Прежде чем рассматривать химические свойства углекислого газа, выясним некоторые характеристики данного соединения.

Общие сведения

Является важнейшим компонентом газированной воды. Именно он придает напиткам свежесть, игристость. Данное соединение является кислотным, солеобразующим оксидом. углекислого газа составляет 44 г/моль. Этот газ тяжелее воздуха, поэтому скапливается в нижней части помещения. Данное соединение плохо растворяется в воде.

Химические свойства

Рассмотрим химические свойства углекислого газа кратко. При взаимодействии с водой происходит образование слабой угольной кислоты. Она практически сразу после образования диссоциирует на катионы водорода и анионы карбоната или гидрокарбоната. Полученное соединение вступает во взаимодействие с активными металлами, оксидами, а также со щелочами.

Каковы основные химические свойства углекислого газа? Уравнения реакций подтверждают кислотный характер данного соединения. (4) способен образовывать карбонаты с основными оксидами.

Физические свойства

При нормальных условиях данное соединение находится в газообразном состоянии. При повышении давления можно перевести его до жидкого состояния. Этот газ не имеет цвета, лишен запаха, обладает незначительным кислым вкусом. Сжиженная углекислота является бесцветной, прозрачной, легкоподвижной кислотой, аналогичной по своим внешним параметрам эфиру либо спирту.

Относительная молекулярная масса углекислого газа составляет 44 г/моль. Это практически в 1,5 раза больше, чем у воздуха.

В случае понижения температуры до -78,5 градусов по Цельсию происходит образование Он по своей твердости аналогичен мелу. При испарении данного вещества образуется газообразный оксид углерода (4).

Качественная реакция

Рассматривая химические свойства углекислого газа, необходимо выделить его качественную реакцию. При взаимодействии данного химического вещества с известковой водой происходит образование мутного осадка карбоната кальция.

Кавендишу удалось обнаружить такие характерные физические свойства оксида углерода (4), как растворимость в воде, а также высокий удельный вес.

Лавуазье был проведен в ходе которого он пытался из оксида винца выделить чистый металл.

Выявленные в результате подобных исследований химические свойства углекислого газа стали подтверждением восстановительных свойств данного соединения. Лавуазье при прокаливании окиси свинца с оксидом углерода (4) сумел получить металл. Для того чтобы удостовериться в том, что второе вещество является оксидом углерода (4), он пропустил через газ известковую воду.

Все химические свойства углекислого газа подтверждают кислотный характер данного соединения. В земной атмосфере данное соединение содержится в достаточном количестве. При систематическом росте в земной атмосфере данного соединения возможно серьезное изменение климата (глобальное потепление).

Именно диоксид углерода играет важную роль в живой природе, ведь данное химическое вещество принимает активное участие в метаболизме живых клеток. Именно это химическое соединение является результатом разнообразных окислительных процессов, связанных с дыханием живых организмов.

Углекислый газ, содержащийся в земной атмосфере, является основным источником углерода для живых растений. В процессе фотосинтеза (на свету) происходит процесс фотосинтеза, который сопровождается образованием глюкозы, выделением в атмосферу кислорода.

Диоксид углерода не обладает токсичными свойствами, он не поддерживает дыхания. При повышенной концентрации данного вещества в атмосфере у человека возникает задержка дыхания, появляются сильные головные боли. В живых организмах углекислый газ имеет важное физиологическое значение, к примеру, он необходим для регуляции сосудистого тонуса.

Особенности получения

В промышленных масштабах углекислоту можно выделять из дымового газа. Кроме того, СО2 является побочным продуктом разложения доломита, известняка. Современные установки для производства углекислого газа предполагают использование водного раствора этанамина, адсорбирующего газ, содержащийся в дымовом газе.

В лаборатории диоксид углерода выделяют при взаимодействии карбонатов или гидрокарбонатов с кислотами.

Применение углекислого газа

Данный кислотный оксид применяется в промышленности в качестве разрыхлителя или консерванта. На упаковке продукции данное соединение указывается в виде Е290. В жидком виде углекислоту используют в огнетушителях для тушения пожаров. Оксид углерода (4) используют для получения газированной воды и лимонадных напитков.

Вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях - газообразном, жидком, твёрдом и сверхкритическом.

Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре +20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться - переходить сразу в твёрдое состояние, минуя жидкую фазу.

Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте - путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

Жидкое состояние СО2 носит техническое название «жидкая углекислота » или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0…+31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход, углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется - постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм, в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

  • Удельный вес . Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
  • Критическая температура углекислоты +31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
  • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
  • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
  • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное, стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к мелу,
  • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 - 1,6.
  • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением
  • V= R T/p - A, где
  • V - объем, м3/кг;
  • R - газовая постоянная 848/44 = 19,273;
  • Т - температура, К град.;
  • р давление, кг/м2;
  • А - дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа. Он выражается зависимостью А =(0, 0825 + (1,225)10-7 р)/(Т/100)10/3.
  • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
  • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже 5,28 ата (кг/см2) (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
  • В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
  • i" x + i"" у = i,
  • x + у = 1, где,
  • x и у - доля вещества в жидком и парообразном виде;
  • i" - энтальпия жидкости;
  • i"" - энтальпия пара;
  • i - энтальпия смеси.
  • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
  • i"" у + i"" z = i,
  • у + z = 1, где,
  • i"" - энтальпия твердой углекислоты;
  • z - доля вещества в твердом состоянии.
  • В тройной точке для трех фаз имеются также только два уравнения
  • i" x + i"" у + i""" z = i,
  • x + у + z = 1.
  • Зная значения i," i"," i""" для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
  • Теплоемкость. Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
  • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
  • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до +20 град. характеризуется следующими значениями, ккал/кг*град. :
  • Град.С -50 -40 -30 -20 -10 0 10 20
  • Ср, 0,47 0,49 0,515 0,514 0,517 0,6 0,64 0,68
  • Точка плавления. Плавление твердой углекислоты происходит при температурах и давлениях, соответствующих тройной точке (t = -56,6 град. и р = 5,28 ата) или находящихся выше ее.
  • Ниже тройной точки твердая углекислота сублимирует. Температура сублимации является функцией давления: при нормальном давлении она равна -78,5 град., в вакууме она может быть -100 град. и ниже.
  • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений определяют по уравнению Планка и Куприянова.
  • i = 169,34 + (0,1955 + 0,000115t)t - 8,3724 p(1 + 0,007424p)/0,01T(10/3), где
  • I - ккал/кг, р - кг/см2, Т - град.К, t - град.С.
  • Энтальпию жидкой углекислоты в любой точке можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой теплоты парообразования. Точно так же, вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
  • Теплопроводность . Теплопроводность углекислого газа при 0 град. составляет 0,012 ккал/м*час*град.С, а при температуре -78 град. она понижается до 0,008 ккал/м*час*град.С.
  • Данные о теплопроводности углекислоты в 10 4 ст. ккал/м*час*град.С при плюсовых температурах приведены в таблице.
  • Давление, кг/см2 10 град. 20 град. 30 град. 40 град.
  • Газообразная углекислота
  • 1 130 136 142 148
  • 20 - 147 152 157
  • 40 - 173 174 175
  • 60 - - 228 213
  • 80 - - - 325
  • Жидкая углекислота
  • 50 848 - - -
  • 60 870 753 - -
  • 70 888 776 - -
  • 80 906 795 670
    Теплопроводность твердой углекислоты может быть вычислена по формуле:
    236,5/Т1,216 ст., ккал/м*час*град.С.
  • Коэффициент теплового расширения. Объемный коэффициент расширения а твердой углекислоты рассчитывают в зависимости от изменения удельного веса и температуры. Линейный коэффициент расширения определяют по выражению b = a/3. В диапазоне температур от -56 до -80 град. коэффициенты имеют следующие значения: а *10*5ст. = 185,5-117,0, b* 10* 5 cт. = 61,8-39,0.
  • Вязкость. Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
  • Давление, ата -15 град. 0 град. 20 град. 40 град.
  • 5 1,38 1,42 1,49 1,60
  • 30 12,04 1,63 1,61 1,72
  • 75 13,13 12,01 8,32 2,30
  • Диэлектрическая постоянная. Диэлектрическая постоянная жидкой углекислоты при 50 - 125 ати, находится в пределах 1,6016 - 1,6425.
  • Диэлектрическая постоянная углекислого газа при 15 град. и давлении 9,4 - 39 ати 1,009 - 1,060.
  • Влагосодержание углекислого газа. Содержание водяных паров во влажном углекислом газе определяют с помощью уравнения,
  • Х = 18/44 * p’/p - p’ = 0,41 p’/p - p’ кг/кг, где
  • p’ - парциальное давление водяных паров при 100%-м насыщении;
  • р - общее давление паро-газовой смеси.
  • Растворимость углекислоты в воде. Растворимость газов измеряется объемами газа, приведенными к нормальным условиям (0 град, С и 760 мм рт. ст.) на объем растворителя.
  • Растворимость углекислоты в воде при умеренных температурах и давлениях до 4 - 5 ати подчиняется закону Генри, который выражается уравнением
  • Р = Н Х, где
  • Р - парциальное давление газа над жидкостью;
  • Х - количество газа в молях;
  • Н - коэффициент Генри.
  • Жидкая углекислота как растворитель. Растворимость смазочного масла в жидкой углекислоте при температуре -20град. до +25 град. составляет 0,388 г в100 СО2,
  • и увеличивается до 0,718 г в 100 г СО2 при температуре +25 град. С.
  • Растворимость воды в жидкой углекислоте в диапазоне температур от -5,8 до +22,9 град. составляет не более 0,05% по весу.

Техника безопасности

По степени воздействия на организм человека газообразный диоксид углерода относится к 4-му классу опасности по ГОСТу 12.1.007-76 «Вредные вещества. Классификация и общие требования безопасности». Предельно допустимая концентрация в воздухе рабочей зоны не установлена, при оценке этой концентрации следует ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5%.

При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.

«Формулы оксида азота» - Газ. Азотистый ангидрид. Лисий хвост. Оксиды. Оксид азота. Летучие кристаллы. Диоксид азота. Солеобразующий кислотный оксид. Жидкость синего цвета. Кислородные соединения азота. Физические свойства. Формула. Применяется в лаборатории. Характер. Не реагирует с водой. Оксиды азота. Применение. Реагирует с водой.

«Оксид углерода II» - «Парниковый эффект». Ц, З, Плохо растворим в воде Ткип. -192,1С` Ядовит-0,2%в воздухе cмертельно! ОКСИД УГЛЕРОДА (II) и(IV). Закрепление. : Получение со2. Получение СО. Т0 и Р=60 атм.сжижается. Химические свойства СО. В лаборатории – Н+ Т НСООН Н2О + СО Муравьиная кислота. Получение СО: При комн. Химические свойства.

«Оксид углерода» - Для оксида углерода (II) характерны восстановительные свойства. Оксид углерода (IV). Со. Оксиды углерода. Получение оксида углерода (IV). Использованы ЦОР: или углекислый газ – газ без цвета и запаха. Демонстрационное поурочное планирование. Оксид углерода (II).

«Химические свойства оксидов» - Классификация оксидов по химическим свойствам. Химические свойства основных оксидов. Основные оксиды. Химические свойства амфотерных оксидов. Оксиды. Кислотные оксиды. Несолеобразующие оксиды. Солеобразующие оксиды. Амфотерные оксиды. Химические свойства кислотных оксидов. Способы получения оксидов.

«Угарный газ» - Оксид углерода(II) (угарный газ). Химические свойства: Влияние СО на человека: Снижается обеспеченность тканей организма кислородом, развивается гипоксемия. Нарушается обмен фосфора и азота. Физические свойства. Угарный газ образуется при неполном сгорании топлива. Нарушается углеводный обмен. Газификация топлива.

«Оксид азота» - NH3. Окислительно-восстановительная двойственность. «Лисий хвост» Ядовитый газ бурого цвета, имеет характерный запах. N2o3-оксид азота (III). Окислитель: 2NO + 2SO2 = 2SO3 + N2 Нитрозный способ получения серной кислоты. N2O- оксид азота (I). N2O5. Молекула линейна. NO. Бесцветный газ, не имеет запаха.

Всего в теме 14 презентаций

Энциклопедичный YouTube

  • 1 / 5

    Оксид углерода(IV) не поддерживает горения . В нём горят только некоторые активные металлы: :

    2 M g + C O 2 → 2 M g O + C {\displaystyle {\mathsf {2Mg+CO_{2}\rightarrow 2MgO+C}}}

    Взаимодействие с оксидом активного металла:

    C a O + C O 2 → C a C O 3 {\displaystyle {\mathsf {CaO+CO_{2}\rightarrow CaCO_{3}}}}

    При растворении в воде образует угольную кислоту :

    C O 2 + H 2 O ⇄ H 2 C O 3 {\displaystyle {\mathsf {CO_{2}+H_{2}O\rightleftarrows H_{2}CO_{3}}}}

    Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов:

    C a (O H) 2 + C O 2 → C a C O 3 ↓ + H 2 O {\displaystyle {\mathsf {Ca(OH)_{2}+CO_{2}\rightarrow CaCO_{3}\downarrow +H_{2}O}}} (качественная реакция на углекислый газ) K O H + C O 2 → K H C O 3 {\displaystyle {\mathsf {KOH+CO_{2}\rightarrow KHCO_{3}}}}

    Биологические

    Организм человека выделяет приблизительно 1 кг углекислого газа в сутки .

    Этот углекислый газ переносится от тканей, где он образуется в качестве одного из конечных продуктов метаболизма, по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, и уменьшается в капиллярной сети лёгких, и мало в артериальной крови. Содержание углекислого газа в пробе крови часто выражают в терминах парциального давления, то есть давления, которое бы имел содержащийся в пробе крови в данном количестве углекислый газ, если бы весь объём пробы крови занимал только он .

    Углекислый газ (CO 2) транспортируется в крови тремя различными способами (точное соотношение каждого из этих трёх способов транспортировки зависит от того, является ли кровь артериальной или венозной).

    Гемоглобин, основной кислород-транспортирующий белок эритроцитов крови, способен транспортировать как кислород, так и углекислый газ . Однако углекислый газ связывается с гемоглобином в ином месте, чем кислород. Он связывается с N-терминальными концами цепей глобина , а не с гемом . Однако благодаря аллостерическим эффектам, которые приводят к изменению конфигурации молекулы гемоглобина при связывании, связывание углекислого газа понижает способность кислорода к связыванию с ним же, при данном парциальном давлении кислорода, и наоборот - связывание кислорода с гемоглобином понижает способность углекислого газа к связыванию с ним же, при данном парциальном давлении углекислого газа. Помимо этого, способность гемоглобина к преимущественному связыванию с кислородом или с углекислым газом зависит также и от pH среды. Эти особенности очень важны для успешного захвата и транспорта кислорода из лёгких в ткани и его успешного высвобождения в тканях, а также для успешного захвата и транспорта углекислого газа из тканей в лёгкие и его высвобождения там.

    Углекислый газ является одним из важнейших медиаторов ауторегуляции кровотока. Он является мощным вазодилататором . Соответственно, если уровень углекислого газа в ткани или в крови повышается (например, вследствие интенсивного метаболизма - вызванного, скажем, физической нагрузкой, воспалением, повреждением тканей, или вследствие затруднения кровотока, ишемии ткани), то капилляры расширяются, что приводит к увеличению кровотока и соответственно к увеличению доставки к тканям кислорода и транспорта из тканей накопившейся углекислоты. Кроме того, углекислый газ в определённых концентрациях (повышенных, но ещё не достигающих токсических значений) оказывает положительное инотропное и хронотропное действие на миокард и повышает его чувствительность к адреналину , что приводит к увеличению силы и частоты сердечных сокращений, величины сердечного выброса и, как следствие, ударного и минутного объёма крови. Это также способствует коррекции тканевой гипоксии и гиперкапнии (повышенного уровня углекислоты).

    Ионы гидрокарбоната очень важны для регуляции pH крови и поддержания нормального кислотно-щелочного равновесия. Частота дыхания влияет на содержание углекислого газа в крови. Слабое или замедленное дыхание вызывает респираторный ацидоз , в то время как учащённое и чрезмерно глубокое дыхание приводит к гипервентиляции и развитию респираторного алкалоза .

    Кроме того, углекислый газ также важен в регуляции дыхания. Хотя наш организм требует кислорода для обеспечения метаболизма, низкое содержание кислорода в крови или в тканях обычно не стимулирует дыхание (вернее, стимулирующее влияние нехватки кислорода на дыхание слишком слабо и «включается» поздно, при очень низких уровнях кислорода в крови, при которых человек нередко уже теряет сознание). В норме дыхание стимулируется повышением уровня углекислого газа в крови. Дыхательный центр гораздо более чувствителен к повышению уровня углекислого газа, чем к нехватке кислорода. Как следствие этого, дыхание сильно разрежённым воздухом (с низким парциальным давлением кислорода) или газовой смесью, вообще не содержащей кислорода (например, 100 % азотом или 100 % закисью азота) может быстро привести к потере сознания без возникновения ощущения нехватки воздуха (поскольку уровень углекислоты в крови не повышается, ибо ничто не препятствует её выдыханию). Это особенно опасно для пилотов военных самолётов, летающих на больших высотах (в случае аварийной разгерметизации кабины пилоты могут быстро потерять сознание). Эта особенность системы регуляции дыхания также является причиной того, почему в самолётах стюардессы инструктируют пассажиров в случае разгерметизации салона самолёта в первую очередь надевать кислородную маску самим, прежде чем пытаться помочь кому-либо ещё - делая это, помогающий рискует быстро потерять сознание сам, причём даже не ощущая до последнего момента какого-либо дискомфорта и потребности в кислороде .

    Дыхательный центр человека пытается поддерживать парциальное давление углекислого газа в артериальной крови не выше 40 мм ртутного столба. При сознательной гипервентиляции содержание углекислого газа в артериальной крови может снизиться до 10-20 мм ртутного столба, при этом содержание кислорода в крови практически не изменится или увеличится незначительно, а потребность сделать очередной вдох уменьшится как следствие уменьшения стимулирующего влияния углекислого газа на активность дыхательного центра. Это является причиной того, почему после некоторого периода сознательной гипервентиляции легче задержать дыхание надолго, чем без предшествующей гипервентиляции. Такая сознательная гипервентиляция с последующей задержкой дыхания может привести к потере сознания до того, как человек ощутит потребность сделать вдох. В безопасной обстановке такая потеря сознания ничем особенным не грозит (потеряв сознание, человек потеряет и контроль над собой, перестанет задерживать дыхание и сделает вдох, дыхание, а вместе с ним и снабжение мозга кислородом восстановится, а затем восстановится и сознание). Однако в других ситуациях, например, перед нырянием, это может быть опасным (потеря сознания и потребность сделать вдох наступят на глубине, и в отсутствие сознательного контроля в дыхательные пути попадёт вода, что может привести к утоплению). Именно поэтому гипервентиляция перед нырянием опасна и не рекомендуется.

    Получение

    В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов (известняк , доломит) или при производстве алкоголя (спиртовое брожение). Смесь полученных газов промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната чаще применяется водный раствор моноэтаноламина , который при определённых условиях способен абсорбировать СО₂, содержащийся в дымовом газе, а при нагреве отдавать его; таким образом отделяется готовый продукт от других веществ.

    Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона .

    В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора , мела или соды с соляной кислотой , используя, например, аппарат Киппа . Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты.

    Для приготовления напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

    Применение

    В пищевой промышленности углекислота используется как консервант и разрыхлитель , обозначается на упаковке кодом Е290 .

    Устройство для подачи углекислого газа в аквариум может включать в себя резервуар с газом. Простейший и наиболее распространенный метод получения углекислого газа основан на конструкции для изготовления алкогольного напитка браги . При брожении, выделяемый углекислый газ вполне может обеспечить подкормку аквариумных растений

    Углекислый газ используется для газирования лимонада и газированной воды . Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его распад с выделением кислорода. Выделяющийся кислород окисляет металл . В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний . Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде.

    Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31°С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см²). Если температура будет выше +31°С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см²), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа,- таким образом, работа с подобными баллонами может считаться вполне безопасной.

    Твёрдая углекислота - «сухой лёд» - используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки .

    Методы регистрации

    Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях - анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO 2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта . Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем . Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф . Для измерения низких концентраций CO 2 (а также ) в технологических газах или в атмосферном воздухе можно использовать газохроматографический метод с метанатором и регистрацией на пламенно-ионизационном детекторе .

    Углекислый газ в природе

    Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40-70°) широт Северного полушария.

    Большое количество углекислоты растворено в океане.

    Углекислый газ составляет значительную часть атмосфер некоторых планет Солнечной системы : Венеры , Марса .

    Токсичность

    Углекислый газ нетоксичен, но по воздействию его повышенных концентраций в воздухе на воздуходышащие живые организмы его относят к удушающим газам (англ.) русск. . Незначительные повышения концентрации до 2-4 % в помещениях приводят к развитию у людей сонливости и слабости. Опасными концентрациями считаются уровни около 7-10 %, при которых развивается удушье, проявляющее себя в головной боли, головокружении, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), в зависимости от концентрации, в течение времени от нескольких минут до одного часа. При вдыхании воздуха с высокими концентрациями газа смерть наступает очень быстро от удушья .

    Хотя, фактически, даже концентрация 5-7 % CO 2 не смертельна, уже при концентрации 0,1 % (такое содержание углекислого газа наблюдается в воздухе мегаполисов) люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоких содержаниях кислорода большая концентрация CO 2 сильно влияет на самочувствие.

    Вдыхание воздуха с повышенной концентрацией этого газа не приводит к долговременным расстройствам здоровья и после удаления пострадавшего из загазованной атмосферы быстро наступает полное восстановление здоровья .

    Углекислый газ (двуокись углерода), называемый также углекислотой, - важнейший компонент в составе газированных напитков. Он обусловливает вкус и биологическую стойкость напитков, сообщает им игристость и освежающие свойства.

    Химические свойства. В химическом отношении углекислый газ инертен. Образовавшись с выделением большого количества тепла, он, как продукт полного окисления углерода, весьма стоек. Реакции восстановления двуокиси углерода протекают только при высоких температурах. Так, например, взаимодействуя с калием при 230° С, углекислый газ восстанавливается до щавелевой кислоты:

    Вступая в химическое взаимодействие с водой, газ, в количестве не более 1% от содержания его в растворе, образует угольную кислоту, диссоциирующую на ионы Н + , НСО 3 - , СО 2 3- . В водном растворе углекислый газ легко вступает в химические реакции, образуя различные углекислые соли. Поэтому водный раствор углекислого газа обладает большой агрессивностью по отношению к металлам, а также разрушающе действует на бетон.

    Физические свойства. Для сатурации напитков используется углекислый газ, приведенный в жидкое состояние сжатием до высокого давления. В зависимости от температуры и давления углекислый газ может находиться также в газообразном и твердом состоянии. Температура и давление, соответствующие данному агрегатному состоянию, приведены на диаграмме фазового равновесия (рис. 13).


    При температуре минус 56,6° С и давлении 0,52 Мн/м 2 (5,28 кГ/см 2), соответствующих тройной точке, углекислый газ может одновременно находиться в газообразном, жидком и твердом состоянии. При более высоких температуре и давлении углекислый газ находится в жидком и газообразном состоянии; при температуре и давлении, которые ниже этих показателей, газ, непосредственно минуя жидкую фазу, переходит в газообразное состояние (сублимирует). При температуре, превышающей критическую температуру 31,5° С, никакое давление не может удержать углекислый газ в виде жидкости.

    В газообразном состоянии углекислый газ бесцветен, не имеет запаха и обладает слабовыраженным кислым вкусом. При температуре 0° С и атмосферном давлении плотность углекислого газа составляет 1,9769 кг/ж 3 ; он в 1,529 раз тяжелее воздуха. При 0°С и атмосферном давлении 1 кг газа занимает объем 506 л. Связь между объемом, температурой и давлением углекислого газа выражается уравнением:

    где V - объем 1 кг газа в м 3 /кг; Т - температура газа в ° К; Р - давление газа в н/м 2 ; R - газовая постоянная; А - дополнительная величина, учитывающая отклонение от уравнения состояния идеального газа;

    Ожиженный углекислый газ - бесцветная, прозрачная, легкоподвижная жидкость, напоминающая по внешнему виду спирт или эфир. Плотность жидкости при 0° С равна 0,947. При температуре 20°С ожиженный газ сохраняется под давлением 6,37 Мн/м 2 (65 кГ/см 2) в стальных баллонах. При свободном истечении из баллона жидкость испаряется с поглощением большого количества тепла. При снижении температуры до минус 78,5° С часть жидкости замерзает, превращаясь в так называемый сухой лед. По твердости сухой лед близок к мелу и имеет матово-белый цвет. Сухой лед испаряется медленнее жидкости, при этом он непосредственно переходит в газообразное состояние.

    При температуре минус 78,9° С и давлении 1 кГ/см 2 (9,8 Мн/м 2) теплота сублимации сухого льда составляет 136,89 ккал/кг (573,57 кдж/кг).