В мире существует немалое количество различных политических клубов. Большая, теперь уже, семерка, Большая двадцатка, БРИКС, ШОС, НАТО, Евросоюз, в какой-то степени. Однако ни один из этих клубов не может похвастаться уникальной функцией – способностью уничтожить мир таким, каким мы его знаем. Подобными возможностями обладает «ядерный клуб».

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • Россия;
  • Великобритания;
  • Франция;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» — понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния - в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

Айви Майк - первые атмосферные испытания водородной бомбы, проведенные США на атоллле Эниветок 1 ноября 1952 года.

65 лет назад Советский Союз взорвал свою первую термоядерную бомбу. Как устроено это оружие, что оно может и чего не может? 12 августа 1953-го в СССР взорвали первую «практичную» термоядерную бомбу. Мы расскажем об истории ее создания и разберёмся, правда ли, что такой боеприпас почти не загрязняет среду, но может уничтожить мир.

Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года. Она пришла в головы физикам Энрико Ферми и Эдварду Теллеру. Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее.

Приблизительно понять, насколько термоядерная бомба сложнее атомной, можно и по тому факту, что работающие АЭС давно обыденность, а работающие и практичные термоядерные электростанции - все еще научная фантастика.

Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году (проект неофициально назывался Super), но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу.

Президент США Гарри Трумэн заявил, что на советский рывок нужно ответить «так называемой водородной, или супербомбой».

К 1951 году американцы собрали устройство и провели испытания под кодовым названием «Джордж». Конструкция представляла собой тор - проще говоря, бублик - с тяжелыми изотопами водорода, дейтерием и тритием. Выбрали их потому, что такие ядра сливать проще, чем ядра обычного водорода. Запалом служила ядерная бомба. Взрыв сжимал дейтерий и тритий, те сливались, давали поток быстрых нейтронов и зажигали обкладку из урана. В обычной атомной бомбе он не делится: там есть только медленные нейтроны, которые не могут заставить делиться стабильный изотоп урана. Хотя на энергию слияния ядер пришлось примерно 10% от общей энергии взрыва «Джорджа», «поджиг» урана-238 позволил поднять мощность взрыва вдвое выше обычного, до 225 килотонн.

За счет дополнительного урана взрыв получился вдвое мощнее, чем с обычной атомной бомбой. Но на термоядерный синтез приходилось только 10% выделившейся энергии: испытания показали, что ядра водорода сжимаются недостаточно сильно.

Тогда математик Станислав Улам предложил другой подход - двухступенчатый ядерный запал. Его задумка заключалась в том, чтобы поместить в «водородной» зоне устройства плутониевый стержень. Взрыв первого запала «поджигал» плутоний, две ударные волны и два потока рентгеновских лучей сталкивались - давление и температура подскакивали достаточно, чтобы начался термоядерный синтез. Новое устройство испытали на атолле Эниветок в Тихом океане в 1952 году - взрывная мощность бомбы составила уже десять мегатонн в тротиловом эквиваленте.

Тем не менее и это устройство было непригодно для использования в качестве боевого оружия.

Чтобы ядра водорода сливались, расстояние между ними должно быть минимальным, поэтому дейтерий и тритий охлаждали до жидкого состояния, почти до абсолютного нуля. Для этого требовалась огромная криогенная установка. Второе термоядерное устройство, по сути увеличенная модификация «Джорджа», весило 70 тонн - с самолета такое не сбросишь.

СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. В ней предполагалось использовать дейтерид лития. Это металл, твердое вещество, его не надо сжижать, а потому громоздкий холодильник, как в американском варианте, уже не требовался. Не менее важно и то, что литий-6 при бомбардировке нейтронами от взрыва давал гелий и тритий, что еще больше упрощает дальнейшее слияние ядер.

Бомба РДС-6с была готова в 1953 году. В отличие от американских и современных термоядерных устройств плутониевого стержня в ней не было. Такая схема известна как «слойка»: слои дейтерида лития перемежались урановыми. 12 августа РДС-6с испытали на Семипалатинском полигоне.

Мощность взрыва составила 400 килотонн в тротиловом эквиваленте - в 25 раз меньше, чем во второй попытке американцев. Зато РДС-6с можно было сбросить с воздуха. Такую же бомбу собирались использовать и на межконтинентальных баллистических ракетах. А уже в 1955 году СССР усовершенствовал свое термоядерное детище, оснастив его плутониевым стержнем.

Сегодня практически все термоядерные устройства - судя по всему, даже северокорейские - представляют собой нечто среднее между ранними советскими и американскими моделями. Все они используют дейтерид лития как топливо и поджигают его двухступенчатым ядерным детонатором.

Как известно из утечек, даже самая современная американская термоядерная боеголовка W88 похожа на РДС-6c: слои дейтерида лития перемежаются ураном.

Разница в том, что современные термоядерные боеприпасы - это не многомегатонные монстры вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с. Мегатонных боеголовок в арсеналах ни у кого нет, так как в военном отношении десяток менее мощных зарядов ценнее одного сильного: это позволяет поразить больше целей.

Техники работают с американской термоядерной боеголовкой W80

Чего не может термоядерная бомба

Водород - элемент чрезвычайно распространенный, достаточно его и в атмосфере Земли.

Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф.

Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны.

Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» - опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, - получается меньше, чем при делении ядер урана.

Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению.

Зона возможного тотального поражения «Царь-бомбой», нанесенная на карту Парижа. Красный круг - зона полного разрушения (радиус 35 км). Желтый круг - размер огненного шара (радиус 3,5 км).

Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.

Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз - мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная.

66 миллионов лет назад столкновение с астероидом привело к исчезновению большинства наземных животных и растений. Мощность удара составила около 100 млн мегатонн - это в 10 тыс. раз больше суммарной мощности всех термоядерных арсеналов Земли. 790 тыс. лет назад с планетой столкнулся астероид, удар был мощностью в миллион мегатонн, но никаких следов хотя бы умеренного вымирания (включая наш род Homo) после этого не случилось. И жизнь в целом, и человек куда крепче, чем они кажутся.

Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа - более чем достаточный сдерживающий фактор.

Атомная энергия выделяется не только при делении атомных ядер тяжелых элементов, но и при соединении (синтезе) легких ядер в более тяжелые.

Например, ядра атомов водорода, соединяясь, образуют ядра атомов гелия, при этом выделяется энергии на единицу веса ядерного горючего больше, чем при делении ядер урана.

Эти реакции синтеза ядер, протекающие при очень высоких температурах, измеряемых десятками миллионов градусов, получили название термоядерных реакций. Оружие, основанное на использовании энергии мгновенно выделяющейся в результате термоядерной реакции, называется термоядерным оружием .

Термоядерное оружие, в котором в качестве заряда (ядерного взрывчатого вещества) используются изотопы водорода, часто называют водородным оружием .

Особенно успешно протекает реакция синтеза между изотопами водорода - дейтерием и тритием.

В качестве заряда водородной бомбы может также применяться и дейтерий лития (соединение дейтерия с литием).

Дейтерий, или тяжелый водород, в незначительных количествах встречается в природе в составе тяжелой воды. В обычной воде в виде примеси содержится около 0,02% тяжелой воды. Чтобы получить 1 кг дейтерия, надо переработать не менее 25 т воды.

Тритий, или сверхтяжелый водород, в природе практически не встречается. Он получается искусственно, например, при облучении лития нейтронами. Для этой цели могут быть использованы нейтроны, выделяющиеся в ядерных реакторах.

Практически устройство водородной бомбы можно представить себе следующим образом: рядом с водородным зарядом, содержащим тяжелый и сверхтяжелый водород (т. е. дейтерий и тритий), находятся два удаленных друг от друга полушария из урана или плутония (атомный заряд).

Для сближения этих полушарий используются заряды из обычного взрывчатого вещества (тротила). Взрываясь одновременно, заряды из тротила сближают полушария атомного заряда. В момент их соединения происходит взрыв, тем самым создаются условия для термоядерной реакции, а следовательно, произойдет взрыв и водородного заряда. Таким образом, реакция взрыва водородной бомбы проходит две фазы: первая фаза - деление урана или плутония, вторая - фаза синтеза, при которой образуются ядра гелия и свободные нейтроны больших энергии. В настоящее время имеются схемы построения трехфазной термоядерной бомбы.

В трехфазной бомбе оболочку изготовляют из урана-238 (природного урана). В этом случае реакция проходит три фазы: первая фаза деления (уран или плутоний для детонации), вторая - термоядерная реакция в гидрите лития и третья фаза - реакция деления урана-238. Деление ядер урана вызывают нейтроны, которые выделяются в виде мощного потока при реакции синтеза.

Изготовление оболочки из урана-238 дает возможность увеличить мощность бомбы за счет наиболее доступного атомного сырья. По сообщению иностранной печати, уже испытывались бомбы мощностью 10-14 млн. тонн и более. Становится очевидным, что это не является пределом. Дальнейшее усовершенствование ядерного оружия идет как по линии создания бомб особо большой мощности, так и по линии разработки новых конструкций, позволяющих уменьшить вес и калибр бомб. В частности, работают над созданием бомбы, основанной полностью на синтезе. Имеются, например, сообщения в иностранной печати о возможности применения нового метода детонации термоядерных бомб на основе использования ударных волн обычных взрывчатых веществ.

Энергия, выделяемая при взрыве водородной бомбы, может быть в тысячи раз больше, чем энергия взрыва атомной бомбы. Однако радиус разрушения не может превышать во столько же раз радиус разрушений, вызванных взрывом атомной бомбы.

Радиус действия ударной волны при воздушном взрыве водородной бомбы с тротиловым эквивалентом в 10 млн. т больше радиуса действия ударной волны, образующейся при взрыве атомной бомбы с тротиловым эквивалентом в 20000 тонн, примерно в 8 раз, тогда как мощность бомбы больше в 500 раз, т. е. на корень кубический из 500. Соответственно этому и площадь разрушения увеличивается примерно в 64 раза, т. е. пропорционально корню кубическому из коэффициента увеличения мощности бомбы в квадрате.

По данным иностранных авторов, при ядерном взрыве мощностью 20 млн. т площадь полного разрушения обычных наземных строений, по подсчетам американских специалистов, может достигнуть 200 км 2 , зона значительных разрушений - 500 км 2 и частичных - до 2580 км 2 .

Это значит, заключают иностранные специалисты, что взрыва одной бомбы подобной мощности достаточно для разрушения современного крупного города. Как известно, занимаемая площадь Парижа - 104 км 2 , Лондона - 300 км 2 , Чикаго - 550 км 2 , Берлина - 880 км 2 .

Масштабы поражений и разрушений от ядерного взрыва мощностью в 20 млн. т могут быть представлены схематично, в следующем виде:

Область смертельных доз начальной радиации в радиусе до 8 км (на площади до 200 км 2);

Область поражений световым излучением (ожоги)] в радиусе до 32 км (на площади около 3000 км 2).

Повреждения жилых зданий (выбиты стекла, осыпалась штукатурка и т. д.) могут наблюдаться даже на расстоянии до 120 км от места взрыва.

Приведенные данные из открытых иностранных источников являются ориентировочными, они получены при испытании ядерных боеприпасов меньшей мощности и путем расчетов. Отклонения от этих данных в ту или другую сторону будут зависеть от различных факторов, и в первую очередь от рельефа местности, характера застройки, метеорологических условий, растительного покрова и т. д.

Изменить радиус поражения в значительной степени можно путем создания искусственно тех или других условий, снижающих эффект воздействия поражающих факторов взрыва. Так, например, можно уменьшить поражающее действие светового излучения, сократить площадь, на которой могут возникнуть ожоги у людей и воспламеняться предметы, путем создания дымовой завесы.

Проведенные опыты в США по созданию дымовых завес при ядерных взрывах в 1954-1955 гг. показали, что при плотности завесы (масляных туманов), получаемой при расходе 440-620 л масла на 1 км 2 , воздействие светового излучения ядерного взрыва в зависимости от расстояния до эпицентра можно ослабить на 65-90 %.

Ослабляют поражающее воздействие светового излучения также и другие дымы, которые не только не уступают, а в ряде случаев превосходят масляные туманы. В частности, промышленный дым, уменьшающий атмосферную видимость, может ослабить воздействие светового излучения в такой же степени, как и масляные туманы.

Намного можно уменьшить поражающий эффект ядерных взрывов путем рассредоточенного строительства населенных пунктов, создания массивов лесных насаждений и т. д.

Особо следует отметить резкое уменьшение радиуса поражения людей в зависимости от использования тех или других средств защиты. Известно, например, что даже на небольшом сравнительно расстоянии от эпицентра взрыва надежным укрытием от воздействия светового излучения и проникающей радиации является убежище, имеющее слой земляного покрытия толщиной 1,6 м или слой бетона в 1 м.

Убежище легкого типа уменьшает радиус зоны поражения людей по сравнению с открытым расположением в шесть раз, а площадь поражения сокращается в десятки раз. При использовании крытых щелей радиус возможного поражения уменьшается в 2 раза.

Следовательно, при максимальном использовании всех имеющихся способов и средств защиты можно добиться значительного снижения воздействия поражающих факторов ядерного оружия и тем самым уменьшения людских и материальных потерь при его применении.

Говоря о масштабах разрушений, которые могут быть вызваны взрывами ядерного оружия большой мощности, необходимо иметь в виду, что поражения будут нанесены не только действием ударной волны, светового излучения и проникающей радиации, но и действием радиоактивных веществ, выпадающих по пути движения образовавшегося при взрыве облака, в состав которого входят не только газообразные продукты взрыва, но и твердые частицы различной величины как по весу, так и по размерам. Особенно большое количество радиоактивной пыли образуется при наземных взрывах.

Высота подъема облака и его размеры во многом зависят от мощности взрыва. По сообщению иностранной печати, при испытании ядерных зарядов мощностью в несколько миллионов тонн тротила, которые проводились США в районе Тихого океана в 1952-1954 гг., верхушка облака достигла высоты 30-40 км.

В первые минуты после взрыва облако имеет форму шара и с течением времени вытягивается по направлению ветра, достигая огромной величины (около 60- 70 км).

Примерно через час после взрыва бомбы с тротиловым эквивалентом в 20 тысяч т объем облака достигает 300 км 3 , а при взрыве бомбы в 20 млн. т объем может достигнуть 10 тыс. км 3 .

Двигаясь по направлению потока воздушных масс, атомное облако может занять полосу протяженностью в несколько десятков километров.

Из облака при его движении, после подъема в верхние слои разряженной атмосферы, уже через несколько минут начинает выпадать на землю радиоактивная пыль, заражая по пути территорию в несколько тысяч квадратных километров.

В первое время выпадают наиболее тяжелые частицы пыли, которые успевают осесть в течение нескольких часов. Основная масса крупной пыли выпадает в первые 6-8 часов после взрыва.

Около 50% частиц (наиболее крупных) радиоактивной пыли выпадает в течение первых 8 часов после взрыва. Это выпадение часто называют местным в отличие от общего, повсеместного.

Более мелкие частицы пыли остаются в воздухе на различных высотах и выпадают на землю в течение примерно двух недель после взрыва. За это время облако может обойти вокруг земного шара несколько раз, захватывая при этом широкую полосу параллельно широте, на которой был произведен взрыв.

Частицы малых размеров (до 1 мк) остаются в верхних слоях атмосферы, распределяясь более равномерно вокруг земного шара, и выпадают в течение последующего ряда лет. По заключению ученых, выпадение мелкой радиоактивной пыли продолжается повсеместно на протяжении около десяти лет.

Наибольшую опасность для населения представляет радиоактивная пыль, выпадающая в первые часы после взрыва, так как при этом уровень радиоактивного заражения является настолько высоким, что может вызвать смертельные поражения людей и животных, оказавшихся на территории по пути движения радиоактивного облака.

Размеры площади и степень заражения местности в результате выпадения радиоактивной пыли во многом зависят от метеорологических условий, рельефа местности, высоты взрыва, величины заряда бомбы, характера грунта и т. п. Наиболее важным фактором, определяющим размеры площади заражения, ее конфигурацию, является направление и сила ветров, господствующих в районе взрыва на различных высотах.

Чтобы определить возможное направление движения облака, необходимо знать, в каком направлении и с какой скоростью дует ветер на различных высотах, начиная с высоты примерно 1 км и кончая 25-30 км. Для этого метеослужба должна вести постоянные наблюдения и измерения ветра с помощью радиозондов на различных высотах; на основании полученных данных определять, в каком направлении вероятнее всего движение радиоактивного облака.

При взрыве водородной бомбы, произведенном США в 1954 году в районе центральной части Тихого океана (на атолле Бикини), зараженный участок территории имел форму вытянутого эллипса, который простирался на 350 км по ветру и на 30 км против ветра. Наибольшая ширина полосы составляла около 65 км. Общая площадь опасного заражения достигала около 8 тыс. км 2 .

Как известно, в результате этого взрыва заражению радиактивной пылью подверглось японское рыболовное судно «Фукурюмару», которое находилось в то время на расстоянии около 145 км. Находившиеся на этом судне 23 рыбака получили поражения, причем один из них смертельное.

Действию выпавшей радиоактивной пыли после взрыва 1 марта 1954 года подверглись также 29 американских служащих и 239 жителей Маршалловых островов, причем все получившие поражения находились на расстоянии более 300 км от места взрыва. Оказались зараженными также и другие суда, находившиеся в Тихом океане на удалении до 1500 км от Бикини, и часть рыбы вблизи японского берега.

На загрязнение атмосферы продуктами взрыва указывали выпавшие в мае месяце на тихоокеанском побережье и Японии дожди, в которых была обнаружена сильно повышенная радиоактивность. Районы, в которых отмечено выпадение радиоактивных осадков в течение мая 1954 года, занимают около трети всей территории Японии.

Приведенные выше данные о масштабах поражений, которые могут быть нанесены населению при взрыве атомных бомб больших калибров, показывают, что ядерные заряды большой мощности (миллионы тонн тротила) можно считать оружием радиологическим, т. е. оружием, поражающим больше радиоактивными продуктами взрыва, чем ударной волной, световым излучением и проникающей радиацией, действующей в момент взрыва.

Поэтому в ходе подготовки населенных пунктов и объектов народного хозяйства к гражданской обороне, необходимо повсеместно предусматривать мероприятия по защите населения, животных, продуктов питания, фуража и воды от заражения продуктами взрыва ядерных зарядов, которые могут выпадать по пути движения радиоактивного облака.

При этом следует иметь в виду, что в результате выпадения радиоактивных веществ будет подвергаться заражению не только поверхность почвы и предметов, но и воздух, растительность, вода в открытых водоемах и т. д. Воздух будет зараженным как в период оседания радиоактивных частиц, так и в последующее время, особенно вдоль дорог при движении транспорта или при ветреной погоде, когда осевшие частицы пыли будут опять подыматься в воздух.

Следовательно, незащищенные люди и животные могут оказаться пораженными радиоактивной пылью, попадающей в органы дыхания вместе с воздухом.

Опасными также окажутся пищевые продукты и вода, заражённые радиоактивной пылью, которые при попадании в организм могут вызвать тяжелое заболевание, иногда со смертельным исходом. Таким образом, в районе выпадения радиоактивных веществ, образующихся при ядерном взрыве, люди будут подвергаться поражению не только в результате внешнего облучения, но и при попадании в организм зараженной пищи, воды или воздуха. При организации защиты от поражения продуктами ядерного взрыва следует учитывать, что степень заражения по следу движения облака по мере удаления от места взрыва снижается.

Поэтому и опасность, которой подвергается население, находящееся в районе полосы заражения, на различном расстоянии от места взрыва неодинакова. Наиболее опасными будут районы, близлежащие от места взрыва, и районы, расположенные вдоль оси движения облака (средняя часть полосы по следу движения облака).

Неравномерность радиоактивного заражения по пути движения облака в известной мере имеет закономерный характер. Это обстоятельство необходимо принимать во внимание при организации и проведении мероприятий по противорадиационной защите населения.

Необходимо также учитывать, что от момента взрыва до момента выпадения из облака радиоактивных веществ проходит некоторое время. Это время тем больше, чем дальше от места взрыва, и может исчисляться несколькими часами. Население районов, удаленных от места взрыва, будет располагать достаточным временем, чтобы принять соответствующие меры защиты.

В частности, при условии своевременной подготовки средств оповещения и четкой работе соответствующих формирований ГО население может быть оповещено об опасности примерно за 2-3 часа.

В течение этого времени при заблаговременной подготовке населения и высокой организованности можно осуществить ряд мероприятий, обеспечивающих достаточно надежную защиту от радиоактивного поражения людей и животных. Выбор тех или иных мер и способов защиты будет определяться конкретными условиями создавшейся обстановки. Однако общие принципы должны быть определены, и в соответствии с этим заранее разработаны планы гражданской обороны.

Можно считать, что при определенных условиях наиболее рациональным следует признать принятие в первую очередь мер защиты на месте, используя все средства и. способы, предохраняющие как от попадания радиоактивных веществ внутрь организма, так и от внешнего облучения.

Как известно, наиболее эффективным средством защиты от внешнего облучения являются убежища { приспособленные с учетом требований противоатомной защиты, а также здания с массивными стенами, построенные из плотных материалов (кирпича, цемента, железобетона и т. д.), в том числе подвалы, землянки, погреба, крытые щели и обычные жилые постройки.

При оценке защитных свойств зданий и сооружений можно руководствоваться следующими ориентировочными данными: деревянный дом ослабляет действие радиоактивных излучений в зависимости от толщины стен в 4-10 раз, каменный дом - в 10-50 раз, погреба и подвалы в деревянных домах - в 50-100 раз, щель с перекрытием из слоя земли 60-90 см - в 200-300 раз.

Следовательно, в планах гражданской обороны должно быть предусмотрено использование в случае необходимости в первую очередь сооружений, обладающих более мощными защитными средствами; при получении сигнала об опасности поражения население должно немедленно укрыться в этих помещениях и находиться там до тех пор, пока не будет объявлено о дальнейших действиях.

Время пребывания людей в помещениях, предназначенных для укрытия, будет зависеть, главным образом, от того, в какой степени окажется зараженным район месторасположения населенного пункта, и скорости снижения уровня радиации с течением времени.

Так, например, в населенных пунктах, находящихся на значительном расстоянии от места взрыва, где суммарные дозы облучения, которые получат незащищенные люди, могут в течение короткого времени стать безопасными, населению целесообразно переждать это время в укрытиях.

В районах сильного радиоактивного заражения, где суммарная доза, которую могут получить незащищенные люди, будет высокой и снижение ее окажется продолжительным в этих условиях, длительное пребывание людей в укрытиях станет затруднительным. Поэтому наиболее рациональным в таких районах следует считать сначала укрытие населения на месте, а затем эвакуация его в незаряженные районы. Начало эвакуации и ее продолжительность будет зависеть от местных условий: уровня радиоактивного заражения, наличия транспортных средств, путей сообщения, времени года, отдаленности мест размещения эвакуированных и т. д.

Таким образом, территорию радиоактивного заражения по следу радиоактивного облака можно разделить условно на две зоны с различными принципами защиты населения.

В первую зону входит территория, где уровни радиации по истечении 5-6 суток после взрыва остаются высокими и снижаются медленно (примерно на 10-20% ежесуточно). Эвакуация населения из таких районов может начаться лишь после снижения уровня радиации до таких показателей, при которых за время сбора и движения в зараженной зоне люди не получат суммарной дозы более 50 р.

Ко второй зоне относятся районы, в которых уровни радиации снижаются в течение первых 3-5 суток после взрыва до 0,1 рентген/час.

Эвакуация населения из этой зоны не целесообразна, так как это время можно переждать в укрытиях.

Успешное осуществление мероприятий по защите населения во всех случаях немыслимо без тщательной радиационной разведки и наблюдения и постоянного контроля уровня радиации.

Говоря о защите населения от радиоактивного поражения по следу движения облака, образовавшегося при ядерном взрыве, следует помнить, что можно избежать поражения или достигнуть его снижения лишь при четкой организации комплекса мероприятий, к которым относится:

  • организация системы оповещения, обеспечивающей своевременное предупреждение населения о наиболее вероятном направлении движения радиоактивного облака и опасности поражения. В этих целях должны быть использованы все имеющиеся средства связи - телефон, радиостанции, телеграф, радиотрансляция и т. д.;
  • подготовка формирований ГО для проведения разведки как в городах, так и в районах сельской местности;
  • укрытие людей в убежищах или других помещениях, защищающих от радиоактивных излучений (подвалы, погреба, щели и т. д.);
  • проведение эвакуации населения и животных из района устойчивого заражения радиоактивной пылью;
  • подготовка формирований и учреждений медицинской службы ГО к действиям по оказанию помощи пораженным, главным образом лечению, проведению санитарной обработки, экспертизы воды и пищевых продуктов на зараженность радиоактивными веществ вами;
  • заблаговременное проведение мероприятий по защите продуктов питания на складах, в торговой сети, на предприятиях общественного питания, а также источников водоснабжения от заражения радиоактивной пылью (герметизация складских помещений, подготовка тары, подручных материалов для укрытия продуктов, подготовка средств для дезактивации продовольствия и тары, оснащение дозиметрическими приборами);
  • проведение мероприятий по защите животных и оказание помощи животным в случае поражения.

Для обеспечения надежной защиты животных необходимо предусмотреть содержание их в колхозах, совхозах по возможности мелкими группами по бригадам, фермам или населенным пунктам, имеющим места укрытия.

Следует также предусмотреть создание дополнительных водоемов или колодцев, которые могут стать резервными источниками водоснабжения в случае заражения воды постояннодействующих источников.

Важное значение приобретают складские помещения, в которых хранится фураж, а также животноводческие помещения, которые по возможности следует герметизировать.

Для защиты ценных племенных животных необходимо иметь индивидуальные средства защиты, которые могут быть изготовлены из подручных материалов на месте (повязки для защиты глаз, торбы, покрывала и др.), а также противогазы (при наличии).

Для проведения дезактивации помещений и ветеринарной обработки животных необходимо заблаговременно учесть имеющиеся в хозяйстве дезинфекционные установки, опрыскиватели, дождевальные установки, жижерасбрасыватели и другие механизмы и емкости, при помощи которых можно производить работы по обеззараживанию и ветобработке;

Организация и подготовка формирований и учреждений для проведения работ по дезактивации сооружений, местности, транспорта, одежды, снаряжения и друтого имущества ГО, для чего заранее осуществляются мероприятия по приспособлению коммунальной техники, сельскохозяйственных машин, механизмов и приборов для этих целей. В зависимости от наличия техники должны быть созданы и обучены соответствующие формирования - отряды» команды» группы, звенья и т. д.

В мире существует немалое количество различных политических клубов. Большая, теперь уже, семерка, Большая двадцатка, БРИКС, ШОС, НАТО, Евросоюз, в какой-то степени. Однако ни один из этих клубов не может похвастаться уникальной функцией – способностью уничтожить мир таким, каким мы его знаем. Подобными возможностями обладает «ядерный клуб».

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • Россия;
  • Великобритания;
  • Франция;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» — понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния - в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

У многих наших читателей водородная бомба ассоциируется с атомной, только гораздо более мощной. На самом деле это принципиально новое оружие, потребовавшее для своего создания несоизмеримо больших интеллектуальных усилий и работающее на принципиально других физических принципах.

Редакция ПМ


«Слойка»

Современная бомба

Единственно, что роднит атомную и водородную бомбу, так это то, что обе высвобождают колоссальную энергию, скрытую в атомном ядре. Сделать это можно двумя путями: разделить тяжелые ядра, например, урана или плутония, на более легкие (реакция деления) или заставить слиться легчайшие изотопы водорода (реакция синтеза). В результате обеих реакций масса получившегося материала всегда меньше массы исходных атомов. Но масса не может исчезнуть бесследно — она переходит в энергию по знаменитой формуле Эйнштейна E=mc2.

A-bomb

Для создания атомной бомбы необходимым и достаточным условием является получение делящегося материала в достаточном количестве. Работа довольно трудоемкая, но малоинтеллектуальная, лежащая ближе к горнорудной промышленности, чем к высокой науке. Основные ресурсы при создании такого оружия уходят на строительство гигантских урановых рудников и обогатительных комбинатов. Свидетельством простоты устройства является тот факт, что между получением необходимого для первой бомбы плутония и первым советским ядерным взрывом не прошло и месяца.

Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона. Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов.

Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества (критической массе) количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 — 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд.

Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Все. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы.

Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми.

H-bomb

А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития (тяжелого и сверхтяжелого изотопа водорода) энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235.

Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. д.

Классический супер

К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики.

Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США.

Слойка с сахаром

В середине 1946 года Теллер предложил очередную схему водородной бомбы — «будильник». Она состояла из чередующихся сферических слоев урана, дейтерия и трития. При ядерном взрыве центрального заряда плутония создавалось необходимое давление и температура для начала термоядерной реакции в других слоях бомбы. Однако для «будильника» требовался атомный инициатор большой мощности, а США (как, впрочем, и СССР) испытывали проблемы с наработкой оружейного урана и плутония.

Осенью 1948 года к аналогичной схеме пришел и Андрей Сахаров. В Советском Союзе конструкция получила название «слойка». Для СССР, который не успевал в достаточном количестве нарабатывать оружейный уран-235 и плутоний-239, сахаровская слойка была панацеей. И вот почему.

В обычной атомной бомбе природный уран-238 не только бесполезен (энергии нейтронов при распаде не хватает для инициации деления), но и вреден, поскольку жадно поглощает вторичные нейтроны, замедляя цепную реакцию. Поэтому оружейный уран на 90% состоит из изотопа уран-235. Однако нейтроны, появляющиеся в результате термоядерного синтеза, в 10 раз более энергетичные, чем нейтроны деления, и облученный такими нейтронами природный уран-238 начинает превосходно делиться. Новая бомба позволяла использовать в качестве взрывчатки уран-238, который прежде рассматривался как отходы производства.

Изюминкой сахаровской «слойки» было также применение вместо остродефицитного трития белого легкого кристаллического вещества — дейтрида лития 6LiD.

Как упоминалось выше, смесь дейтерия и трития поджигается гораздо легче, чем чистый дейтерий. Однако на этом достоинства трития заканчиваются, а остаются одни недостатки: в нормальном состоянии тритий — газ, из-за чего возникают трудности с хранением; тритий радиоактивен и, распадаясь, превращается в стабильный гелий-3, активно пожирающий столь необходимые быстрые нейтроны, что ограничивает срок годности бомбы несколькими месяцами.

Нерадиоактивный дейтрид лития же при облучении его медленными нейтронами деления — последствиями взрыва атомного запала — превращается в тритий. Таким образом, излучение первичного атомного взрыва за мгновение вырабатывает достаточное для дальнейшей термоядерной реакции количество трития, а дейтерий в дейтриде лития присутствует изначально.

Именно такая бомба, РДС-6с, и была успешно испытана 12 августа 1953 на башне Семипалатинского полигона. Мощность взрыва составила 400 килотонн, и до сих пор не прекратились споры, был ли это настоящий термоядерный взрыв или сверхмощный атомный. Ведь на реакцию термоядерного синтеза в сахаровской слойке пришлось не более 20% суммарной мощности заряда. Основной вклад во взрыв внесла реакция распада облученного быстрыми нейтронами урана-238, благодаря которому РДС-6с и открыла эру так называемых «грязных» бомб.

Дело в том, что основное радиоактивное загрязнение дают как раз продукты распада (в частности, стронций-90 и цезий-137). По существу, сахаровская «слойка» была гигантской атомной бомбой, лишь незначительно усиленной термоядерной реакцией. Не случайно всего один взрыв «слойки» дал 82% стронция-90 и 75% цезия-137, которые попали в атмосферу за всю историю существования Семипалатинского полигона.

Американ бомб

Тем не менее, первыми водородную бомбу взорвали именно американцы. 1 ноября 1952 года на атолле Элугелаб в Тихом океане было успешно испытано термоядерное устройство «Майк» мощностью 10 мегатонн. Назвать бомбой 74-тонное американское устройство можно с большим трудом. «Майк» представлял собой громоздкое устройство размером с двухэтажный дом, заполненное жидким дейтерием при температуре, близкой к абсолютному нулю (сахаровская «слойка» была вполне транспортабельным изделием). Однако изюминкой «Майка» были не размеры, а гениальный принцип обжатия термоядерной взрывчатки.

Напомним, что основная идея водородной бомбы состоит в создании условий для синтеза (сверхвысокого давления и температуры) посредством ядерного взрыва. В схеме «слойка» ядерный заряд расположен в центре, и поэтому он не столько сжимает дейтерий, сколько разбрасывает его наружу — увеличение количества термоядерной взрывчатки не приводит к увеличению мощности — она просто не успевает детонировать. Именно этим и ограничена предельная мощность данной схемы — самая мощная в мире «слойка» Orange Herald, взорванная англичанами 31 мая 1957 года, дала только 720 килотонн.

Идеально было бы, если бы заставить взрываться атомный запал внутрь, сжимая термоядерную взрывчатку. Но как это сделать? Эдвард Теллер выдвинул гениальную идею: сжимать термоядерное горючее не механической энергией и нейтронным потоком, а излучением первичного атомного запала.

В новой конструкции Теллера инициирующий атомный узел был разнесен с термоядерным блоком. Рентгеновское излучение при срабатывании атомного заряда опережало ударную волну и распространялось вдоль стенок цилиндрического корпуса, испаряя и превращая в плазму полиэтиленовую внутреннюю облицовку корпуса бомбы. Плазма, в свою очередь, переизлучала более мягкое рентгеновское излучение, которое поглощалось внешними слоями внутреннего цилиндра из урана-238 — «пушера». Слои начинали взрывообразно испаряться (это явление называют абляция). Раскаленную урановую плазму можно сравнить со струями сверхмощного ракетного двигателя, тяга которого направлена внутрь цилиндра с дейтерием. Урановый цилиндр схлопывался, давление и температура дейтерия достигала критического уровня. Это же давление обжимало центральную плутониевую трубку до критической массы, и она детонировала. Взрыв плутониевого запала давил на дейтерий изнутри, дополнительно сжимая и нагревая термоядерную взрывчатку, которая детонировала. Интенсивный поток нейтронов расщепляет ядра урана-238 в «пушере», вызывая вторичную реакцию распада. Все это успевало произойти до того момента, когда взрывная волна от первичного ядерного взрыва достигала термоядерного блока. Расчет всех этих событий, происходящих за миллиардные доли секунды, и потребовал напряжения ума сильнейших математиков планеты. Создатели «Майка» испытывали от 10-мегатонного взрыва не ужас, а неописуемый восторг — им удалось не только разобраться в процессах, которые в реальном мире идут только в ядрах звезд, но и экспериментально проверить свои теории, устроив свою небольшую звезду на Земле.

Браво

Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения (например, появился урановый экран между инициирующей бомбой и основным зарядом) и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.