хлоропласта гидролизуется специфической фосфатазой, и образовавшаяся гликолевая кислота перемещается из хлоропласта в связанные с ним субклеточные структуры - пероксисомы, где под действием фермента гликолатоксидазы окисляется до глиоксилевой кислоты HOC-COOH. Последняя путем переаминирования образует глицин, который, перемещаясь в митохондрию, превращается здесь в серин.

Это превращение сопровождается образованием СО2 и NН3: 2 глицин + Н2О = серин + СО2 + NН3 +2Н+ +2е-.

Однако аммиак не выделяется во внешнюю среду, а связывается в виде глютамина. Таким образом, пероксисомы и митохондрии принимают участие в процессе так называемого фотодыхания - стимулируемого светом процесса поглощения кислорода и выделения СО2. Этот процесс связан с превращениями гликолевой кислоты и ее окислением до СО2. В результате интенсивного фотодыхания может значительно (до 30%) снижаться продуктивность растений.

Другие возможности усвоения СО2 в процессе фотосинтеза

Усвоение СО2 в процессе фотосинтеза происходит не только путем карбоксилирования рибулозодифосфата, но и путем карбоксилирования других соединений. Например, показано, что у сахарного тростника, кукурузы, сорго, проса и ряда других растений особенно важную роль в процессе фотосинтетической фиксации играет фермент фосфоенолпируват-карбоксилаза, синтезирующая из фосфоенолпирувата, СО2 и воды щавелевоуксусную кислоту. Растения, у которых первым продуктом фиксации СО2 является фосфоглицериновая кислота, принято называть С3-растениями, а те, у которых синтезируется щавелевоуксусная кислота, -C4-растениями. Упоминавшийся выше процесс фотодыхания характерен для С3-растений и является следствием ингибирующего действия кислорода на рибулозодифосфат-карбоксилазу.

Фотосинтез у бактерий

У фотосинтезирующих бактерий фиксация СО2 происходит при участии ферредоксина. Так, из фотосинтезирующей бактерии Chromatium выделена и частично очищена ферментная система, которая при участии ферредоксина катализирует восстановительный синтез пировиноградной кислоты из СО2 и ацетилкоэнзима А:

Ацетил-СоА + С02 + ферредоксин восстановл. = пируват + ферредоксин окислен. + СоА

Аналогичным образом при участии ферредоксина в бесклеточных ферментных препаратах, выделенных из фотосинтезирующей бактерии Chlorobium thiosulfatophilum , происходит синтез а-кетоглютаровой кислоты путем карбоксилирования янтарной кислоты:

Сукцинил-СоА + СО2 + ферредоксин восстановл. = a-кетоглютарат + СоА + ферредоксин окислен.

У некоторых микроорганизмов, содержащих бактериохлорофилл, так называемых пурпурных серобактерий, на свету также происходит процесс фотосинтеза. Однако в отличие от фотосинтеза высших растений в данном случае восстановление углекислого газа осуществляется сероводородом. Суммарное уравнение фотосинтеза у пурпурных бактерий можно представить следующим образом:

Свет, бактериохлорофилл: CO2 + 2H2S = CH2O + H2O + 2S

Таким образом, и в данном случае фотосинтез представляет собой сопряженный окислительно-восстановительный процесс, идущий под влиянием поглощенной бактериохлорофиллом световой энергии. Из приведенного уравнения видно, что в результате фотосинтеза пурпурные бактерии выделяют свободную серу, которая накапливается в них в виде гранул.

Исследования, проведенные при помощи изотопной методики с анаэробной фотосинтезирующей пурпурной бактерией Chromatium, показали, что при очень коротких сроках фотосинтеза (30 секунд) около 45% углерода СО2 включается в аспарагиновую кислоту, а около 28% - в фосфоглицериновую кислоту. По-видимому, образование фосфоглицериновой кислоты предшествует образованию аспарагиновой кислоты, а наиболее ранним продуктом фотосинтеза у Chromatium, так же как у высших растений и одноклеточных зеленых водорослей, является рибулозодифосфат. Последний под действием рибулозодифосфаткарбоксилазы присоединяет СО2 с образованием фосфоглицериновой кислоты. Эта кислота у Chromatium в соответствии со схемой Кальвина может частично превращаться в фосфорилированные сахара, а в основном превращается в аспарагиновую кислоту. Образование аспарагиновой кислоты происходит путем превращения фосфоглицериновой кислоты в фосфоенолпировиноградную кислоту, которая, подвергаясь карбоксилированию, дает щавелевоуксусную кислоту; последняя путем переаминирования дает аспарагиновую кислоту.

Фотосинтез - источник органических веществ на Земле

Процесс фотосинтеза, происходящий при участии хлорофилла, в настоящее время - главный источник образования органического вещества на Земле.

Фотосинтез для получения водорода

Нужно отметить, что одноклеточные фотосинтезирующие водоросли в анаэробных условиях выделяют газообразный водород. Изолированные хлоропласты высших растений, освещаемые в присутствии фермента гидрогеназы катализирующего реакцию 2Н+ + 2е- = Н2, также выделяют водород. Таким образом, возможно фотосинтетическое получение водорода в качестве топлива. Этот вопрос, особеннo в условиях энергетического кризиса, привлекает к себе большое внимание.

Новый вид фотосинтеза

В. Стокениусом был открыт принципиально новый вид фотосинтеза. Оказалось, что у бактерии Halobacterium halobium , живущей в концентрированных растворах хлористого натрия, в окружающей протоплазму белково-липидной мембране содержится хромопротеид бактериородопсин, аналогичный родопсину - зрительному пурпуру глаза животных. В бактериородопсине ретиналь (альдегидная форма витамина А) связан с белком, имеющим молекулярную массу равную 26534, он состоит из 247 аминокислотных остатков. Поглощая свет, бактериородопсин участвует в процессе превращения световой энергии в химическую энергию высокоэнергетических связей АТР. Таким образом, не содержащий хлорофилла организм способен с помощью бактериородопсина использовать световую энергию для синтеза АТР и обеспечения клетки энергией.

Процесс преобразования лучистой энергии Солнца в химическую с использованием последней в синтезе углеводов из углекислого газа. Это единственный путь улавливания солнечной энергии и использования ее для жизни на нашей планете.

Улавливание и преобразование солнечной энергии осуществляют многообразные фотосинтезирующие организмы (фотоавтотрофы). К ним относятся многоклеточные организмы (высшие зеленые растения и низшие их формы - зеленые, бурые и красные водоросли) и одноклеточные (эвгленовые, динофлагелляты и диатомовые водоросли). Большую группу фотосинтезирующих организмов составляют прокариоты - сине-зеленые водоросли, зеленые и пурпурные бактерии. Примерно половина работы по фотосинтезу на Земле осуществляется высшими зелеными растениями, а остальная половина - главным образом одноклеточными водорослями.

Первые представления о фотосинтезе были сформированы в 17 веке. В дальнейшем, по мере появления новых данных, эти представления многократно изменялись [показать] .

Развитие представлений о фотосинтезе

Начало изучению фотосинтеза было положено в 1630 году, когда ван Гельмонт показал, что растения сами образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей, в котором росла ива, и само дерево, он показал, что в течение 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Ван Гельмонт пришел к заключению, что остальную часть пищи растение получило из воды, которой поливали дерево. Теперь мы знаем, что основным материалом для синтеза служит двуокись углерода, извлекаемая растением из воздуха.

В 1772 году Джозеф Пристли показал, что побег мяты "исправляет" воздух, "испорченный" горящей свечой. Семь лет спустя Ян Ингенхуз обнаружил, что растения могут "исправлять" плохой воздух только находясь на свету, причем способность растений "исправлять" воздух пропорциональна ясности дня и длительности пребывания растений на солнце. В темноте же растения выделяют воздух, "вредный для животных".

Следующей важной ступенью в развитии знаний о фотосинтезе были опыты Соссюра, проведенные в 1804 году. Взвешивая воздух и растения до фотосинтеза и после, Соссюр установил, что увеличение сухой массы растения превышало массу поглощенной им из воздуха углекислоты. Соссюр пришел к выводу, что другим веществом, участвовавшим в увеличении массы, была вода. Таким образом, 160 лет назад процесс фотосинтеза представляли себе следующим образом:

H 2 O + CO 2 + hv -> C 6 H 12 O 6 + O 2

Вода + Углекислота + Солнечная энергия ----> Органическое вещество + Кислород

Ингенхуз предположил, что роль света в фотосинтезе заключается в расщеплении углекислоты; при этом происходит выделение кислорода, а освободившийся "углерод" используется для построения растительных тканей. На этом основании живые организмы были разделены на зеленые растения, которые могут использовать солнечную энергию для "ассимиляции" углекислоты, и остальные организмы, не содержащие хлорофилла, которые не могут использовать энергию света и не способны ассимилировать CO 2 .

Этот принцип разделения живого мира был нарушен, когда С. Н. Виноградский в 1887 году открыл хемосинтезирующие бактерии - бесхлорофильные организмы, способные ассимилировать (т. е. превращать в органические соединения) углекислоту в темноте. Он был нарушен также, когда в 1883 году Энгельман открыл пурпурные бактерии, осуществляющие своеобразный фотосинтез, не сопровождающийся выделением кислорода. В свое время этот факт не был оценен в должной мере; между тем открытие хемосинтезирующих бактерий, ассимилирующих углекислоту в темноте, показывает, что ассимиляцию углекислоты нельзя считать специфической особенностью одного лишь фотосинтеза.

После 1940 года благодаря применению меченого углерода было установлено, что все клетки - растительные, бактериальные и животные - способны ассимилировать углекислоту, т. е. включать ее в состав молекул органических веществ; различны лишь источники, из которых они черпают необходимую для этого энергию.

Другой крупный вклад в изучение процесса фотосинтеза внес в 1905 году Блэкман, который обнаружил, что фотосинтез состоит из двух последовательных реакций: быстрой световой реакции и ряда более медленных, не зависящих от света этапов, названных им темповой реакцией. Используя свет высокой интенсивности, Блэкман показал, что фотосинтез протекает с одинаковой скоростью как при прерывистом освещении с продолжительностью вспышек всего в долю секунды, так и при непрерывном освещении, несмотря на то что в первом случае фотосинтетическая система получает вдвое меньше энергии. Интенсивность фотосинтеза снижалась только при значительном увеличении темнового периода. В дальнейших исследованиях было установлено, что скорость темновой реакции значительно возрастает с повышением температуры.

Следующая гипотеза относительно химической основы фотосинтеза была выдвинута ван Нилем, который в 1931 году экспериментально показал, что у бактерий фотосинтез может происходить в анаэробных условиях, не сопровождаясь выделением кислорода. Ван Ниль высказал предположение, что в принципе процесс фотосинтеза сходен у бактерий и у зеленых растений. У последних световая энергия используется для фотолиза воды (Н 2 0) с образованием восстановителя (Н), определенным путем участвующего в ассимиляции углекислоты, и окислителя (ОН) - гипотетического предшественника молекулярного кислорода. У бактерий фотосинтез протекает в общем так же, но донором водорода служит Н 2 S или молекулярный водород, и поэтому выделения кислорода не происходит.

Современные представления о фотосинтезе

По современным представлениям сущность фотосинтеза заключается в превращении лучистой энергии солнечного света в химическую энергию в форме АТФ и восстановленного никотинамидадениндинуклеотидфосфата (НАДФ · Н).

В настоящее время принято считать, что процесс фотосинтеза складывается из двух стадий, в которых активное участие принимают фотосинтезирующие структуры [показать] и светочувствительные пигменты клетки .

Фотосинтезирующие структуры

У бактерий фотосинтезирующие структуры представлены в виде впячивания клеточной мембраны, образуя пластинчатые органоиды мезосомы. Изолированные мезосомы, получаемые при разрушении бактерий, называются хроматофорами, в них сосредоточен светочувствительный аппарат.

У эукариотов фотосинтетический аппарат расположен в специальных внутриклеточных органоидах - хлоропластах, содержащих зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Хлоропласты, подобно митохондриям, содержат также ДНК, РНК и аппарат для синтеза белка, т. е. обладают потенциальной способностью к самовоспроизведению. По размерам хлоропласты в несколько раз больше митохондрий. Число хлоропластов колеблется от одного у водорослей до 40 на клетку у высших растений.


В клетках зеленых растений помимо хлоропластов имеются и митохондрии, которые используются для образования энергии в ночное время за счет дыхания, как в гетеротрофных клетках.

Хлоропласты имеют шаровидную или уплощенную форму. Они окружены двумя мембранами - наружной и внутренней (рис. 1). Внутренняя мембрана укладывается в виде стопок уплощенных пузырьковидных дисков. Эта стопка называется граной.

Каждая грана состоит из отдельных слоев, расположенных наподобие столбиков монет. Слои белковых молекул чередуются со слоями, содержащими хлорофилл, каротины и другие пигменты, а также особые формы липидов (содержащих галактозу или серу, но только одну жирную кислоту). Эти поверхностно-активные липиды, по-видимому, адсорбированы между отдельными слоями молекул и служат для стабилизации структуры, состоящей из чередующихся слоев белка и пигментов. Такое слоистое (ламеллярное) строение граны, вероятнее всего облегчает перенос энергии в процессе фотосинтеза от одной молекулы к близлежащей.

В водорослях находится не более одной граны в каждом хлоропласте, а в высших растениях - до 50 гран, которые соединены между собой мембранными перемычками. Водная среда между гранами - это строма хлоропласта, которая содержит ферменты, осуществляющие "темновые реакции"

Пузырьковидные структуры, из которых состоит грана, называются тилактоидами. В гране от 10 до 20 тилактоидов.

Элементарная структурная и функциональная единица фотосинтеза мембран тилактоидов, содержащая необходимые светоулавливающие пигменты и и компоненты аппарата трансформации энергии, называется квантосомой, состоящей примерно из 230 молекул хлорофилла. Эта частица имеет массу порядка 2 х 10 6 дальтон и размеры около 17,5 нм.

Стадии фотосинтеза

Световая стадия (или энергетическая)

Темновая стадия (или метаболическая)

Место протекание реакции

В квантосомах мембран тилактоидов, протекает на свету.

Осуществляется вне тилактоидов, в водной среде стромы.

Начальные продукты

Энергия света, вода (Н 2 О), АДФ, хлорофилл

СО 2 , рибулозодифосфат, АТФ, НАДФН 2

Суть процесса

Фотолиз воды, фосфорилирование

В световой стадии фотосинтеза энергия света трансформируется в химическую энергию АТФ, а бедные энергией электроны воды переходят в богатые энергией электроны НАДФ· Н 2 . Побочным веществом, образующимся в ходе световой стадии, является кислород. Реакции световой стадии получили название "световых реакций".

Карбоксилирование, гидрирование, дефосфорилирование

В темновой стадии фотосинтеза протекают "темновые реакции" при которых наблюдается восстановительный синтез глюкозы из CO 2 . Без энергии световой стадии темновая стадия невозможна.

Конечные продукты

О 2 , АТФ, НАДФН 2

Богатые энергией продукты световой реакции - АТФ и НАДФ· Н 2 далее используются в темновой стадии фотосинтеза.

Взаимосвязь между световой и темновой стадиями можно выразить схемой

Процесс фотосинтеза эндергонический, т.е. сопровождается увеличением свободной энергии, поэтому требует значительного количества энергии, подведенной извне. Суммарное уравнение фотосинтеза:

6СО 2 + 12Н 2 О--->С 6 Н 12 О 62 + 6Н 2 О + 6О 2 + 2861 кДж/моль.

Наземные растения поглощают необходимую для процесса фотосинтеза воду через корни, а водные растения получают ее путем диффузии из окружающей среды. Необходимая для фотосинтеза углекислота диффундирует в растение через мелкие отверстия на поверхности листьев - устьица. Поскольку углекислота расходуется в процессе фотосинтеза, ее концентрация в клетке обычно несколько ниже, чем в атмосфере. Освобождающийся в процессе фотосинтеза кислород диффундирует наружу из клетки, а затем и из растения - через устьица. Образующиеся при фотосинтезе сахара также диффундируют в те части растения, где их концентрация ниже.

Для осуществления фотосинтеза растениям необходимо очень много воздуха, так как он содержит всего 0,03% углекислоты. Следовательно, из 10 000 м 3 воздуха можно получить 3 м 3 углекислоты, из которой в процессе фотосинтеза образуется около 110 г глюкозы. Обычно растения лучше растут при более высоком содержании в воздухе углекислоты. Поэтому в некоторых теплицах содержание CO 2 в воздухе доводят до 1-5%.

Механизм световой (фотохимической) стадии фотосинтеза

В реализации фотохимической функции фотосинтеза принимают участие солнечная энергия и различные пигменты: зеленые - хлорофиллы а и b, желтые - каротиноиды и красные или синие - фикобилины. Фотохимически активен среди этого комплекса пигментов только хлорофилл а. Остальные пигменты играют вспомогательную роль, являясь лишь собирателями световых квантов (своеобразные светособирающие линзы) и проводниками их к фотохимическому центру.

На основании способности хлорофилла эффективно поглощать солнечную энергию определенной длины волны в мембранах тилактоидов были выделены функциональные фотохимические центры или фотосистемы (рис. 3):

  • фотосистемa I (хлорофилл а ) - содержит пигмент 700 (Р 700) поглощающий свет с длиной волны около 700 нм, играет основную роль в образовании продуктов световой стадии фотосинтеза: АТФ и НАДФ · Н 2
  • фотосистема II (хлорофилл b ) - содержит пигмент 680 (Р 680), поглощающий свет с длиной волны 680 нм, играет вспомогательную роль восполняя за счет фотолиза воды утраченные фотосистемой I электроны

На 300-400 молекул светособирающих пигментов в фотосистемах I и II приходится только одна молекула фотохимически активного пигмента - хлорофилла а.

Поглощенный растением световой квант

  • переводит пигмент Р 700 из основного состояния в возбужденное - Р * 700 , в котором он легко теряет электрон с образованием положительной электронной дырки в виде Р 700 + по схеме:

    Р 700 ---> Р * 700 ---> Р + 700 + е -

    После чего молекула пигмента, потерявшая электрон, может служить акцептором электрона (способна принять электрон) и переходить в восстановленную форму

  • вызывает разложение (фотоокисление) воды в фотохимическом центре Р 680 фотосистемы II по схеме

    Н 2 О ---> 2Н + + 2е - + 1/2O 2

    Фотолиз воды называется реакцией Хилла. Электроны, образующиеся при разложении воды, первоначально акцептируются веществом, обозначаемым Q (иногда его называют цитохромом С 550 пo максимуму поглощения, хотя оно не является цитохромом). Затем от вещества Q через цепь переносчиков, похожую по составу на митохондриальную, электроны поставляются в фотосистему I для заполнения электронной дырки, образовавшейся в результате поглощения системой световых квантов, и восстановления пигмента Р + 700

Если такая молекула просто получит назад тот же электрон, то произойдет выделение световой энергии в виде тепла и флуоресценции (этим обусловлена флуоресценция чистого хлорофилла). Однако, в большинстве случаев, освободившийся отрицательно заряженный электрон акцептируется специальными железосерными белками (FеS-центр), а затем

  1. или транспортируется по одной из цепей переносчиков обратно к Р + 700 , заполняя электронную дырку
  2. или по другой цепи переносчиков через ферредоксин и флавопротеид к постоянному акцептору - НАДФ · Н 2

В первом случае происходит замкнутый циклический транспорт электрона, а во втором - нециклический.

Оба процесса катализируются одной и той же цепью переносчиков электронов. Однако при циклическом фотофосфорилировании электроны возвращаются от хлорофилла а снова к хлорофиллу а , тогда как при нециклическом фотофосфорилировании электроны переходят от хлорофилла b к хлорофиллу а .

Циклическое (фотосинтетическое) фосфорилирование Нециклическое фосфорилирование

В результате циклического фосфорилирования происходит образование молекул АТФ. Процесс связан с возвращением через ряд последовательных этапов возбужденных электронов на Р 700 . Возвращение возбужденных электронов на Р 700 приводит к высвобождению энергии (при переходе с высокого на низкий энергетический уровень), которая, при участии фосфорилирующей ферментной системы, аккумулируется в фосфатных связях АТФ, а не рассеивается в виде флуоресценции и тепла (рис.4.). Этот процесс называется фотосинтетическим фосфорилированием (в отличие от окислительного фосфорилирования, осуществляемого митохондриями);

Фотосинтетическое фосфорилирование - первичная реакция фотосинтеза - механизм образования химической энергии (синтеза АТФ из АДФ и неорганического фосфата) на мембране тилактоидов хлоропластов с использованием энергии солнечного света. Необходима для темновой реакции ассимиляции СО 2

В результате нециклического фосфорилирования происходит восстановление НАДФ + с образование НАДФ · Н. Процесс связан с передачей электрона ферредоксину, его восстановлением и дальнейшим переходом его к НАДФ + с последующим восстановление его до НАДФ · Н

В тилактоидах идут оба процесса, хотя второй более сложный. Он сопряжен (взаимосвязан) с работой фотосистемы II.

Таким образом, утраченные Р 700 электроны восполняются за счет электронов воды, разлагаемой под действием света в фотосистеме II.

а + в основное состояние, образуются, по-видимому, при возбуждении хлорофилла b . Эти высокоэнергетические электроны переходят к ферредоксину и затем через флавопротеин и цитохромы - к хлорофиллу а . На последнем этапе происходит фосфорилирование АДФ до АТФ (рис. 5).

Электроны, необходимые для возвращения хлорофилла в его основное состояние, поставляются, вероятно, ионами ОН - , образующимися при диссоциации воды. Некоторая часть молекул воды диссоциирует на ионы Н + и ОН - . В результате потери электронов ионы ОН - превращаются в радикалы (ОН), которые в дальнейшем дают молекулы воды и газообразного кислорода (рис. 6).

Этот аспект теории подтверждается результатами опытов с водой и CO 2 , меченными 18 0 [показать] .

Согласно этим результатам, весь газообразный кислород, выделяющийся при фотосинтезе, происходит из воды, а не из СО 2 . Реакции расщепления воды до сих пор еще подробно не изучены. Ясно, однако, что осуществление всех последовательных реакций нециклического фотофосфорилирования (рис. 5), в том числе возбуждение одной молекулы хлорофилла а и одной молекулы хлорофилла b , должно приводить к образованию одной молекулы НАДФ · Н, двух или более молекул АТФ из АДФ и Ф н и к выделению одного атома кислорода. Для этого необходимо по крайней мере четыре кванта света - по два для каждой молекулы хлорофилла.

Нециклический поток электронов от Н 2 О к НАДФ · Н 2 , происходящий при взаимодействии двух фотосистем и связывающих их электронно-транспортных цепей, наблюдается вопреки значениям редокс-потенциалов: Е° для 1/2O 2 /Н 2 О = +0,81 В, а Е° для НАДФ/НАДФ · Н = -0,32 В. Энергия света обращает поток электронов "вспять". Существенно то, что при переносе от фотосистемы II к фотосистеме I часть энергии электронов аккумулируется в виде протонного потенциала на мембране тилактоидов, а затем в энергию АТФ.

Механизм образования протонного потенциала в цепи переноса электронов и его использование на образование АТФ в хлоропластах сходен с таковым в митохондриях. Однако в механизме фотофосфорилирования имеются некоторые особенности. Тилактоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому направление переноса электронов и протонов через мембрану противоположно направлению его в митохондриальной мембране (рис.6). Электроны движутся к внешней стороне, а протоны концентрируются внутри тилактоидного матрикса. Матрикс заряжается положительно, а внешняя мембрана тилактоида - отрицательно, т. е. направление протонного градиента противоположно направлению его в митохондриях.

Другой особенностью является значительно большая доля рН в протонном потенциале по сравнению с митохондриями. Тилактоидный матрикс сильно закисляется, поэтому Δ рН может достигать 0,1-0,2 В, в то время как Δ Ψ составляет около 0,1 В. Общее значение Δ μ H+ > 0,25 В.

Н + -АТФ-синтетаза, обозначаемая в хлоропластах как комплекс "СF 1 +F 0 ", ориентирована тоже в противоположном направлении. Головка ее (F 1) смотрит наружу, в сторону стромы хлоропласта. Протоны выталкиваются через СF 0 +F 1 из матрикса наружу, и в активном центре F 1 образуется АТФ за счет энергии протонного потенциала.

В отличие от митохондриальной цепи в тилактоидной имеется, по-видимому, только два участка сопряжения, поэтому на синтез одной молекулы АТФ требуется вместо двух три протона, т. е. соотношение 3 Н + /1 моль АТФ.

Итак, на первой стадии фотосинтеза, во время световых реакций, в строме хлоропласта образуются АТФ и НАДФ · Н - продукты, необходимые для осуществления темновых реакций.

Механизм темновой стадии фотосинтеза

Темновые реакции фотосинтеза - это процесс включения углекислоты в органические вещества с образованием углеводов (фотосинтез глюкозы из СО 2). Реакции протекают в строме хлоропласта при участии продуктов световой стадии фотосинтеза - АТФ и НАДФ · Н2.

Ассимиляция диоксида углерода (фотохимическое карбоксилирование) представляет собой циклический процесс, который называется также пентозофосфатным фотосинтетическим циклом или циклом Кальвина (рис. 7). В нем можно выделить три основные фазы:

  • карбоксилирование (фиксация СО 2 рибулозодифосфатом)
  • восстановление (образование триозофосфатов при восстановлении 3-фосфоглицерата)
  • регенерация рибулозодифосфата

Рибулозо-5-фосфат (сахар, содержащий 5 атомов углерода, с фосфатным остатком у углерода в положении 5) подвергается фосфорилированию за счет АТФ, что приводит к образованию рибулозодифосфата. Это последнее вещество карбоксилируется путем присоединения СО 2 , по-видимому, до промежуточного шестиуглеродного продукта, который, однако, немедленно расщепляется с присоединением молекулы воды, образуя две молекулы фосфоглицериновой кислоты. Затем фосфоглицериновая кислота восстанавливается в ходе ферментативной реакции, для осуществления которой необходимо присутствие АТФ и НАДФ · Н с образованием фосфоглицеринового альдегида (трехуглеродный сахар - триоза). В результате конденсации двух таких триоз образуется молекула гексозы, которая может включаться в молекулу крахмала и таким образом откладываться про запас.

Для завершения этой фазы цикла в процессе фотосинтеза поглощается 1 молекула С0 2 и используются 3 молекулы АТФ и 4 атома Н (присоединенных к 2 молекулам НАД · Н). Из гексозофосфата путем определенных реакций пентозофосфатного цикла (рис. 8) регенерирует рибулозофосфат, который снова может присоединить к себе другую молекулу углекислоты.

Ни одну из описанных реакций - карбоксилирование, восстановление или регенерацию - нельзя считать специфичной только для фотосинтезирующей клетки. Единственное обнаруженное у них отличие заключается в том, что для реакции восстановления, в течение которой фосфоглицериновая кислота превращается в фосфоглицериновый альдегид, необходим НАДФ · Н, а не НАД · Н, как обычно.

Фиксация СО 2 рибулозодифосфатом катализируется ферментом рибулозодифосфаткарбоксилазой: Рибулозодифосфат + СО 2 --> 3-Фосфоглицерат Далее 3-фосфоглицерат восстанавливается с помощью НАДФ · Н 2 и АТФ до глицеральдегид-3-фосфата. Эта реакция катализируется ферментом - глицеральдегид-3-фосфат-дегидрогеназой. Глицеральдегид-3-фосфат легко изомеризуется в дигидроксиацетонфосфат. Оба триозофосфата используются в образовании фруктозобисфосфата (обратная реакция, катализируемая фруктозо-бисфосфат-альдолазой). Часть молекул образовавшегося фруктозобисфосфата участвует вместе с триозофосфатами в регенерации рибулозодифосфата (замыкают цикл), а другая часть используется для запасания углеводов в фотосинтезирующих клетках, как показано на схеме.

Подсчитано, что для синтеза одной молекулы глюкозы из СО 2 в цикле Кальвина требуется 12 НАДФ · Н + Н + и 18 АТФ (12 молекул АТФ расходуются на восстановление 3-фосфоглицерата, а 6 молекул - в реакциях регенерации рибулозодифосфата). Минимальное соотношение - 3 АТФ: 2 НАДФ · Н 2 .

Можно заметить общность принципов, лежащих в основе фотосинтетического и окислительного фосфорилирования, причем фотофосфорилирование представляет собой как бы обращенное окислительное фосфорилирование:

Энергия света является движущей силой фосфорилирования и синтеза органических веществ (S-Н 2) при фотосинтезе и, наоборот, энергия окисления органических веществ - при окислительном фосфорилировании. Поэтому именно растения обеспечивают жизнь животным и другим гетеротрофным организмам:

Углеводы, образующиеся при фотосинтезе, служат для построения углеродных скелетов многочисленных органических веществ растений. Азоторганические вещества усваиваются фотосинтезирующими организмами путем восстановления неорганических нитратов или атмосферного азота, а сера - восстановлением сульфатов до сульфгидрильных групп аминокислот. Фотосинтез в конечном итоге обеспечивает построение не только обязательных для жизни белков, нуклеиновых кислот, углеводов, липидов, кофакторов, но и многочисленных продуктов вторичного синтеза, являющихся ценными лекарственными веществами (алкалоиды, флавоноиды, полифенолы, терпены, стероиды, органические кислоты и т.д.).

Бесхлорофильный фотосинтез

Бесхлорофильный фотосинтез обнаружен у солелюбивых бактерий, имеющих фиолетовый светочувствительный пигмент. Этим пигментом оказался белок бактериородопсин, содержащий, подобно зрительному пурпуру сетчатки - родопсину, производное витамина А - ретиналь. Бактериородопсин, встроенный в мембрану солелюбивных бактерий, образует на этой мембране в ответ на поглощение ретиналем света протонный потенциал, преобразующийся в АТФ. Таким образом, бактериородопсин является бесхлорофильным преобразователем энергии света.

Фотосинтез и внешняя среда

Фотосинтез возможен только при наличии света, воды и диоксида углерода. КПД фотосинтеза не более 20% у культурных видов растений, а обычно он не превышает 6-7%. В атмосфере примерно 0,03% (об.) СО 2 , при повышении его содержания до 0,1% интенсивность фотосинтеза и продуктивность растений возрастают, поэтому целесообразно подкармливать растения гидрокарбонатами. Однако содержание СО 2 в воздухе выше 1,0% оказывает вредное действие на фотосинтез. За год только наземные растения усваивают 3% всего СО 2 атмосферы Земли, т. е. около 20 млрд. т. В составе синтезируемых из СО 2 углеводов аккумулируется до 4 · 10 18 кДж энергии света. Это соответствует мощности электростанции в 40 млрд кВт. Побочный продукт фотосинтеза - кислород - жизненно необходим для высших организмов и аэробных микроорганизмов. Сохранить растительный покров - значит сохранить жизнь на Земле.

Эффективность фотосинтеза

Эффективность фотосинтеза с точки зрения производства биомассы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продуктивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и выразить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической, эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы.

Растения используют свет с длиной волны от 400 до 700 нм, т. е. на долю фотосинтетически активной радиации приходится 50% всего солнечного света. Это соответствует интенсивности на поверхности Земли 800-1000 Вт/м 2 за обычный солнечный день (в среднем). Усредненная максимальная эффективность превращения энергии при фотосинтезе на практике составляет 5-6%. Эти оценки получены на основе изучения процесса связывания СО 2 , а также сопутствующих физиологических и физических потерь. Одному молю связанного СО 2 в форме углевода соответствует энергия 0,47 МДж, а энергия моля квантов красного света с длиной волны 680 нм (наиболее бедный энергией свет, используемый в фотосинтезе) составляет 0,176 МДж. Таким образом, минимальное число молей квантов красного света, необходимое для связывания 1 моля СО 2 , составляет 0,47:0,176 = 2,7. Однако, поскольку перенос четырех электронов от воды для фиксации одной молекулы СО 2 требует не менее восьми квантов света, теоретическая эффективность связывания равна 2,7:8 = 33%. Эти расчеты сделаны для красного света; ясно, что для белого света эта величина будет соответственно ниже.

В наилучших полевых условиях эффективность фиксации в растениях достигает 3%, однако это возможно лишь в короткие периоды роста и, если пересчитать ее на весь год, то она будет где-то между 1 и 3%.

На практике в среднем за год эффективность фотосинтетического преобразования энергии в зонах с умеренным климатом составляет обычно 0,5-1,3%, а для субтропических культур - 0,5-2,5%. Выход продукта, который можно ожидать при определенном уровне интенсивности солнечного света и разной эффективности фотосинтеза, легко оценить из графиков, приведенных на рис. 9.

Значение фотосинтеза

  • Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом, волокнами и бесчисленными полезными химическими соединениями.
  • Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая.
  • Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных, в виде топлива и строительных материалов

Фотосинтез – это процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединений.

Процесс фотосинтеза выражают суммарным уравнением:

6СО 2 + 6Н 2 О ® С 6 Н 12 О 6 + 6О 2 .

На свету в зеленом растении из предельно окисленных веществ - диокси­да углерода и воды образуются органические вещества, и высво­бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО 2 , но и нитраты или сульфаты, а энергия может быть направлена на различные эндэргонические процессы, в том числе на транспорт веществ.

Общее уравнение фотосинтеза может быть представлено в виде:

12 Н 2 О → 12 [Н 2 ] + 6 О 2 (световая реакция)

6 СО 2 + 12 [Н 2 ] → С 6 Н 12 О 6 + 6 Н 2 О (темновая реакция)

6 СО 2 + 12 Н 2 О → С 6 Н 12 О 6 + 6 Н 2 О + 6 О 2

или в расчете на 1 моль СО 2:

СО 2 + Н 2 О СН 2 О + О 2

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО 2 . Методами меченых атомов было получено, что Н 2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды. Доказательством образования О 2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н 2 О, а не разложении СО 2 . Способные к фотосинтетической ассимиляции СО 2 бактерии (кроме цианобактерий) используют в качестве восстановителей Н 2 S, Н 2 , СН 3 и другие, и не выделяют О 2 . Такой тип фотосинтеза называется фоторедукцией:

СО 2 + Н 2 S → [СН 2 О] + Н 2 О + S 2 или

СО 2 + Н 2 А → [СН 2 О] + Н 2 О + 2А,

где Н 2 А – окисляет субстрат, донор водорода (у высших растений – это Н 2 О), а 2А – это О 2 . Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО 2 , а [ОН] участвует в реакциях освобождения О 2 и образования Н 2 О.



Солнечная энергия при участии зеленых растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединений. Для осуществления этого уникального процесса в ходе эволюции был создан фо­тосинтетический аппарат, содержащий: I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и 2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии. Прежде всего эторедокс-энергия, свя­занная с образованием высоковосстановленных соединений, энергия электрохимического потенциала, обусловленная образованием электрических и про­тонных градиентов на сопрягающей мембране (Δμ H +),энергия фосфатных свя­зей АТФ и других макроэргических соединений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии могут быть использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма, т.е. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет «космическую» роль зеленых растений, о которой писал великий русский физиологК.А. Тимирязев.

Процесс фотосинтеза представляет собой очень сложную систему по про­странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте­за включает различные по скорости реакции - от 10 -15 с (в фемтосекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю­чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посевов.

Принципиальная схема фотосинтеза. Весь сложный комплекс реакций, со­ставляющих процесс фотосинтеза, может быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно­сти процессов, происходящих на каждой стадии:

* – ССК – светособирающий антенный комплекс фотосинтеза – набор фотосинтетических пигментов – хлорофиллов и каротиноидов; РЦ – реакционный центр фотосинтеза – димер хлорофилла а ; ЭТЦ – электрон-транспортная цепь фотосинтеза – локализована в мембранах тилакоидов хлоропластов (сопряженные мембраны), включает хиноны, цитохромы, железосерные кластерные белки и другие переносчики электронов.

I стадия – физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон­ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 - 10 -9 с. Первичные ре­акции поглощения энергии локализованы в светособирающих антенных комп­лексах (ССК).

II стадия - фотохимическая. Реакции локализованы в реакционных цент­рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек­тронного возбуждения пигмента реакционного центра (П (РЦ)) используется для разделения зарядов. При этом электрон с высоким энергетическим потен­циалом передается на первичный акцептор А, и образующаяся система с разделенными зарядами (П (РЦ) - А) содержит определенное количество энер­гии уже в химической форме. Окисленный пигмент П (РЦ) восстанавливает свою структуру за счет окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу­ющее жестких условий структурной организации системы. В настоящее время молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель­ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П * , А -) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. Поэтому необходи­ма быстрая дальнейшая стабилизация образованных восстановленных продук­тов с высоким энергетическим потенциалом, что осуществляется на следу­ющей, III стадии фотосинтеза.

III стадия - реакции транспорта электронов. Цепь переносчиков с раз­личной величиной окислительно-восстановительного потенциала (Е n ) обра­зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех основных функциональных ком­плексов - фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b 6 f -комп­лекса, что обеспечивает высокую скорость электронного потока и возмож­ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов­ленные продукты: восстановленный ферредоксин (ФД восст) и НАДФН, а так­же богатые энергией молекулы АТФ, которые используются в темновых реак­циях восстановления СО 2 , составляющих IV стадию фотосинтеза.

IV стадия - «темновые» реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте­за, в форме которых запасается солнечная энергия, поглощенная и преобразо­ванная в «световых» реакциях фотосинтеза. Скорость «темновых» энзиматических реакций – 10 -2 - 10 4 с.

Таким образом, весь ход фотосинтеза осуществляется при взаимодействии трех пото­ков - потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

Планетарная роль фотосинтеза

Фотосинтез, возникнув на первых этапах эволюции жизни, остается важнейшим процессом биосферы. Именно зеленые растения по­средством фотосинтеза обеспечивают космическую связь жизни на Земле с Вселенной и определяют экологическое благополучие биосферы вплоть до возможности существования человеческой цивилизации. Фотосинтез - это не только источник пищевых ресурсов и полезных ископаемых, но и фактор сбалансирован­ности биосферных процессов на Земле, включая постоянство содержания кислорода и диоксида углерода в атмосфере, состоя­ние озонового экрана, содержание гумуса в почве, парниковый эффект и т.д.

Глобальная чистая продуктивность фотосинтеза составляет 7–8·10 8 т углерода в год, из которых 7 % непосредственно исполь­зуют на питание, топливо и строительные материалы. В настоя­щее время потребление ископаемого топлива приблизительно сравнялось с образованием биомассы на планете. Ежегодно в ходе фотосинтеза в атмосферу поступает 70–120 млрд. т кисло­рода, обеспечивающего дыхание всех организмов. Одним из важ­нейших последствий выделения кислорода является образование озонового экрана в верхних слоях атмосферы на высоте 25 км. Озон (О 3) образуется в результате фотодиссоциации молекул О 2 под действием солнечной радиации и задерживает большую часть ультрафиолетовых лучей, губительно действующих на все живое.

Существенным фактором фотосинтеза является также стаби­лизация содержания СО 2 в атмосфере. В настоящее время содер­жание СО 2 составляет 0,03–0,04 % по объему воздуха, или 711 млрд. т в пересчете на углерод. Дыхание организмов, Мировой океан, в водах которого растворено в 60 раз больше СО 2 , чем находится в атмосфере, производственная деятельность людей, с одной сто­роны, фотосинтез - с другой, поддерживают относительно по­стоянный уровень СО 2 в атмосфере. Диоксид углерода в атмо­сфере, а также вода поглощают инфракрасные лучи и сохраняют значительное количество теплоты на Земле, обеспечивая необхо­димые условия жизнедеятельности.

Однако за последние десятилетия из-за возрастающего сжига­ния человеком ископаемого топлива, вырубки лесов и разложе­ния гумуса сложилась ситуация, когда технический прогресс сде­лал баланс атмосферных явлений отрицательным. Положение усугубляется и демографическими проблемами: каждые сутки на Земле рождается 200 тыс. человек, которых нужно обеспечить жизненными ресурсами. Эти обстоятельства ставят изучение фо­тосинтеза во всех его проявлениях, от молекулярной организа­ции процесса до биосферных явлений, в ранг ведущих проблем современного естествознания. Важнейшие задачи - повышение фотосинтетической продуктивности сельскохозяйственных посе­вов и насаждений, а также создание эффективных биотехноло­гий фототрофных синтезов.

К.А. Тимирязев первым начал изучать космическую роль зеленых растений. Фотосинтез – это единственный процесс на Земле, идущий в грандиозных масштабах и связанный с превращением энергии солнечного света в энергию химических соединений. Эта космическая энергия, запасенная зелеными растениями, составляет основу жизнедеятельности всех других гетеротрофных организмов на Земле от бактерий до человека. Выделяют 5 основных аспектов космической и планетарной деятельности зеленых растений.

1. Накопление органической массы. В процессе фотосинтеза наземные растения образуют 100-172 млрд.т. биомассы в год (в пересчете на сухое вещество), а растения морей и океанов – 60-70 млрд.т. Общая масса растений на Земле в настоящее время составляет 2402,7 млрд.т., причем 90 % этой массы приходится на целлюлозу. Около 2402,5 млрд.т. приходится на долю наземных растений и 0,2 млрд.т. – на растения гидросферы (недостаток света!). Общая масса животных и микроорганизмов на Земле – 23 млрд.т., то есть 1 % от массы растений. Из этого количества ~ 20 млрд.т. приходится на обитателей суши и ~ 3 млрд.т. – на обитателей гидросферы. За время существования жизни на Земле органические остатки растений и животных накапливались и модифицировались (подстилка, гумус, торф, а в литосфере – каменный уголь; в морях и океанах – толща осадочных пород). При опускании в более глубокие области литосферы из этих остатков под действием микроорганизмов, повышенных температур и давления образовывались газ и нефть. Масса органических веществ подстилки ~ 194 млрд.т.; торфа – 220 млрд.т.; гумуса ~ 2500 млрд.т. Нефть и газ – 10000 – 12000 млрд.т. Содержание органического вещества в осадочных породах по углероду ~ 2 · 10 16 т. Особенно интенсивное накопление органики происходило в палеозое (~ 300 млн. лет назад). Запасенное органическое вещество интенсивно используется человеком (древесина, полезные ископаемые).

2. Обеспечение постоянства содержания СО 2 в атмосфере. Образование гумуса, осадочных пород, горючих полезных ископаемых выводили значительные количества СО 2 из круговорота углерода. В атмосфере Земли становилось все меньше СО 2 и в настоящее время его содержание составляет ~ 0,03–0,04 % по объему или ~ 711 млрд.т. в пересчете на углерод. В кайнозойскую эру содержание СО 2 в атмосфере стабилизировалось и испытывало лишь суточные, сезонные и геохимические колебания (стабилизация растений на уровне современных). Стабилизация содержания СО 2 в атмосфере достигается сбалансированным связыванием и освобождением СО 2 в глобальном масштабе. Связывание СО 2 в фотосинтезе и образование карбонатов (осадочные породы) компенсируется выделением СО 2 за счет других процессов: Ежегодное поступление СО 2 в атмосферу (в пересчете на углерод) обусловлено: дыханием растений – ~ 10 млрд. т.: дыханием и брожением микроорганизмов – ~ 25 млрд.т.; дыханием человека и животных – ~ 1,6 млрд.т. хозяйственной деятельностью людей ~ 5 млрд.т.; геохимическими процессами ~ 0,05 млрд.т. Итого ~ 41,65 млрд.т. Если бы не происходило поступления СО 2 в атмосферу, весь его наличный запас был бы связан за 6–7 лет Мощным резервом СО 2 является Мировой океан, в его водах растворено в 60 раз больше СО 2 , чем его находится в атмосфере. Итак, фотосинтез, дыхание и карбонатная система океана поддерживает относительно постоянный уровень СО 2 в атмосфере. За счет хозяйственной деятельности человека (сжигание горючих полезных ископаемых, вырубка лесов, разложение гумуса) содержание СО 2 в атмосфере начало увеличиваться ~ на 0,23 % в год. Это обстоятельство может иметь глобальные последствия, так как содержание СО 2 в атмосфере влияет на тепловой режим планеты.

3. Парниковый эффект. Поверхность Земли получает теплоту главным образом от Солнца. Часть этой теплоты возвращается в виде ИК лучей. СО 2 и Н 2 О, содержащиеся в атмосфере, поглощают ИК лучи и таким образом сохраняют значительное количество теплоты на Земле (парниковый эффект). Микроорганизмы и растения в процессе дыхания или брожения поставляют ~ 85 % общего количества СО 2 , поступающего ежегодно в атмосферу и вследствие этого влияют на тепловой режим планеты. Тенденция повышения содержания СО 2 в атмосфере может привести к увеличению средней температуры на поверхности Земли таяние ледников (горы и полярные льды) затопление прибрежных зон. Тем не менее, возможно, что повышение концентрации СО 2 в атмосфере будет способствовать усилению фотосинтеза растений, что приведет к связыванию избыточных количеств СО 2 .

4. Накопление О 2 в атмосфере. Первоначально О 2 присутствовал в атмосфере Земли в следовых количествах. В настоящее время он составляет ~ 21 % по объему воздуха. Появление и накопление О 2 в атмосфере связано с жизнедеятельностью зеленых растений. Ежегодно в атмосферу поступает ~ 70–120 млрд.т. О 2 , образованного в фотосинтезе. Особую роль в этом играют леса: 1 га леса за 1 час дает О 2 , достаточно для дыхания 200 человек.

5. Образование озонового экрана на высоте ~ 25 км. О 3 образуется при диссоциации О 2 под действием солнечной радиации. Слой О 3 задерживает большую часть УФ (240-290 нм), губительного для живого. Разрушение озонового экрана планеты – одна из глобальных проблем современности.