Десятичные дроби появились еще в III в. до н.э. в Древнем Китае, где использовалась десятичная система счисления. Китайский математик III в. Лю Хуэй рекомендовал пользоваться дробями со знаменателем 10, 100 и т.д. при извлечении квадратных корней. Он имел ввиду правило

которым впоследствии часто пользовались многие арабские и европейские математики. Именно это правило, наряду с некоторыми другими вычислительными приемами, во многом способствовали введению в науку десятичных дробей.


В XV в. полную теорию десятичных дробей разработал самаркандский астроном Джемшид аль-Каши в трактате "Ключ к арифметике" (1427 г.). Он подробно изложил правила действий с десятичными дробями. Возможно, что аль-Каши не знал о том, что десятичные дроби применялись в Китае. Сам он считал их своим изобретением. Несомненно то, что постоянное использование десятичных дробей и описание правил действий с ними является непосредственной заслугой ученого. Но трактаты его не были известны европейским ученым. Они самостоятельно разработали теорию десятичных дробей.

Мысль о построении такой системы дробей время от времени появлялась в учебниках арифметики уже с XIII в. Об этом писал Иордан Неморарий в сочинении "Арифметика, изложенная в десяти книгах".

Французский ученый Франсуа Виет в 1579 г. опубликовал в Париже свой труд "Математический канон", в котором привел тригонометрические таблицы, при составлении которых использовал десятичные дроби. При записи десятичных дробей он не придерживался какого=либо определенного способа: иногда отделял целую часть от дробной вертикальной чертой, иногда цифры целой части изображал жирным шрифтом, иногда цифры дробной части писал мельче. Так благодаря Виету десятичные дроби стали проникать в научные расчеты, но в повседневную практику они не вошли.

Голландский ученый Симон Стевин считал, что десятичными дробями нужно пользоваться во всех практических расчетах. Он посвятил этому свой труд "Десятая" (1585 г.), в котором ввел десятичные дроби, разработал правила арифметических действий с ними и предложил десятичную систему денежных единиц, мер и весов.

"Десятая" быстро стала известной в Европе. Издав книгу в 1585 г. на фламандском языке, автор в тот же год перевел ее на французский язык, а в 1601 она была опубликована на английском языке.

Записывал Стевин дроби не так, как теперь. Для указания дробной части использовался 0, обведенный кружком. Впервые запятую при записи дробей стали применять в 1592 г. В Англии же вместо запятой стали использовать точку, в США она используется до сих пор. Использовать запятую в качестве разделительного знака, как и точку, предложил в 1616-1617 г.г. знаменитый английский математик Джон Непер. Астроноа Иоганн Кеплер применял десятичную запятую в своих работах.

В России учение о десятичных дробях впервые изложил Л.Ф. Магницкий в своей "Арифметике".

1

Павликова Е.В. (, МАОУ Дятьковская СОШ № 5)

1. Анищенко Е. А. Число как основное понятие математики. Мариуполь, 2002.

2. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика. 5 класс: учеб.для общеобразовательных учреждений. – 26–е изд., стер. – М.: Мнемозина, 2009. – 280 с.

3. Гейзер Г.И. История математики в школе. Пособие для учителей. – М.: Просвещение, 1981. – 239 с.

4. Математика. 5 класс: учеб.для общеобразоват. учреждений / С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. 11–е изд, дораб. – М.: Просвещение, 2016. – 272 с. – (МГУ – школе).

5. Математический энциклопедический словарь. – М., 1988.

6. Драгунский В. Надо иметь чувство юмора. – Режим доступа: http://peskarlib.ru/lib.phpid_sst=248.

7. Из истории дробей. Режим доступа: http://schools.keldysh.ru/sch1905/drobi/history.htm.

8. Материал из Википедии – свободной энциклопедии. Режим доступа: http://ru.wikipedia.org/wiki.

9. Цитаты. Режим доступа: http://citaty.socratify.net/lev-tolstoi/25013.

Изучение дробей продиктовано самой жизнью. Умение выполнять различные вычисления и расчеты необходимо каждому человеку, так как с дробями мы сталкиваемся в повседневной жизни. Я захотела узнать, откуда появилось название этих чисел; кто придумал эти числа, нужна ли тема «Дроби», которую мы изучаем в школе, в моей жизни.

Объект исследования: история возникновения обыкновенных дробей.

Предмет исследования: обыкновенные дроби.

Гипотеза : если бы не было дробей - могла бы развиваться математика?

Цель работы : оформление в кабинете математики стенда «Математика вокруг нас» интересными фактами о дробях.

Задачи:

1. Изучить историю возникновения дробей в математике;

2. Отобрать наиболее интересные факты о дробях, которые можно использовать для составления разделов стенда.

3. Оформить стенд в кабинете математики.

Живя в окружении дробей, мы не всегда их явно замечаем. Тем не менее, мы сталкиваемся с ним очень часто: дома, на улице, в магазине. Просыпаясь утром, мы смотрим на будильник и встречаемся с дробями. Мы используем дроби, когда взвешивают товар в магазине. В измерениях, когда определяют объем груза. Дроби окружают нас везде. С помощью дробей мы можем измерять длины, делить целое на части. А как измерить рост человека или расстояние между объектами, не зная дробей? Всё вокруг - дроби!

Актуальность : Современная жизнь делает задачи на дроби актуальными, так как сфера практического приложения дробей расширяется.

Методы исследования:

1. Поиск информации о дробях в различных источниках: интернете, художественной литературе, учебниках.

2. Анализ, сравнение, обобщение и систематизация информации.

Из истории обыкновенных дробей

Возникновение дробей

С самых древних времён для решения жизненных практических вопросов людям приходилось считать предметы и измерять величины, то есть отвечать на вопросы «Сколько?»: сколько овец в стаде, сколько мер зерна собрано с поля, сколько верст от уездного центра и т. д. Так появились числа. Не всегда результат измерения или стоимость товара удавалось выразить натуральным числом. Когда человеку понадобилось придумать новые - дробные - числа, появились дроби. В древности к целым и дробным числам относились по-разному: предпочтения были на стороне целых чисел. «Если ты захочешь делить единицу, математики высмеют тебя и не позволят этого делать», - писал основатель афинской Академии Платон.

Во всех цивилизациях понятие дроби возникло из процесса дробления целого на равные части. Русский термин «дробь», как и его аналоги в других языках, происходит от лат. «fractura», который, в свою очередь, является переводом арабского термина с тем же значением: ломать, раздроблять. Поэтому, вероятно, первыми дробями везде были дроби вида 1/n. Дальнейшее развитие естественным образом идет в сторону рассмотрения этих дробей как единиц, из которых могут быть составлены дроби m/n - рациональные числа. Однако этот путь был пройден не всеми цивилизациями: например, он так и не реализовался в древнеегипетской математике.

Первой дробью, с которой познакомились люди, была половина. Хотя названия всех следующих дробей связаны с названиями их знаменателей (три - «треть», четыре - «четверть» и т. д.), для половины это не так - ее название во всех языках не имеет ничего общего со словом «два».

Система записи дробей, правила действий с ними заметно различались как у разных народов, так и в разные времена у одного и того же народа. Важную роль играли также многочисленные заимствования идей при культурных контактах различных цивилизаций.

Дроби на Руси

В русском языке слово «дробь» появилось в VIII веке, оно происходит от глагола «дробить» - разбивать, ломать на части. Современное обозначение дробей берет своё начало в Древней Индии: его стали использовать и арабы.

В старых руководствах находим следующие названия дробей на Руси:

Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.

Использовалась в России земельная мера четверть и более мелкая - получетверть, которая называлась осьмина. Это были конкретные дроби, единицы для измерения площади земли, но осьминой нельзя было измерить время или скорость и др. Значительно позднее осьмина стала означать отвлеченную дробь 1/8, которой можно выразить любую величину. О применении дробей в России XVII века можно прочитать в книге В. Беллюстина «Как постепенно люди дошли до настоящей арифметики» следующее: «В рукописи XVII в. «Статиячисленная о всяких долях указ «начинается прямо с письменного обозначения дробей и с указания числителя и знаменателя. При выговаривании дробей интересны такие особенности: четвертая часть называлась четью, доли же со знаменателем от 5 до 11 выражались словами с окончанием «ина», так что 1/7 - седмина, 1/5 - пятина, 1/10 - десятина; доли же со знаменателями, большими 10, выговаривались с помощью слов «жеребей», например 5/13 - пять тринадцатых жеребьёв. Нумерация дробей была прямо заимствована из западных источников. Числитель назывался верхним числом, знаменатель исподним».

Дроби в других государствах древности

Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Для дробей были специальные обозначения. Египтяне использовали дроби вида1/n, где n - натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m. n.

Для этого применяли специальные таблицы. Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи. (Приложение).

Приложение

Стенд «Математика вокруг нас»

Таблица «Запись дробей в Египте»

Эта таблица помогала производить сложные арифметические выкладки согласно принятым канонам. По-видимому, писцы заучивали ее наизусть, так же, как сейчас школьники запоминают таблицу умножения. С помощью этой таблицы выполняли и деление чисел. Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Еще сложнее обстояло дело с делением.

Египтяне уже в глубокой древности знали, как поделить 2 яблока на троих: для этого числа у них был даже специальный значок. Между прочем это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе 1 (так называемый основные дроби): 1/2, 1/3, 1/17, ... и т. д. Такое отношение к дробям присутствовало очень долго. Уже погибла цивилизация древнего Египта, некогда зелёный край поглотили пески Сахары, а дроби всё раскладывали в сумму основных - вплоть до эпохи Возрождения!

В Китае практически все арифметические операции с обыкновенными дробями были установлены уже ко II в. до н. э.; они описаны в фундаментальном своде математических знаний древнего Китая - «Математике в девяти книгах», окончательная редакция которой принадлежит Чжан Цану. Вычисляя на основе правила, аналогичного алгоритму Евклида, (наибольший общий делитель числителя и знаменателя), китайские математики сокращали дроби. Умножение дробей представлялось как нахождение площади прямоугольного земельного участка, длина и ширина которого выражены дробными числами. Деление рассматривалось с помощью идеи дележа, при этом китайских математиков не смущало, что число участников дележа может быть дробным, например, 3 1/2 человека.

Первоначально китайцы использовали простейшие дроби, которые получили наименования с использованием иероглифа бань:

Бань («половина») -1\2;

Шао бань («малая половина») -1\3;

Тай бань («большая половина») -2\3.

Интересно, что вавилоняне предпочитали, постоянный знаменатель (равный 60, потому, видимо, что их система счисления была шестидесятиричной).

Римляне тоже пользовались лишь одним знаменателем, равным 12.

Дальнейшее развитие понятия обыкновенной дроби было достигнуто в Индии. Математики этой страны сумели достаточно быстро перейти от единичных дробей к дробям общего вида. Впервые такие дроби встречаются в «Правилах веревки» Апастамбы (VII-Vв. до н.э.), которые содержат геометрические построения и результаты некоторых вычислений. В Индии использовалась система записи - возможно, китайского, а возможно, позднегреческого происхождения, - при которой числитель дроби писался над знаменателем - как у нас, но без дробной черты, зато вся дробь помещалась в прямоугольную рамку.

Индийское обозначение дробей и правила действий над ними были усвоены в IX в. в мусульманских странах благодаря Мухаммеду Хорезмскому (аль-Хорезми). В торговой практике стран Ислама широко пользовались единичными дробями, в науке применяли шестидесятиричные дроби и в гораздо меньшей мере обыкновенные дроби.

Занимательные дроби

«Без знания дробей никто не может признаваться знающим арифметику!»

Когда бы люди ни использовали деньги, они обязательно встречаются с дробями: в средневековье, 1 английский пенс = 1/12 шиллинга; в настоящее время, российская копейка =1/100 рубля.

Мерные системы несут в себе дроби: 1сантиметр = 1/10 дециметра = 1/100 метра.

В любые времена в моде присутствовали дроби. Всегда актуален фасон рукава три четверти. А укороченные брюки 7/8 - это прекрасная деталь гардероба.

С дробями можно встретиться на разных уроках. Например, в географии: «Во времена существования СССР, Россия занимала одну шестую часть суши. Теперь Россия занимает одну девятую часть суши». В изобразительном искусстве - при изображении фигуры человека. В музыке - ритм, размер музыкального произведения.

Человек встречается со словом «дробь» в жизни:

Мелкие свинцовые шарики для стрельбы из охотничьего ружья - дробь.

Частые, прерывистые звуки - барабанная дробь.

На флоте, команда «дробь!» - прекращение огня.

Нумерация домов. Номер через дробь ставят у домов, пронумерованных по двум пересекающимся улицам.

Дробь в танце. Русский народный танец невозможно представить без дробей и бега.

Выбивать дробь зубами - стучать зубами (дрожа от холода, испуга).

В художественной литературе. Дениска, герой рассказа Виктора Драгунского «Надо иметь чувство юмора», задал однажды приятелю Мишке задачу: как разделить два яблока на троих поровну? И когда Мишка, наконец, сдался, торжествующе объявил ответ: «Сварить компот!» Мишка с Денисом ещё не проходили дробей и твёрдо знали, что 2 на 3 не делится?

Собственно говоря, «сварить компот» - это действия с дробями. Порежем яблоки на кусочки и будем количества этих кусочков складывать и вычитать, умножать и делить - кто нам помешает?.. Нам важно только помнить, сколько мелких кусочков составляют целое яблоко…

Но это не единственное решение данной задачи! Надо каждое яблоко поделить на три части и раздать всем троим по две таких части.

На протяжении многих веков на языках народов ломаным числом именовали дробь. Например, нужно разделить поровну что-то, например, конфету, яблоко, кусочек сахара и т. п. Для этого кусочек сахара надо расколоть или разломить на две равные половины. Так же и с числами, чтобы получить половину, надо разделить или «разломить» одну единицу на две части. Отсюда и пошло название «ломанные» числа.

Различают три вида дробей:

1. Единичные (аликвоты) или доли (например,1/2, 1/3, 1/4, и т.д.).

2. Систематические, т.е дроби, у которых знаменатель выражается степенью числа (например, степенью числа 10 или 60 и т.д.).

3. Общего вида, у которых числителем и знаменателем может быть любое число.

Существуют дроби «ложные» - неправильные и «реальные» - правильные.

Дробь в математике - форма представления математических величин с помощью операции деления, первоначально отражающая концепцию нецелых чисел, или долей. В простейшем случае - числовая дробь - отношение двух чисел

В дроби m/n (читается: «эм энных») число m, находящееся над чертой, называется числителем, а число n, находящееся под чертой - знаменателем. Знаменатель показывает, на сколько равных частей разделили целое, а числитель показывает, сколько таких частей взяли. Черту дроби можно понимать как знак деления.

Первым европейским учёным который стал использовать и распространять современную запись дробей, был итальянский купец и путешественник, сын городского писаря Фиббоначи (Леонардо Пизанский).

В 1202 году он ввёл слово «дробь».

Названия числитель и знаменатель ввел в 13 веке Максим Плануд - греческий монах, ученый, математик.

Современную систему записи дробей создали в Индии. Только там писали знаменатель сверху, а числитель снизу, и не писали дробной черты. А записывать дроби как сейчас стали арабы. Действия над дробями в средние века считались самой сложной областью математики. До сих пор немцы говорят про человека, попавшего в затруднительное положение, что он «попал в дроби».

Обыкновенные дроби сыграли свою роль и в музыке. И сейчас в определённой нотной записи длинная нота -целая - делится на половинки (вдвое короче), четверти, шестнадцатые и тридцать вторые. Таким образом, ритмичный рисунок любого музыкального произведения, каким бы он сложным ни был, определяется обыкновенными дробями. Гармония оказалась тесно связанной с дробями, что подтверждало основную мысль европейцев: «Число правит миром».

«Человек подобен дроби: числитель - это он сам, а знаменатель то, что он о себе думает. Чем больше знаменатель, тем меньше дробь» (Л.Н. Толстой) .

Основные результаты исследования

Учение о дробях считалось самым трудным разделом математики во все времена и у всех народов. Кто знал дроби, был в почете. Автор старинной славянской рукописи XVв. пишет: «Несть се дивно, что …в целых, но есть похвально, что в долях…».

При работе я узнала много нового и интересного. Прочитала много книг и разделов из энциклопедий. Познакомилась с первыми дробями, которыми оперировали люди, с понятием аликвотная дробь, узнала новые для меня имена ученых, внесших свой вклад в развитие учения о дробях. В процессе выполнения работы я узнала много нового, думаю, что эти знания пригодятся в учебе.

Вывод: Необходимость в дробях возникла на очень ранней ступени развития человека. В жизни человеку приходилось не только считать предметы, но и измерять величины. Люди измеряли длины, площади земельных участков, объемы, массы тел, время, вели расчеты за купленные или проданные товары. Не всегда результат измерения или стоимость товара удавалось выразить натуральным числом. Так появились дроби и правила обращения с ними.

Практическая значимость работы

Я освоила навыки работы в текстовом редакторе и поработала с ресурсами Интернета. Отобрала материал для оформления в кабинете математики стенда «Математика вокруг нас» интересными фактами о дробях (Приложение). И оформила стенд (Приложение).

В результате исследования я подтвердила гипотезу: не могли люди обойтись без дробей, без дробей - не могла бы развиваться математика.

Библиографическая ссылка

Балбуцкая А.А. ИНТЕРЕСНОЕ О ДРОБЯХ // Старт в науке. – 2017. – № 5-2. – С. 265-268;
URL: http://science-start.ru/ru/article/view?id=874 (дата обращения: 29.08.2019).

Сегодня, мы поделимся с вами интересными и необычными фактами из мира этой серьезной науки. Место для несерьезного или просто увлекательного, найдется в любой точной науке. Главное, желание отыскать это…

Английский математик Абрахам де Муавр в престарелом возрасте однажды обнаружил, что продолжительность его сна растёт на 15 минут в день. Составив арифметическую прогрессию, он определил дату, когда она достигла бы 24 часов — 27 ноября 1754 года. В этот день он и умер.
Религиозные евреи стараются избегать христианской символики и вообще знаков, похожих на крест. Например, ученики некоторых израильских школ вместо знака «плюс» пишут знак, повторяющий перевёрнутую букву «т».
Подлинность купюры евро можно проверить по её серийному номеру буквы и одиннадцати цифр. Нужно заменить букву на её порядковый номер в английском алфавите, сложить это число с остальными, затем складывать цифры результата, пока не получим одну цифру.

Если эта цифра — 8, то купюра подлинная. Ещё один способ проверки заключается в подобном складывании цифр, но без буквы. Результат из одной буквы и цифры должен соответствовать определённой стране, так как евро печатают в разных странах. Например, для Германии это X2.
Слово «алгебра» одинаково звучит на всех языках мира. Оно - арабского происхождения, и ввел его в обиход великий математик Средней Азии конца 8 - начала 9 века Махаммед ибн Муса аль-Хорезми. Его математический трактат назывался «Альджебр валь мукабала», от первого слова которого и произошло международное название науки - алгебра.
Бытует мнение, что Альфред Нобель не включил математику в список дисциплин своей премии из-за того, что его жена изменила ему с математиком. На самом деле Нобель никогда не был женат. Настоящая причина игнорирования математики Нобелем неизвестна, но есть несколько предположений. Например, на тот момент уже существовала премия по математике от шведского короля. Другое — математики не делают важных изобретений для человечества, так как эта наука имеет чисто теоретический характер.
Треугольник Рело — это геометрическая фигура, образованная пересечением трёх равных кругов радиуса a с центрами в вершинах равностороннего треугольника со стороной a. Сверло, сделанное на основе треугольника Рело, позволяет сверлить квадратные отверстия (с неточностью в 2%).

В русской математической литературе ноль не является натуральным числом, а в западной, наоборот, принадлежит ко множеству натуральных чисел.

Сумма всех чисел на рулетке в казино равняется числу дьявола — 666.
В штате Индиана в 1897 году был выпущен билль, законодательно устанавливающий значение числа Пи равным 3,2. Данный билль не стал законом благодаря своевременному вмешательству профессора университета.
Софья Ковалевская познакомилась с математикой в раннем детстве, когда на её комнату не хватило обоев, вместо которых были наклеены листы с лекциями Остроградского о дифференциальном и интегральном исчислении.

Чтобы получить возможность заниматься наукой, Софье Ковалевской пришлось заключить фиктивный брак и уехать из России. В то время российские университеты просто не принимали женщин, а чтобы эмигрировать, девушка должна была иметь согласие отца или мужа. Так как отец Софьи был категорически против, она вышла замуж за молодого учёного Владимира Ковалевского. Хотя в итоге их брак стал фактическим, и у них родилась дочь.
Используемая нами десятичная система счисления возникла по причине того, что у человека на руках 10 пальцев. Способность к абстрактному счёту появилась у людей не сразу, а использовать для счёта именно пальцы оказалось удобнее всего. Цивилизация майя и независимо от них чукчи исторически использовали двадцатичную систему счисления, применяя пальцы не только рук, но и ног. В основе распространённых в древних Шумере и Вавилоне двенадцатеричной и шестидесятиричной систем тоже было использование рук: большим пальцем отсчитывались фаланги других пальцев ладони, число которых равно 12.
Во многих источниках, зачастую с целью ободрения плохо успевающих учеников, встречается утверждение, что Эйнштейн завалил в школе математику или, более того, вообще учился из рук вон плохо по всем предметам. На самом деле всё обстояло не так: Альберт ещё в раннем возрасте начал проявлять талант в математике и знал её далеко за пределами школьной программы.

Позднее Эйнштейн не смог поступить в Швейцарскую высшую политехническую школу Цюриха, показав высшие результаты по физике и математике, но не добрав нужное количество баллов в других дисциплинах. Подтянув эти предметы, он через год в возрасте 17 лет стал студентом данного заведения.
Одна знакомая дама просила Эйнштейна позвонить ей, но предупредила, что номер ее телефона очень сложно запомнить: — 24-361. Запомнили? Повторите! Удивленный Эйнштейн ответил: — Конечно, запомнил! Две дюжины и 19 в квадрате.
Каждый раз, когда вы перемешиваете колоду, вы создаёте последовательность карт, которая с очень высокой степенью вероятности никогда не существовала во Вселенной. Количество комбинаций в стандартной игральной колоде равно 52!, или 8×1067. Чтобы достичь хотя бы 50% вероятности получить комбинацию второй раз, нужно сделать 9×1033 перемешиваний. А если гипотетически заставить всё население планеты за последние 500 лет непрерывно мешать карты и каждую секунду получать новую колоду, в итоге получится не более 1020 разных последовательностей.
Леонардо да Винчи вывел правило, согласно которому квадрат диаметра ствола дерева равен сумме квадратов диаметров ветвей, взятых на общей фиксированной высоте. Более поздние исследования подтвердили его с одним лишь отличием — степень в формуле необязательно равняется 2, а лежит в пределах от 1,8 до 2,3. Традиционно считалось, что эта закономерность объясняется тем, что у дерева с такой структурой оптимальный механизм снабжения веток питательными веществами. Однако в 2010 году американский физик Кристоф Эллой нашёл более простое механическое объяснение феномену: если рассматривать дерево как фрактал, то закон Леонардо минимизирует вероятность слома веток под воздействием ветра.
Муравьи способны объяснять друг другу путь к пище, умеют считать и выполнять простейшие арифметические действия. Например, когда муравей-разведчик находит еду в специально сконструированном лабиринте, он возвращается и объясняет, как пройти к ней, другим муравьям.

Если в это время заменить лабиринт на аналогичный, то есть убрать феромоновый след, сородичи разведчика все равно найдут пищу. В другом эксперименте разведчик ищет в лабиринте из многих одинаковых ответвлений, и после его объяснений другие насекомые сразу бегут к обозначенному ответвлению. А если сначала приучить разведчика к тому, что пища с большей вероятностью будет находиться в 10, 20 и так далее ответвлениях, муравьи принимают их за базовые и начинают ориентироваться, прибавляя или отнимая от них нужное число, то есть используют систему, аналогичную римским цифрам.
В феврале 1992 года состоялся розыгрыш лотереи Вирджинии «6 из 44», где джек-пот составлял 27 миллионов долларов. Число всех возможных комбинаций в таком виде лотереи было чуть выше 7 миллионов, а каждый билет стоил 1 доллар. Предприимчивые люди из Австралии создали фонд, собрав по 3 тысячи долларов от 2500 человек, купили нужное число бланков и вручную заполнили их различными комбинациями цифр, получив после выплаты налогов тройную прибыль.
Стивен Хокинг — один из крупнейших физиков-теоретиков и популяризатор науки. В рассказе о себе Хокинг упомянул, что стал профессором математики, не получая никакого математического образования со времён средней школы. Когда Хокинг начал преподавать математику в Оксфорде, он читал учебник, опережая собственных студентов на две недели.

Лабораторные исследования показали, что пчёлы умеют выбирать оптимальный маршрут. После локализации расставленных в разных местах цветков пчела совершает облёт и возвращается обратно таким образом, что итоговый путь оказывается наикратчайшим. Таким образом, эти насекомые эффективно справляются с классической «задачей коммивояжёра» из информатики, на решение которой современные компьютеры, в зависимости от количества точек, могут тратить не один день.
Существует математический закон Бенфорда, который гласит, что распределение первых цифр в числах каких-либо наборов данных из реального мира неравномерно. Цифры от 1 до 4 в таких наборах (а именно статистика рождаемости или смертности, номера домов и т.п.) на первой позиции встречаются гораздо чаще, чем цифры от 5 до 9. Практическое применение этого закона заключается в том, что по нему можно проверять на достоверность бухгалтерские и финансовые данные, результаты выборов и многое другое. В некоторых штатах США несоответствие данных закону Бенфорда даже является формальной уликой в суде.
Известно много притч о том, как один человек предлагает другому расплатиться с ним за некоторую услугу следующим образом: на первую клетку шахматной доски тот положит одно рисовое зёрнышко, на вторую — два и так далее: на каждую следующую клетку вдвое больше, чем на предыдущую. В результате тот, кто расплачивается таким образом, непременно разоряется. Это неудивительно: подсчитано, что общий вес риса составит более 460 миллиардов тонн

У числа Пи есть два неофициальных праздника. Первый — 14 марта, потому что этот день в Америке записывается как 3.14. Второй — 22 июля, которое в европейском формате записывается 22/7, а значение такой дроби является достаточно популярным приближённым значением числа Пи.
Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.
Среди всех фигур, с одинаковым периметром, у круга будет самая большая площадь. И наоборот, среди всех фигур с одинаковой площадью, у круга будет самый маленький периметр.
На самом деле, миг - это единица времени, которая длится примерно сотую долю секунды.
Рене Декарт в 1637 году ввел в математику термины «действительное число» и «мнимое число».
Пирог можно разрезать на восемь равных частей тремя касаниями ножа. Причем, существует два способа сделать это.

В группе, где находится 23 или более человек, вероятность, что день рождения двух из них совпадет, превышает 50 процентов, а в группе 60 человек и более такая вероятность - около 99 процентов.
Если умножить ваш возраст на 7, затем умножить на 1443, то результатом будет ваш возраст написанный три раза подряд.
В математике существуют: теория кос, теория игр и теория узлов.
Ноль "0" - единственное число, которое невозможно написать римскими цифрами.
Максимальное число, которое можно записать римскими цифрами, не нарушая правил Шварцмана (правил записи римских цифр) - 3999 (MMMCMXCIX) - больше трех цифр подряд писать нельзя
Знак равенства «=» впервые применил британец Роберт Рекорд в 1557-м году. Он писал, что нет на свете более одинаковых предметов, чем два равных и параллельных отрезка.
Сумма всех чисел от одного до ста равняется 5050.
В тайванском городе Тайбэй жителям разрешено упускать цифру четыре, поскольку на китайском языке слово это звучит тождественно слову «смерть». По этой причине во многих зданиях города четвертый этаж отсутствует.

Число тринадцать, предположительно, стало считаться несчастливым из-за библейского сказания о Тайной Вечери, где присутствовало именно тринадцать человек. Причем тринадцатым был Иуда Искариот.
Малоизвестный математик из Британии посвятил большую часть жизни изучению законов логики. Звали его Чарльз Лютвидж Доджсон. Имя это известно не такому большому количеству людей, зато известен псевдоним, под которым он писал свои литературные шедевры - Льюис Кэрролл .
Гречанка Гепатия считается первой женщиной-математиком в истории. Жила она в IV-V веках в египетской Александрии.
Результаты недавно проведенного исследования свидетельствуют, что в областях знаний, где доминируют мужчины, слабый пол стремится завуалировать типично женские качества, чтобы выглядеть более убедительно. Например, женщины-математики предпочитают обходиться без макияжа.
Знаете ли вы, что одна из кривых линий называется «Локон Аньезе» в честь первой в мире женщины-профессора математики Марии Гаэтано Аньезе ?
Лермонтов, будучи разностороннее талантливым человеком, помимо литературного творчества был хорошим художником и любил математику. Элементы высшей математики, аналитическая геометрия, начала дифференциального и интегрального исчисления увлекали Лермонтова в течении всей его жизни. Он всегда возил с собой учебник математики французского автора Безу.

В 18 веке популярностью пользовался шахматный автомат венгерского механикаВольфганга фон Кемпелена , который показывал свою машину при австрийском и русском дворах, а затем демонстрировал публично в Париже и Лондоне. Наполеон I играл с этим автоматом, уверенный, что меряется силами с машиной. В действительности ни одна шахматная машина не действовала автоматически. Внутри прятался искусный живой шахматист, который и двигал фигуры. В середине прошлого века знаменитый автомат попал в Америку и кончил там свое существование во время пожара в Филадельфии.
В шахматной партии из 40 ходов количество вариантов развития игры может превышать количество атомов в космическом пространстве. Ведь всего возможно огромное количество вариантов - 1,5 на 10 в 128-й степени.
Наполеон Бонапарт писал математические труды. А один геометрический факт называется «Задача Наполеона»
Листья на ветке растения всегда располагаются в строгом порядке, отстоя друг от друга на определённый угол по или против часовой стрелки. Величина угла разная у различных растений, но её всегда можно описать дробью, в числителе и знаменателе которой — числа из ряда Фибоначчи. Например, у бука этот угол равен 1/3, или 120°, у дуба и абрикоса — 2/5, у груши и тополя — 3/8, у ивы и миндаля — 5/13 и т.д. Такое расположение позволяет листьям наиболее эффективно получать влагу и солнечный свет.
На Руси в старину использовались в качестве единиц измерения объёма ведро (около 12 л), штоф (десятая часть ведра). В США, Англии и других странах используются баррель (около 159 л), галлон (около 4 л), бушель (около 36 л), пинта (от 470 до 568 кубических сантиметров).

Малые старинные русские меры длины — пядь и локоть.
Пядь — это расстояние между вытянутыми большим и указательным пальцами руки при их наибольшем удалении (размер пяди колебался от 19 см до 23 см). Говорят «Не отдать ни пяди земли», подразумевая не отдать, не уступить даже самой малой части своей земли. Об очень умном человеке говорят: «Семи пядей во лбу».
Локоть — это расстояние от конца вытянутого среднего пальца руки до локтевого сгиба (размер локтя колебался в пределах от 38 см до 46 см и соответствовал двум пядям). Сохранилась поговорка: «Сам с ноготок, а борода с локоток».
Квадратные уравнения были созданы в XI веке в Индии. Самым большим числом, используемым в Индии, было 10 в 53-ей степени, в то время как, греки и римляне оперировали только числами в 6-ой степени.
Вероятно все замечали на себе и на окружающих, что среди цифр есть излюбленные, к которым мы питаем особенное пристрастие. Мы, например, очень любим «круглые числа», т. е. оканчивающиеся на 0 или 5. Пристрастие к определенным числам, предпочтение их другим, заложено в человеческой натуре гораздо глубже, чем обыкновенно думают. В этом отношении сходятся вкусы не только европейцев и их предков, напр., древних римлян, — но даже первобытных народов других частей света.
При каждой переписи населения обычно наблюдается чрезмерное обилие людей, возраст которых оканчивается на 5 или на 0; их гораздо больше, чем должно бы быть. Причина кроется, конечно, в том, что люди не помнят, твердо, сколько им лет и, показывая возраст, невольно «округляют» годы. Замечательно, что подобное же преобладание «круглых» возрастов наблюдается и на могильных памятниках древних римлян.
Мы считаем отрицательные числа чем-то естественным, но так было далеко не всегда.
Впервые отрицательные числа были узаконены в Китае в III веке, но использовались лишь для исключительных случаев, так как считались, в общем, бесмыссленными. Чуть позднее отрицательные числа стали использоваться в Индии для обозначения долгов, но западнее они не прижились - знаменитый Диофант Александрийский утверждал, что уравнение 4x+20=0 - абсурдно.

В Европе отрицательные числа появились благодаря Леонардо Пизанскому (Фибоначчи), который тоже ввёл его для решения финансовых задач с долгами - в 1202 году он впервые использовал отрицательные числа для подсчёта своих убытков.
Тем не менее до XVII века отрицательные числа были “в загоне” и даже в XVII веке знаменитый математик Блез Паскаль утверждал, что 0-4=0 ибо нет такого числа, которое может быть меньше ничего, а вплоть до XIX века математики часто отбрасывали в своих вычислениях отрицательные числа, считая их бессмысленными…
Первыми «вычислительными устройствами», которыми пользовались в древности люди, были пальцы рук и камешки. Позднее появились бирки с зарубками и верёвки с узелками. В Древнем Египте и Древней Греции задолго до нашей эры использовали абак - доску с полосками, по которым продвигались камешки. Это было первое устройство, специально предназначенное для вычислений. Со временем абак совершенствовали - в римском абаке камешки или шарики передвигались по желобкам. Абак просуществовал до 18 века, когда его заменили письменные вычисления. Русский абак - счёты появились в 16 веке. Ими пользуются и в наши дни. Большое преимущество русских счётов в том, что они основаны на десятичной системе счисления, а не на пятеричной, как все остальные абаки.
Самый древний математический труд был найден в Свазиленде - кость бабуина с выбитыми чёрточками (кость из Лембобо), которые предположительно были результатом какого-то вычисления. Возраст кости - 37 тысяч лет.


Во Франции был найден ещё более сложный математический труд - вол
чья кость, на которой выбиты чёрточки, сгруппированные по пять штук. Возраст кости - около 30 тысяч лет.
Ну и наконец знаменитая кость из Ишанго (Конго) на которой выбиты группы простых чисел. Считается, что кость возникла 18-20 тысяч лет назад.
А вот древнейшим математическим текстом могут считаться вавилонские таблички с кодовым названием Plimpton 322, созданные в 1800-1900 году до нашей эры.
У древних египтян не было таблиц умножения и правил. Тем не менее, умножать они умели и пользовались для этого “компьютерным” способом - разложением чисел в двоичный ряд. Как же они это делали? А вот как:
Например, нужно умножить 22 на 35.
Записываем 22 35
Теперь делим левое число на 2, а правое умножаем на 2. Подчёркиваем справа числа только тогда когда оно делится на 2.
Итак,

А теперь складываем 70+140+560=770
Правильный результат!
Египтяне не знали дробей вроде 2/3 или 3/4. Никаких числителей! Египетские жрецы оперировали лишь с дробями, где числитель был всегда 1 и дробь записывалась так: целое число с овалом над ним. То есть 4 с овалом означало 1/4.
А что же дроби вроде 5/6 ? Египетские математики раскладывали их на дроби с числителем 1. То есть 1/2 + 1/3. То есть 2 и 3 с овалом вверху.
Ну что ж, это просто. 2/7 = 1/7 + 1/7. Отнюдь! Ещё одним правилом египтян было отсутствие в ряду дробей повторяющихся чисел. То есть 2/7 по их мнению было 1/4+1/28.

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №2

РЕФЕРАТ

по дисциплине: «Математика»

по теме: «Необыкновенные обыкновенные дроби»

Выполнила:

ученица 5 класса

Фролова Наталья

Руководитель:

Друщенко Е.А.

учитель математики

г. Стрежевой, Томской области

Введение

Из истории обыкновенных дробей.

Возникновение дробей.

Дроби в Древнем Египте.

Дроби в Древнем Вавилоне.

Дроби в Древнем Риме.

Дроби в Древней Греции.

Дроби на Руси.

Дроби в Древнем Китае.

Дроби в других государствах древности и средних веков.

Применение обыкновенных дробей.

Аликвотные дроби.

Вместо мелких долей крупные.

Дележи при затруднительных обстоятельствах.

III .

Занимательные дроби.

Дроби-домино.

Из глубины веков.

Заключение

Список литературы

Приложение 1.Природный звукоряд.

Приложение 2. Старинные задачи с использованием обыкновенных дробей.

Приложение 3. Занимательные задачи с обыкновенными дробями.

Приложение 4. Дроби-домино

Введение

В этом году мы начали изучать обыкновенные дроби. Очень необычные числа, начиная с их непривычной записи и заканчивая сложными правилами действий с ними. Хотя с первого знакомства с ними было понятно, что без них не обойтись даже в обычной жизни, так как нам каждый день приходится сталкиваться с проблемой деления целого на части, и мне даже в определенный момент показалось, что нас больше окружают не целые, а дробные числа. С ними мир оказался сложней, но в тоже время интересней. У меня возникли вопросы. Нужны ли дроби? Важны ли они? Мне захотелось узнать, откуда пришли к нам дроби, кто придумал правила работы с ними. Хотя слово придумал, наверное, не очень подходит, потому что в математике все должно быть проверено, поскольку все науки и производства в нашей жизни опираются на четкие математические законы, действующие во всем мире. Не может быть так, что у нас в стране сложение дробей выполняют по одному правилу, а где-нибудь в Англии по-другому.

В ходе работы над рефератом мне пришлось столкнуться с некоторыми трудностями: с новыми терминами и понятиями, пришлось поломать голову, решая задачки, и разбирая решение, предложенное древними учеными. Так же при наборе текста я впервые столкнулась с необходимостью напечатать дроби и дробные выражения.

Цель моего реферата: проследить историю развития понятия обыкновенной дроби, показать необходимость и важность использования обыкновенных дробей при решении практических задач. Задачи, которые я ставила перед собой: сбор материала по теме реферата и его систематизация, изучение старинных задач, обобщение обработанного материала, оформление обобщенного материала, подготовка презентации, презентация реферата.

Моя работа состоит из трех глав. Мной были изучены и обработаны материалы 7 источников, среди которых учебная, научная и энциклопедическая литература, Интернет-сайт. Мною оформлено приложение, в котором содержится подборка задач из древних источников, некоторые занимательные задачи с обыкновенными дробями, а также подготовлена презентация, сделанная в редакторе Power Point.

I . Из истории обыкновенных дробей

1.1 Возникновение дробей

Многочисленные историко-математические исследования показывают, что дробные числа появились у разных народов в древние времена вскоре после натуральных чисел. Появление дробей связывается с практическими потребностями: задачи, где нужно производить деление на части, были очень распространены. Кроме того, в жизни человеку приходилось не только считать предметы, но и измерять величины. Люди встретились с измерениями длин, площадей земельных участков, объемов, массы тел. При этом случалось, что единица измерения не укладывалась целое число раз в измеряемой величине. Например, измеряя длину участка шагами, человек встречался с таким явлением: в длине укладывалось десять шагов, и оставался остаток меньше одного шага. Поэтому второй существенной причиной появления дробных чисел следует считать измерение величин при помощи выбранной единицы измерения.

Таким образом, во всех цивилизациях понятие дроби возникло из процесса дробления целого на равные части. Русский термин «дробь», как и его аналоги в других языках, происходит от лат. fractura, который, в свою очередь, является переводом арабского термина с тем же значением: ломать, раздроблять. Поэтому, вероятно, первыми дробями везде были дроби вида 1/n. Дальнейшее развитие естественным образом идет в сторону рассмотрения этих дробей как единиц, из которых могут быть составлены дроби m/n – рациональные числа. Однако этот путь был пройден не всеми цивилизациями: например, он так и не реализовался в древнеегипетской математике.

Первой дробью, с которой познакомились люди, была половина. Хотя названия всех следующих дробей связаны с названиями их знаменателей (три – «треть», четыре – «четверть» и т. д.), для половины это не так – ее название во всех языках не имеет ничего общего со словом «два».

Система записи дробей, правила действий с ними заметно различались как у разных народов, так и в разные времена у одного и того же народа. Важную роль играли также многочисленные заимствования идей при культурных контактах различных цивилизаций.

1.2 Дроби в Древнем Египте

В древнем Египте пользовались только простейшими дробями, у которых числитель равен единице (те, которые мы называем «долями»). Математики называют такие дроби аликвотными (от лат. aliquot – несколько). Так же используется название основные дроби или единичные дроби.

Египтяне ставили иероглиф

(ер , «[один] из» или ре , рот) над числом для обозначения единичной дроби в обычной записи, а в священных текстах использовали линию. К примеру:


большая часть глаза

1 / 2 (или 32 / 64)

1 / 8 (или 8 / 64)

капля слезы (?)

1 / 32 (или ²/ 64)

Кроме того, египтяне использовали формы записи, основанные на иероглифе Глаз Гора (Уаджет) . Для древних характерно переплетение образа Солнца и глаза. В египетской мифологии часто упоминается бог Гор, олицетворяющий крылатое Солнце и являющийся одним из самых распространенных сакральных символов. В битве с врагами Солнца, воплощенными в образе Сета, Гор сначала терпит поражение. Сет вырывает у него Глаз - чудесное око - и разрывает его в клочья. Тот - бог учения, разума и правосудия - снова сложил части глаза в одно целое, создав "здоровый глаз Гора". Изображения частей разрубленного Ока использовались при письме в Древнем Египте для обозначения дробей от 1 / 2 до 1 / 64 .

Сумма шести знаков, входящих в Уаджет, и приведенных к общему знаменателю: 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64 = 63/64

Такие дроби использовались вместе с другими формами записи египетских дробей для того, чтобы поделить хекат , основную меру объёма в Древнем Египте. Эта комбинированная запись также использовалась для измерения объёма зерна, хлеба и пива. Если после записи количества в виде дроби Глаза Гора оставался какой-то остаток, его записывали в обычном виде кратно ро, единице измерения, равной 1/320 хеката.

Например, так:

При этом «рот» помещался перед всеми иероглифами.

Хекат ячменя: 1 / 2 + 1 / 4 + 1 / 32 (то есть 25 / 32 сосуда ячменя).

Хекат равнялся примерно 4,785 литрам.

Всякую другую дробь египтяне представляли как сумму аликвотных дробей, например 9/16 = 1/2+1/16; 7/8=1/2+1/4+1/8 и так далее.

Это записывалось так: /2 /16; /2 /4 /8.

В некоторых случаях это кажется достаточно просто. Например, 2/7 = 1/7 + 1/7. Но ещё одним правилом египтян было отсутствие в ряду дробей повторяющихся чисел. То есть 2/7 по их мнению было 1/4+1/28.

Сейчас сумма нескольких аликвотных дробей называется египетской дробью. Другими словами, каждая дробь суммы имеет числитель, равный единице, и знаменатель, представляющий собой натуральное число.

Проводить различные вычисления, выражая все дроби через единичные, было, конечно, очень трудно и отнимало много времени. Поэтому египетские ученые позаботились об облегчении труда писца. Они составили специальные таблицы разложений дробей на простейшие. Математические документы древнего Египта это не научные трактаты по математике, а практические учебники с примерами, взятыми из жизни. Среди задач, которые должен был решать ученик школы писцов, - вычисления и вместимости амбаров, и объема корзины, и площади поля, и раздела имущества среди наследников, и другие. Писец должен был запомнить эти образцы и уметь быстро применять их для расчетов.

Одним из первых известных упоминаний о египетских дробях является Математический папирус Ринда. Три более древних текста, в которых упоминаются египетские дроби - это Египетский математический кожаный свиток, Московский математический папирус и Деревянная табличка Ахмима.

Самый древний памятник египетской математики, так называемый «Московский папирус», - документ XIX века до нашей эры. Он был приобретен в 1893 году собирателем древних сокровищ Голенищевым, а в 1912 году перешел в собственность Московского музея изящных искусств. В нем содержалось 25 различных задач.

Например, в нем рассматривается задача о делении 37 на число, заданное как (1 + 1/3 + 1/2 + 1/7). Путем последовательного удвоения этого дробного числа и выражения разности между 37 и тем, что получилось, а также при помощи процедуры, по сути, аналогичной нахождению общего знаменателя, получается ответ: частное равно 16 + 1/56 + 1/679 + 1/776.

Самый большой математический документ - папирус по руководству к вычислениям писца Ахмеса - найден в 1858 году английским коллекционером Райндом. Папирус составлен в XVII веке до нашей эры. Его длина 20 метров, ширина 30 сантиметров. Он содержит 84 математических задачи, их решения и ответы, записанные в виде египетских дробей.

Папирус Ахмеса начинается с таблицы, в которой все дроби вида 2\n от 2/5 до 2/99 записаны в виде сумм аликвотных дробей. Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Еще сложнее обстояло дело с делением. Вот, например, как 5 делили на 21:

Часто встречающаяся задача из папируса Ахмеса: «Пусть тебе сказано: раздели 10 мер ячменя между 10 человеками; разница между каждым человеком и его соседом составляет - 1/8 меры. Средняя доля есть одна мера. Вычти одну из 10; остаток 9. Составь половину разницы; это есть 1/16. Возьми ее 9 раз. Приложи это к средней доле; вычитай для каждого лица по 1/8 меры, пока не достигнешь конца».

Еще одна задача из папируса Ахмеса, демонстрирующая применение аликвотных дробей: «Разделить 7 хлебов между 8 людьми».
Если резать каждый хлеб на 8 частей, придется провести 49 разрезов.
А по-египетски эта задача решалась так. Дробь 7/8 записывали в виде долей: 1/2 + 1/4 + 1/8. Значит, каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезаем пополам, два хлеба - на 4 части и один хлеб - на 8 долей, после чего каждому даем его часть.

Египетские таблицы дробей и различные вавилонские таблицы - древнейшие из известных нам средств, облегчающих вычисления.

Египетские дроби продолжали использоваться в древней Греции и впоследствии математиками всего мира до средних веков, несмотря на имеющиеся к ним замечания древних математиков. К примеру, Клавдий Птолемей говорил о неудобстве использования египетских дробей по сравнению с Вавилонской системой (позиционная система исчисления). Важную работу по исследованию египетских дробей провёл математик XIII века Фибоначчи в своём труде «Liber Abaci» - это вычисления, использующие десятичные и обычные дроби, вытеснившие со временем египетские дроби. Фибоначчи использовал сложную запись дробей, включавшую запись чисел со смешанным основанием и запись в виде сумм дробей, часто использовались и египетские дроби. Также в книге были приведены алгоритмы перевода из обычных дробей в египетские.

1.3 Дроби в Древнем Вавилоне.

Известно, что в древнем Вавилоне использовали шестидесятеричную систему счисления. Ученые этот факт связывают с тем, что вавилонская денежная и весовая единицы измерения подразделялись в силу исторических условий на 60 равных частей: 1 талант = 60 мин; 1 мина = 60 шекель. Шестидесятые доли были привычны в жизни вавилонян. Вот почему они пользовались шестидесятеричными дробями, имеющими знаменателем всегда число 60 или его степени: 60 2 = 3600, 60 3 = 216000 и т.д. Это первые в мире систематические дроби, т.е. дроби, у которых знаменателем являются степени одного и того же числа. Пользуясь такими дробями, вавилоняне должны были многие дроби изображать приближенно. В этом недостаток и в то же время преимущество этих дробей. Эти дроби стали постоянным орудием научных вычислений греческих, а затем арабоязычных и средневековых европейских ученых вплоть до XV века, пока не уступили место десятичным дробям. Но шестидесятеричными дробями пользовались в астрономии ученые всех народов вплоть до XVII, называя их астрономическими дробями.

Шестидесятеричная система счисления предопределила большую роль в математике Вавилона различных таблиц. Полная вавилонская таблица умножения должна была бы содержать произведения от 1х1 до 59х59, то есть 1770 чисел, а не 45 как наша таблица умножения. Запомнить наизусть такую таблицу практически невозможно. Даже в записанном виде она была бы очень громоздкой. Поэтому для умножения, как и для деления, существовал обширный набор различных таблиц. Операцию деления в вавилонской математике можно назвать «проблемой номер один». Деление числа m на число n вавилоняне сводили к умножению числа m на дробь 1\ n и даже термина «делить» у них не существовало. Например, при вычислении того, что мы записали бы как х = m: n, они всякий раз рассуждали так: возьми обратную от n, ты увидишь 1\ n, умножь m на 1\ n, и ты увидишь х. Конечно, вместо наших букв жители Вавилона называли конкретные числа. Таким образом, важнейшую роль в вавилонской математике играли многочисленные таблицы обратных величин.

Кроме того, для вычислений с дробями вавилоняне составляли обширнейшие таблицы, выражавшие в шестидесятиричных дробях основные дроби. Например:

1\16 = 3\60 + 45\60 2 , 1\54 = 1\60 + 6\60 2 + 40\60 3 .

Сложение и вычитание дробей вавилонянами производилось аналогично соответствующим действиям над целыми числами и десятичными дробями в нашей позиционной системе счисления. Но как умножалась дробь на дробь? Достаточно высокое развитие измерительной геометрии (землемерие, измерение площадей) позволяет предположить, что вавилоняне преодолевали эти затруднения с помощью геометрии: изменение линейного масштаба в 60 раз дает изменение масштаба площади в 60 · 60 раз. Следует заметить, что в Вавилоне расширение области натуральных чисел до области положительных рациональных чисел окончательно не произошло, так как вавилоняне рассматривали только конечные шестидесятеричные дроби, в области которых деление не всегда выполнимо. Кроме того, у вавилонян в обиходе были дроби 1\2,1\3,2\3,1\4,1\5,1\6,5\6, для которых существовали индивидуальные знаки.

Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 минут, минуты на 60 секунд, окружности на 360 градусов, градуса на 60 минут, минуты на 60 секунд Минута означает по-латыни «маленькая часть», секунда- «вторая»

(маленькая часть).

1.4. Дроби в Древнем Риме.

Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Эта система дробей основывалась на делении на 12 долей единицы веса, которая называлась асс. Так возникли римские двенадцатеричные дроби, т.е. дроби у которых знаменатель всегда был двенадцать. Двенадцатую долю асса называли унцией. Вместо 1\12 римляне говорили «одна унция», 5\12 – «пять унций» и т.д. Три унции назывались четвертью, четыре унции – третью, шесть унций – половиной.

А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия. Всего применялось 18 различных названий дробей. Например, в ходу были такие названия:

“скрупулус” - 1/288 асса,

”семис”- половина асса,

“секстанс”- шестая его доля,

“семиунция”- половина унции, т.е. 1/24 асса и т.д.

Чтобы работать с такими дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию (2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

Унция обозначалась чертой - ,половина асса (6 унций) – буквой S (первой в латинском слове Semis-половина). Эти два знака служили для записи любой двенадцатеричной дроби, каждая из которых имела свое название. Например, 7\12 записывались так: S-.

Ещё в первом веке до нашей эры выдающийся римский оратор и писатель Цицерон говорил: “Без знания дробей никто не может признаваться знающим арифметику!”.

Характерен следующий отрывок из произведения знаменитого римского поэта I века до нашей эры Горация, о беседе учителя с учеником в одной из римских школ той эпохи:

Учитель: Пусть скажет Сын Альбина, сколько останется, если от пяти унций отнять одну унцию!

Ученик: Одна треть.

Учитель: Правильно, ты хорошо знаешь дроби и сумеешь сберечь своё имущество.

1.5. Дроби в Древней Греции.

В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали. В греческих сочинениях по математике дробей не встречалось. Греческие ученые считали, что математика должна заниматься только целыми числами. Возиться с дробями они предоставляли купцам, ремесленникам, а также астрономам, землемерам, механикам и другому «черному люду». «Если ты захочешь делить единицу, математики высмеют тебя и не позволят это делать»,- писал основатель афинской академии Платон.

Но не все древнегреческие математики соглашались с Платоном. Так в трактате «Об измерении круга» Архимед употребляет дроби. С дробями свободно обращался и Герон Александрийский. Он подобно египтянам разбивает дробь на сумму основных дробей. Вместо 12\13 он пишет 1\2 + 1\3 + 1\13 + 1\78, вместо 5\12 пишет 1\3 + 1\12 и.т.п. Даже Пифагор, со священным трепетом относившийся к натуральным числам, создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Правда, самим понятием дроби Пифагор и его ученики не пользовались. Они позволяли себе говорить лишь об отношениях целых чисел.

Поскольку греки работали с обыкновенными дробями лишь эпизодически, они использовали различные обозначения. Герон и Диофант записывали дроби в алфавитной форме, причем числитель располагали под знаменателем. Для некоторых дробей применялись отдельные обозначения, например, для 1\2 - L′′, но в целом их алфавитная нумерация с трудом позволяла обозначать дроби.

Для единичных дробей применялась особая запись: знаменатель дроби сопровождался штрихом справа, числитель не писали. Например,
в алфавитной системе означало 32, а " – дробь 1\32. Встречаются такие записи обыкновенных дробей, в которых числитель со штрихом и дважды взятый знаменатель с двумя штрихами пишутся рядом в одной строке. Вот как записывал, например, Герон Александрийский дробь 3\4:
.

Недостатки греческих обозначений дробных чисел связано с тем, что слово «число» греки понимали как набор единиц, поэтому то, что мы теперь рассматриваем как единое рациональное число – дробь, – греки понимали как отношение двух целых чисел. Именно этим объясняется, почему обыкновенные дроби редко встречались в греческой арифметике. Предпочтение отдавалось либо дробям с единичным числителем, либо шестидесятиричным дробям. Областью, в которой практические вычисления испытывали величайшую потребность в точных дробях, была астрономия, а здесь вавилонская традиция была настолько сильна, что ее использовали все народы, включая Грецию.

1.6. Дроби на Руси

Первый русский математик, известный нам по имени, монах Новгородского монастыря Кирик занимался вопросами хронологии и календаря. В его рукописной книге «Учение им же ведати человеку числа всех лет» (1136 г.), т.е. «Наставление, как человеку познать счисление лет» применяется деление часа на пятые, двадцать пятые и т.д. доли, которые он называл «дробными часами» или «часцами». Доходит он до седьмых дробных часов, которых в дне или ночи 937 500, причем говорит, что от седьмых дробных уже ничего не получается.

В первых учебниках математики (VII в.) дроби называли долями, позднее «ломаными числами». В русском языке слово дробь появилось в VIII веке, оно происходит от глагола «дробить» - разбивать, ломать на части. При записи числа использовалась горизонтальная черта.

В старых руководствах есть следующие названия дробей на Руси:

1/2 - половина, полтина

1/3 – треть

1/4 – четь

1/6 – полтреть

1/8 - полчеть

1/12 –полполтреть

1/16 - полполчеть

1/24 – полполполтреть (малая треть)

1/32 – полполполчеть (малая четь)

1/5 – пятина

1/7 - седьмина

1/10 – десятина.

Использовалась в России земельная мера четверть и более мелкая –

получетверть, которая называлась осьмина. Это были конкретные дроби, единицы для измерения площади земли, но осьминой нельзя было измерить время или скорость и др. Значительно позднее осьмина стала означать отвлеченную дробь 1/8, которой можно выразить любую величину.

О применении дробей в России XVII века можно прочитать в книге В.Беллюстина «Как постепенно люди дошли до настоящей арифметики» следующее: «В рукописи XVIIв. «Статия численная о всяких долях указ «начинается прямо с письменного обозначения дробей и с указания числителя и знаменателя. При выговаривании дробей интересны такие особенности: четвертая часть называлась четью, доли же со знаменателем от 5 до 11 выражались словами с окончанием «ина», так что 1/7 – седмина, 1/5 – пятина, 1/10 – десятина; доли же со знаменателями, большими 10, выговаривались с помощью слов «жеребей», например 5/13 – пять тринадцатых жеребьёв. Нумерация дробей была прямо заимствована из западных источников… Числитель назывался верхним числом, знаменатель исподним».

С XVI века в России большой популярностью пользовался дощаной счет – вычисления при помощи прибора, бывшего прообразом русских счетов. Он позволял быстро и легко производить сложные арифметические действия. Дощаной счет имел весьма широкое распространение среди торговцев, служащих московских приказов, «мерщиков» - землемеров, монастырских экономов и т.д.

В первоначальной форме дощаной счет был специально приспособлен к нуждам сошной арифметики. Это система налогового обложения в России 15-17 вв., при которой, наряду со сложением, вычитанием, умножением и делением целых чисел, надо было производить те же операции и с дробями, поскольку условная единица обложения - соха, делилась на части.

Дощаный счёт представлял собой два складывающихся ящика. Каждый ящик разгораживался надвое (позже только внизу); второй ящик был необходим ввиду особенностей денежного счёта. Внутри ящика на натянутые шнуры или проволоку нанизывались кости. В соответствии с десятичной системой счисления ряды для целых чисел имели по 9 или 10 костей; операции с дробями производились на неполных рядах: ряд из трёх костей составлял три трети, ряд из четырёх костей - четыре четверти (чети). Ниже располагались ряды, в которых было по одной кости: каждая кость представляла половину от той дроби, под которой она располагалась (например, кость расположенная под рядом из трех костей, составляла половину от одной трети, кость под ней - половину от половины одной трети, и т. д.). Сложение двух одинаковых «сошных» дробей дает дробь ближайшего высшего разряда, например, 1/12+1/12=1/6 и т.п. На счетах сложение двух таких дробей соответствует переход к ближайшей вышестоящей костяшке.

Дроби суммировались без приведения к общему знаменателю, например «четь да полтрети, да полполчети» (1/4 + 1/6 + 1/16). Иногда операции с дробями производились как с целыми при помощи приравнивания целого (сохи) к определённой сумме денег. Например, при равенстве соха = 48 денежным единицам приведённая выше дробь составит 12 + 8 + 3 = 23 денежные единицы.

В сошной арифметике приходилось иметь дело и с более мелкими дробями. В некоторых рукописях приводятся чертежи и описания «дщиц счетных», аналогичных только что рассмотренным, но с большим числом рядов с одной костью, так что на них можно откладывать доли до 1/128 и 1/96. Несомненно, что изготовлялись и соответствующие приборы. Для удобства вычислителей приводилось много правил «Свода мелких костей», т.е. сложения употребительных в сошном счете дробей, вроде: три чети сохи да полчети сохи да пол-полчети сохи и т.д. вплоть до пол-пол-пол-пол-полчети сохи составляют соху без пол-пол-пол-пол-полчети, т.е. 3/4+1/8+1/16+1/32 +1/64 + 1/128 = 1 - 1/128 и т.п.

Но из дробей рассматривались только 1/2 и 1/3, а также полученные из них при помощи последовательного деления на 2. Для действий с дробями других рядов "дощатый счет" приспособлен не был. При оперировании с ними нужно было обращаться к специальным таблицам, в которых приводились итоги разного сочетания дробей.

В 1703г. выходит в свет первый русский печатный учебник по математике «Арифметика». Автор Магницкий Леонтий Филлипович. Во 2-ой части этой книги “О числах ломаных или с долями” подробно излагаетсяучение о дробях.

Оно у Магницкого носит почти современный характер. Магницкий подробнее, чем современные учебники, останавливается на вычислении долей. Дроби Магницкий рассматривает как именованные числа (не просто 1/2, а 1/2 рубля, пуда и т.п.), а действия с дробями изучает в процессе решения задач. Что есть число ломаное, Магницкий отвечает: «Число ломаное не что же иное есть, токмо часть вещи, числом объявленная, сиречь полтина есть половина рубля, а пишется сице рубля, или рубля, или рубля, или две пятые части и всякие вещи яковые либо часть, объявлена числом, то есть ломаное число» . Магницкий приводит название всех правильных дробей со знаменателями от 2 до 10. Например, дроби со знаменателем 6: едина шестина, две шестины, три шестины, четыре шестины, пять шестин.

Магницкий использует название числитель, знаменатель, рассматривает неправильные дроби, смешанные числа, помимо всех действий выделяет целую часть из неправильной дроби.

Учение о дробях всегда оставалось труднейшим разделом арифметики, но в то же время в любую из предшествующих эпох люди сознавали важность изучения дробей, и учителя в стихах и прозе старались приободрить своих учеников. Л.Магницкий писал:

Но несть той арифметик,

Ижо в целых ответчик,

А в долях сий ничтоже,

Отвещати возможе.

емже о ты радеяй,

Буди в частях умеяй.

1.7. Дроби в Древнем Китае

В Китае практически все арифметические операции с обыкновенными дробями были установлены уже ко II в. до н. э.; они описаны в фундаментальном своде математических знаний древнего Китая – «Математике в девяти книгах», окончательная редакция которой принадлежит Чжан Цану. Вычисляя на основе правила, аналогичного алгоритму Евклида, (наибольший общий делитель числителя и знаменателя), китайские математики сокращали дроби. Умножение дробей представлялось как нахождение площади прямоугольного земельного участка, длина и ширина которого выражены дробными числами. Деление рассматривалось с помощью идеи дележа, при этом китайских математиков не смущало, что число участников дележа может быть дробным, например, 3⅓ человека.

Первоначально китайцы использовали простейшие дроби, которые получили наименования с использованием иероглифа бань:

бань («половина») –1\2;

шао бань («малая половина») –1\3;

тай бань («большая половина») –2\3.

Следующим этапом было развитие общего представления о дробях и формирование правил оперирования с ними. Если в древнем Египте применялись только аликвотные дроби, то в Китае они, считаясь долями-фэнь, мыслились как одна из разновидностей дробей, а не единственно возможные. Китайская математика с древних времен имела дело со смешанными числами. Самый ранний из математических текстов, «Чжоу би суань цзин» («Канон расчета чжоуского гномона»/«Математический трактат о гномоне»), содержит вычисления, при которых возводятся в степень такие числа, как, например, 247 933 / 1460 .

В «Цзю чжан суань шу» («Правила счета в девяти разделах») дробь рассматривается как часть целого, которая выражается в n-ном числе его долей-фэнь – m (n

В первом разделе «Цзю чжан суань шу», посвященном в целом измерению полей, отдельно приводятся правила сокращения, сложения, вычитания, деления и умножения дробей, а также их сравнения и «уравнивания», т.е. такого сравнения трех дробей, при котором необходимо найти их среднее арифметическое (более простое правило вычисления среднего арифметического двух чисел в книге не приводится).

Например, для получения суммы дробей в указанном сочинении предлагается следующая инструкция: «Поочередно перемножьте (ху чэн) числители на знаменатели. Сложите – это делимое (ши). Перемножьте знаменатели – это делитель (фа). Делимое соедините с делителем в одно (и). Если имеется остаток, то свяжите его с делителем». Эта инструкция означает, что если складывается несколько дробей, то числитель каждой дроби надо умножить на знаменатели всех остальных дробей. При «соединении» делимого (как суммы результатов такого умножения) с делителем (произведение всех знаменателей) получается дробь, которую следует при необходимости сократить и из которой путем деления следует выделить целую часть, тогда «остаток» – это числитель, а сокращенный делитель – это знаменатель. Сумма набора дробей есть результат такого деления, состоящий из целого числа плюс дробь. Указание «перемножьте знаменатели» означает, по сути, приведение дробей к наибольшему общему знаменателю.

Правило сокращения дробей в «Цзю чжан суань шу» содержит алгоритм нахождения общего наибольшего делителя числителя и знаменателя, который совпадает с так называемым алгоритмом Евклида, предназначенным для определения общего наибольшего делителя двух чисел. Но если последний, как известно, дан в «Началах» в геометрической формулировке, то китайский алгоритм представлен чисто арифметически. Китайский алгоритм нахождения общего наибольшего делителя, называемого дэн шу («одинаковое число»), строится как последовательное вычитание меньшего числа из большего. На это число дэн шу и надо сократить дробь. Например, предлагается сократить дробь 49\91. Проводим последовательное вычитание: 91 – 49 = 42; 49 – 42 = 7; 42 – 7 – 7 – 7 – 7 – 7 – 7 = 0. Дэн шу = 7. Сокращаем дробь на это число. Получаем:7\13.

Деление дробей в «Цзю чжан суань шу» отличается от принятого сегодня. В правиле «цзин фэнь» («порядок деления») указывается, что перед делением дробей их следует привести к общему знаменателю. Таким образом, процедура деления дробей имеет излишний этап: a/b: c/d = ad/bd: cb/bd = ad/cb. Только в V в. Чжан Цю-цзянь в своем сочинении «Чжан Цю-цзянь суань цзин» («Счетный канон Чжан Цю-цзяня») от него избавился, производя деление дробей по обычному правилу: a/b: c/d = ad/cb.

Возможно, долгая приверженность китайских математиков к усложненному алгоритму деления дробей была обусловлена стремлением сохранить его универсальность и использованием счетной доски. По сути дела, он заключается в сведении деления дробей к делению целых чисел. Этот алгоритм справедлив, если делится целое число на смешанное. В делении, например, 2922 на 182 5 / 8 , оба числа сначала умножались на 8, что позволяло далее делить целые числа: 23376:1461= 16

1.8. Дроби в других государствах древности и средних веков.

Дальнейшее развитие понятия обыкновенной дроби было достигнуто в Индии. Математики этой страны сумели достаточно быстро перейти от единичных дробей к дробям общего вида. Впервые такие дроби встречаются в «Правилах веревки» Апастамбы (VII-Vв. до н.э.), которые содержат геометрические построения и результаты некоторых вычислений. В Индии использовалась система записи – возможно, китайского, а возможно, позднегреческого происхождения, – при которой числитель дроби писался над знаменателем – как у нас, но без дробной черты, зато вся дробь помещалась в прямоугольную рамку. Иногда использовалось и «трехэтажное» выражение с тремя числами в одной рамке; в зависимости от контекста это могло обозначать неправильную дробь (a + b/c) или деление целого числа a на дробь b/c.

Например, дробь записывали как

Правила действий с дробями, изложенные индийским ученым Брамагуптой (VIII в.), почти не отличались от современных. Как и в Китае, в Индии для приведения к общему знаменателю долгое время перемножали знаменатели всех слагаемых, но с IX в. пользовались уже наименьшим общим кратным.

Средневековые арабы пользовались тремя системами записи дробей. Во-первых, на индийский манер, записывая знаменатель под числителем; дробная черта появилась в конце XII – начале XIII в. Во-вторых, чиновники, землемеры, торговцы пользовались исчислением аликвотных дробей, похожим на египетское, при этом применялись дроби со знаменателями, не превышающими 10 (только для таких дробей арабский язык имеет специальные термины); часто использовались приближенные значения; арабские ученые работали над усовершенствованием этого исчисления. В-третьих, арабские ученые унаследовали вавилонско-греческую шестидесятеричную систему, в которой, как и греки, применяли алфавитную запись, распространив ее и на целые части.

Индийское обозначение дробей и правила действий над ними были усвоены в IX в. в мусульманских странах благодаря Мухаммеду Хорезмскому (аль-Хорезми). В торговой практике стран Ислама широко пользовались единичными дробями, в науке применяли шестидесятиричные дроби и в гораздо меньшей мере обыкновенные дроби. Ал-Караджи (X-XI вв.), ал-Хассар (XII в.), ал-Каласади (XVв.) и другие ученые представляли в своих трудах правила представления обыкновенных дробей в виде сумм и произведений единичных дробей. Сведения о дробях были перенесены в Западную Европу итальянским купцом и ученым Леонардо Фибоначчи из Пизы (XIII в.). Он ввел слово дробь, стал применять черту дроби (1202г), дал формулы для планомерного разбиения дробей на основные. Названия числитель и знаменатель ввел в 13 веке Максим Плануд – греческий монах, ученый, математик. Способ приведения дробей к общему знаменателю был предложен в 1556 г. Н.Тартальей. Современная схема сложения обыкновенных дробей встречается в 1629г. у А.Жирара.

II. Применение обыкновенных дробей

2.1 Аликвотные дроби

Задачи с использованием аликвотных дробей составляют обширный класс нестандартных задач, в том числе пришедших из глубины веков. Аликвотные дроби используются тогда, когда требуется что-то разделить на несколько частей с наименьшим количеством действий для этого. Разложение дробей вида 2/n и 2/(2n +1) на две аликвотные дроби систематизировано в виде формул

Разложение на три, четыре, пять и т.д. аликвотных дробей можно произвести, разложив одно из слагаемых на две дроби, следующее слагаемое еще на две аликвотные дроби и т.д.

Чтобы представить какое-либо число в виде суммы аликвотных дробей, порой приходится проявлять незаурядную изобретательность. Скажем, число 2/43 выражается так: 2/43=1/42+1/86+1/129+1/301. Производить арифметические действия над числами, раскладывая их в сумму долей единицы, очень неудобно. Поэтому в процессе решения задач для разложения аликвотных дробей в виде суммы меньших аликвотных дробей возникла идея систематизировать разложение дробей в виде формулы. Эта формула действует, если требуется разложение аликвотной дроби на две аликвотные дроби.

Формула выглядит следующим образом:

1/n=1/(n+1) + 1/n ·(n+1)

Примеры разложения дробей:

1/3=1/(3+1)+1/3·(3+1)=1/4 +1/12;

1/5=1/(5+1)+1/5·(5+1)=1/6 +1/30;

1/8=1/(8+1)+1/8·(8+1)=1/9+ 1/72.

Эту формулу можно преобразовать и получить следующее полезное равенство: 1/n·(n+1)=1/n -1/(n+1)

Например, 1/6=1/(2·3)=1/2 -1/3

То есть аликвотную дробь можно представить разностью двух аликвотных дробей, или разность двух аликвотных, знаменателями которых являются последовательные числа равные их произведению.

Пример. Представить число 1 в виде сумм различных аликвотных дробей

а) трех слагаемых 1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6

б) четырех слагаемых

1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)= 1/2+1/3+1/7+1/42

в) пяти слагаемых

1=1/2+1/2=1/2+(1/3+1/6)=1/2+1/3+1/6=1/2+1/3+(1/7+1/42)=1/2+1/3+1/7+1/42=1/2+(1/4+ +1/12) +1/7+1/42=1/2+1/4+1/12 +1/7+1/42

2.2 Вместо мелких долей крупные

На машиностроительных заводах есть очень увлекательная профессия, называется она - разметчик. Разметчик намечает на заготовке линии, по которым эту заготовку следует обрабатывать, чтобы придать ей необходимую форму.

Разметчику приходится решать интересные и подчас нелегкие геометрические задачи, производить арифметические расчеты и т. д.
"Понадобилось как-то распределить 7 одинаковых прямоугольных пластинок равными долями между 12 деталями. Принесли эти 7 пластинок разметчику и попросили его, если можно, разметить пластинки так, чтобы не пришлось дробить ни одной из них на очень мелкие части. Значит, простейшее решение - резать каждую пластинку на 12 равных частей - не годилось, так как при этом получалось много мелких долей. Как же быть?
Возможно ли деление данных пластинок на более крупные доли? Разметчик подумал, произвел какие-то арифметические расчеты с дробями и нашел все-таки самый экономный способ деления данных пластинок.
Впоследствии он легко дробил 5 пластинок для распределения их равными долями между шестью деталями, 13 пластинок для 12 деталей, 13 пластинок для 36 деталей, 26 для 21 и т. п.

Оказывается, разметчик представил дробь 7\12 в виде суммы единичных дробей 1\3 + 1\4. Значит, если из 7 данных пластинок 4 разрезать на три равные части каждую, то получим 12 третей, то есть по одной трети для каждой детали. Остальные 3 пластинки разрежем 4 равные части каждую, получим 12 четвертей, то есть по одной четверти для каждой детали. Аналогично, используя представления дробей в виде суммы единичных дробей 5\6=1\2+1\3; 13\121\3+3\4; 13\36=1\4+1\9.

2.3 Дележи при затруднительных обстоятельствах

Есть известная восточная притча о том, что отец оставил сыновьям 17 верблюдов и велел разделить между собой: старшему половину, среднему - треть, младшему- девятую часть. Но 17 не делится ни на 2, ни на 3, ни на 9. Сыновья обратились к мудрецу. Мудрец был знаком с дробями и смог помочь в этой затруднительной ситуации.

Он пустился на уловку. Мудрец прибавил к стаду на время своего верблюда, тогда их стало 18. Разделив это число, как сказано в завещании, мудрец забрал своего верблюда обратно. Секрет в том, что части, на которые по завещанию должны были делить стадо сыновья, в сумме не составляют 1. Действительно, 1\2 + 1\3 + 1\9 = 17\18.

Таких задач достаточно много. Например, задача из русского учебника о 4 друзьях, нашедших кошелек с 8 кредитными билетами: по одному в один, три, пять рублей, а остальные десятирублевые. По обоюдному согласию один хотел третью часть, второй-четверть, третий- пятую, четвертый-шестую. Однако самостоятельно они этого сделать не смогли: помог прохожий, предварительно добавив свой рубль. Чтобы разрешить эту трудность прохожий сложил единичные дроби 1\3 + 1\4 + 1\5 + 1\6 = 57\60, удовлетворив запросы друзей и заработав 2 рубля для себя.

III. Занимательные дроби

3.1 Дроби-домино

Домино – настольная игра, распространенная во всем мире. Игра домино чаще всего состоит из 28 прямоугольных плиток-костей. Костяшка домино представляет собой прямоугольную плитку, лицевая сторона которой разделена линией на две квадратные части. Каждая часть содержит от нуля до шести точек. Если убрать кости, не содержащие очков хотя бы на одной половине (бланши), то оставшиеся кости можно рассматривать как дроби. Кости, обе половины которых содержат по одинаковому количеству очков (дубли), представляют из себя неправильные дроби, равные единице. Если убрать еще эти кости, то останется 15 костей. Их можно располагать по-разному и получать интересные результаты.

1. Расположение в 3 ряда, сумма дробей в каждом из которых, равна 2.

;
;

2. Расположение всех 15 костей в три ряда по 5 костей в каждом, употребляя некоторые из костей домино как неправильные дроби, например 4/3, 6/1, 3/2 и т. д., так, чтобы сумма дробей в каждом ряду равнялась числу 10.

1\3+6\1+3\4+5\3+5\4=10

2\1+5\1+2\6+6\3+4\6=10

4\1+2\3+4\2+5\2+5\6=10

3. Расположение в ряды дробей, сумма которых будет числом целым (но разным в разных рядах).

3.2 Из глубины веков.

«Он скрупулёзно изучил этот вопрос». Это означает, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово «скрупулёзно» от римского названия 1/288 асса – «скрупулус».

«Попасть в дроби». Это выражение означает попасть в трудное положение.

«Асс» - единица измерения массы в фармакологии (аптекарский фунт).

«Унция» - единица массы в английской системе мер, единица измерения массы в фармакологии и химии.

IV . Заключение.

Учение о дробях считалось самым трудным разделом математики во все времена и у всех народов. Кто знал дроби, был в почете. Автор старинной славянской рукописи XVв. пишет: «Несть се дивно, что …в целых, но есть похвально, что в долях…».

Я сделала вывод, что история обыкновенных дробей - это извилистая дорога со многими препятствиями и трудностями. При работе над рефератом я узнала много нового и интересного. Прочитала много книг и разделов из энциклопедий. Познакомилась с первыми дробями, которыми оперировали люди, с понятием аликвотная дробь, узнала новые для меня имена ученых, внесших свой вклад в развитие учения о дробях. Сама попробовала решать олимпиадные и занимательные задачи, самостоятельно подбирала примеры разложения обыкновенных дробей на аликвотные дроби, разбирала решение приведенных в текстах примеров и задач. Ответ на вопрос, который я задала себе перед началом работы над рефератом: обыкновенные дроби необходимы, они важны. Интересно было готовить презентацию, пришлось обращаться за помощью к учителю и одноклассникам. Так же при наборе текста я впервые столкнулась с необходимостью печатать дроби и дробные выражения. На школьной конференции я представила свой реферат. Так же выступала перед своими одноклассниками. Слушали очень внимательно и, по-моему, им было интересно.

Задачи, которые я ставила перед началом работы над рефератом, считаю, мною выполнены.

Литература.

1.Бородин А.И. Из истории арифметики. Головное издательство «Вища школа»-К.,1986

2. Глейзер Г. И. История математики в школе: IV-VI кл. Пособие для учителей. – М.: Просвещение, 1981.

3.Игнатьев Е.И. В царстве смекалки. Главная редакция физико-математической литературы издательства «Наука»,М.,1978.

4. Кордемской Г.А.Математическая смекалка.-10-е изд., перераб. И доп.-М.:Юнисам,МДС,1994.

5.Стройк Д.Я. Краткий очерк истории математики. М.: Наука, 1990.

6.Энциклопедия для детей. Том 11. Математика. Москва, «Аванта+»,1998.

7. /wiki.Материал из Википедии - свободной энциклопедии.

Приложение 1.

Природный звукоряд

Все знают, что Пифагор был учёным и, в частности, автором знаменитой теоремы. А то, что он был еще и блестящим музыкантом, известно не так широко. Сочетание этих дарований позволило ему первым догадаться о существовании природного звукоряда. Надо было ещё доказать это. Пифагор построил для своих экспериментов полуинструмент-полуприбор - «монохорд». Это был продолговатый ящик с натянутой поверх него струной. Под струной, на верхней крышке ящика, Пифагор расчертил шкалу, чтобы удобнее было зрительно делить струну на части. Множество опытов проделал Пифагор с монохордом и, в конце концов, описал математически поведение звучащей струны. Работы Пифагора легли в основу науки, которую мы называем сейчас музыкальной акустикой. Оказывается, для музыки семь звуков внутри октавы такая же естественная вещь, как десять пальцев на руках в арифметике. Уже тетива самого первого лука, колеблясь после выстрела, давала готовым тот набор музыкальных звуков, которыми мы почти без изменения пользуемся до сих пор.

С точки зрения физики тетива и струна - одно и то же. Да и сделал человек струну, обратив внимание на свойства тетивы. Звучащая струна колеблется не только целиком, но одновременно и половинками, третями, четвертями и т.д. Подойдём теперь к этому явлению с арифметической стороны. Половинки колеблются вдвое чаще, чем целая струна, трети - втрое, четверти - вчетверо. Словом, во сколько раз меньше колеблющаяся часть струны, во столько же раз больше частота её колебаний. Допустим, вся струна колеблется с частотой 24 герца. Высчитывая колебания долей вплоть до шестнадцатых, мы получим ряд чисел, показанных в таблице. Эта последовательность частот так и называется - натуральный, т.е. природный, звукоряд.

Приложение 2.

Старинные задачи с использованием обыкновенных дробей.

В древних рукописях и старинных учебниках арифметики разных стран встречается много интересных задач на дроби. Решение каждой из таких задач требует немалой смекалки, сообразительности и умения рассуждать.

1. Приходит пастух с 70 быками. Его спрашивают:

Сколько приводишь ты из своего многочисленного стада?

Пастух отвечает:

Я привожу две трети от трети скота. Сочти, сколько быков в стаде?

Папирус Ахмеса (Египет, около 2000 лет до н.э.).

2. Некто взял из сокровищницы 1/13. Из того, что осталось, другой взял 1/17. Оставил же в сокровищнице 192. Мы хотим узнать, сколько было в сокровищнице первоначально

Акмимский папирус (VI в.)

3. Путник! Здесь прах погребён Диофанта. И числа поведать могут, о чудо, сколь долог был век его жизни.

Часть шестую его представляло прекрасное детство.

Двенадцатая часть протекла ещё жизни – покрылся пухом тогда подбородок.
Седьмую в бездетном браке провёл Диофант.

Прошло пятилетие; он был осчастливлен рожденьем прекрасного первенца сына.
Коему рок половину лишь жизни прекрасной и светлой дал на земле по сравненью с отцом.

И в печали глубокой старец земного удела конец восприял, переживши года четыре с тех пор, как сына лишился.

Скажи, сколько лет жизни достигнув, смерть восприял Диофант?

4. Некто, умирая, завещал: «Если у моей жены родится сын, то пусть ему будет 2/3 имения, а жене – остальная часть. Если же родится дочь, то ей 1/3, а жене 2/3». Родилась двойня – сын и дочь. Как же разделить имение?

Древнеримская задача (IIв.)

Найти три числа так, чтобы наибольшее превышало среднее на данную частьнаименьшего, чтобы среднее превышало меньшее на данную часть наибольшего и чтобы наименьшее превышало число 10 на данную часть среднего числа.

Диофант Александрийский трактат «Арифметика» (II – III вв. н.э.)

5. Дикая утка от южного моря до северного моря летит 7 дней. Дикий гусь от северного моя до южного моря летит 9 дней. Теперь утка и гусь вылетают одновременно. Через сколько дней они встретятся?

Китай (II век н.э.)

6.«Один купец прошёл через 3 города, и взыскивали с него в первом городе пошлины половину и треть имущества, и во втором городе половину и треть оставшегося имущества, и в третьем городе половину и треть оставшегося имущества. И когда он прибыл домой, у него осталось 11 денежков. Узнай, сколько всего денежков было вначале у купца».

Ананий Ширакаци. Сборник «Вопросы и ответы» (VII век н.э).

Есть кадамба цветок,

На один лепесток

Пчелок пятая часть опустилась.

Рядом тут же росла

Вся в цвету сименгда,

И на ней третья часть поместилась.

Разность их ты найди,

Ее трижды сложи

И тех пчел на кутай посади.

Только две не нашли

Себе места нигде,

Все летали то взад, то вперед и везде

Ароматом цветов наслаждались.

Назови теперь мне,

Подсчитавши в уме,

Сколько пчелок всего здесь собралось?

Староиндийская задача (XI в.).

8.«Найти число, зная, что если отнять от него одну треть и одну четверть, то получится 10».

Мухаммед ибн-Муса аль Хорезми «Арифметика» (IX век)

9. Одна женщина отправилась в сад собирать яблоки. Чтобы выйти из сада, ей нужно было пройти через четыре двери, у каждой из которых стоял стражник. Стражнику у первых дверей женщина отдала половину сорванных ею яблок. Дойдя до второго стражника, женщина отдала ему половину оставшихся. Так же она поступила и с третьим стражником, а когда она поделилась яблоками с четвёртым стражником, у неё осталось 10 яблок. Сколько яблок она собрала в саду?

«1001 ночь»

10.Только «то» да «это», да половина «того» да «этого» - сколько это будет процентов от трех четвертей «того» да «этого».

Старинная рукопись древней Руси (X-XI в.)

11.К табунщику пришли три казака покупать лошадей.

"Хорошо, я вам продам лошадей, - сказал табунщик, - первому продам я полтабуна и еще половину лошади, второму - половину оставшихся лошадей и еще пол-лошади, третий также получит половину оставшихся лошадей с полулошадью.

Себе же оставлю только 5 лошадей".

Удивились казаки, как это табунщик будет делить лошадей на части. Но после некоторых размышлений они успокоились, и сделка состоялась.

Сколько же лошадей продал табунщик каждому из казаков?

12.Спросил некто у учителя: « Скажи, сколько у тебя в классе учеников, так как хочу отдать к тебе в учение своего сына». Учитель ответил: « Если придет еще учеников столько же, сколько имею, и полстолько, и четвертая часть, и твой сын, тогда будет у меня учеников 100». Спрашивается, сколько было у учителя учеников?

Л. Ф. Магницкий «Арифметика» (1703г.)

13.Путник, догнав другого, спросил его: «Далеко ли до деревни, которая впереди?» Другой путник ответил: « Расстояние от деревни, из которой ты идёшь, равно трети всего расстояния меду деревнями. А если пройдёшь ещё две версты, будешь ровно посередине между деревнями. Сколько вёрст осталось идти первому путнику?

Л. Ф. Магницкий «Арифметика» (1703г.)

14.Крестьянка продавала на рынке яйца. Первая покупательница купила у нее половину яиц и еще пол-яйца, вторая половину остатка и еще пол-яйца, а третья последние 10 яиц.

Сколько яиц принесла крестьянка на рынок?

Л. Ф. Магницкий «Арифметика» (1703г.)

15.Муж и жена брали деньги из одного сундука, и ничего не осталось. Муж взял 7/10 всех денег, а жена 690 руб. Сколько было всех денег?

Л. Н. Толстой «Арифметика»

16. От числа одну восьмую

Взяв, прибавь ты к ней любую

Половину от трехсот,

И восьмушка превзойдёт

Не чуть-чуть – на пятьдесят

Три четвёртых. Буду рад,

Если тот, кто знает счёт,

Мне число то назовёт.

Иоганн Хемелинг, учитель математики.(1800г.)

17.Трое выиграли некоторую сумму денег. На долю первого пришлось 1\4 этой суммы, на долю второго -1/7, а на долю третьего – 17 флоринов. Как велик весь выигрыш?

Адам Ризе (Германия,XVI в.) 18. Решив все свои сбережения поделить поровну между всеми сыновьями, некто составил завещание. «Старший из моих сыновей должен получить 1000 рублей и восьмую часть остатка; следующий – 2000 рублей и восьмую часть нового остатка; третий сын – 3000 рублей и восьмую часть следующего остатка и т.д.» Определите число сыновей и размер завещанного сбережения.

Леонард Эйлер (1780 г.)

19.Трое хотят купить дом за 24 000 ливров. Они условились, что первый даст половину, второй – одну треть, а третий – оставшуюся часть. Сколько денег даст третий?

Дроби », «Обыкновенные дроби ». Игра «О чем могут... для умственного счета». Задачи к теме «Обыкновенные дроби и действия над ними» 1. У... философ, писатель. Б. Паскаль был необыкновенно талантлив и разносторонен, жизнь его была...

» статьёй ««. Статья — ответ на вопрос наших читателей: «Наш ребёнок интересуется математикой. Что можно предложить по теме «дроби» интересного, полезного, необычного, развивающего. Торты, разрезанные на кусочки нам не нравятся».

Наглядная симметрия дробей — наш ответ. Вообще, математика — наука . Изначально она разрабатывалась как наука в высшей степени конкретная, вещественная. Её предметами были реальные предметы, объекты, вещи. Но потом, начиная с Пифагора и его знаменитого квадрата , математика стала уходить в область абстрактную. То есть, не имеющую отношения к реально существующей действительности.

Само собой, это может быть полезно при расчёте разных высших штук. Но при изучении основ математики лучше всего прибегать к как можно более материальным примерам.

То есть, минимум действий в уме, максимум действий с массами.

Это срабатывает, даже если ученику 18 лет, и срочно нужно подтянуть математику. Потратьте немного времени на то, чтобы дать массу, вещественность предмета — и обучение пойдёт намного быстрее.

С этой точки зрения торты — самое оно (разве что для зубов может быть не очень 🙂). Но намного более просто и намного более дёшево использовать ветки, палочки. Которые дети могут САМОСТОЯТЕЛЬНО делить на нужные части.

Само собой, сначала это будет просто хворост. Но постепенно, постепенно, можно подойти к сути. Например, к симметрии дробей.

Итак, опираясь на вещественность, и учитывая вопрос, описываем материал, который обычно в школе не учитывается.

Наглядная симметрия дробей — и наука, и эстетика, и развитие.

Методические вопросы

Далее следуют картинки. Без малейших вопросов, картинки показывать детям практически БЕСПОЛЕЗНО. В лучшем случае они вежливо скажут «ух ты…» и пойдут играть в компьютер .

Вместо картинок должны быть реальные, твёрдые предметы . Например, поломанные им на нужные части веточки. Обратите внимание: поскольку это дроби (от слова «дробить»), то не стоит давать спички и т.п. и просить выложить из них. Это должно быть нечто целое, что дробится на нужные части.

Если вы посадите ребёнка и выложите перед ним веточки в предлагаемой ниже форме, то он, возможно, даже заинтересуется. Но не более того. И если вы попросите повторить увиденное дней через пять, он не сможет. То есть, он просто удивился, как удивляются бесполезным, но занятным фактам (типа «если сложить все кровеносные сосуды в одну линию, то можно замотать в толстый кокон целое стадо слонов»).

Если вы хотите пользы для ребёнка, то он САМ должен выломать и выложить предложенные ниже закономерности. Само собой, всё и сразу делать не нужно.

  1. Постепенно, палочка за палочкой, готовый рисунок.
  2. Просьба найти закономерности.
  3. Время на «подумать» — возможно, день, а возможно, и неделя.
  4. Просьба записать найденную закономерность.
  5. Просьба проверить закономерность на практике.

После этого можно переходить к следующей группе закономерностей.

Собственно, симметрия дробей.

Обратите внимание на рисунок.

Налицо симметрия, образованная дробными частями целого. Симметрия проявляется в двух формах:

  • наглядная, образная
  • наглядная, числовая.

Так, получилась не просто красивая плавная кривая. Числовая закономерность: сначала вверху дроби — единица, а внизу число уменьшается на единицу. А после 1/2 другая закономерность — и верхнее, и нижнее число растёт на единицу.

Собственно, философский вопрос: почему увеличение знаменателя (или числителя и знаменателя) на единицу даёт красивую плавную кривую?

Возможно, дети смогут найти ответ на вопрос 🙂

Особенно если выполнят пункты 1-5 из методических указаний.

Теперь переходим к другому моменту симметрии дробей. Тот же рисунок, но с небольшим добавлением:

Как видите, найденная закономерность про изменение числителя и знаменателя на единицу зеркально симметрична.

Теперь следующий момент симметрии. Разрежем диаграмму на 4 части и отзеркалим верхний левый угол. Получится такая картинка:

Согласитесь, симметрии стало больше. Но у нас остаётся белая незаполненная серединка. Она симметрична… Может, и в ней есть какая-нибудь закономерность? Проверим:

Таки да! И числитель, и знаменатель уменьшаются на единицу. Но разница между числителем и знаменателем другая — в 2 единицы.

Теперь самое время вспомнить, что дроби можно сокращать:

Интересно, но и здесь симметрия — числитель и знаменатель уменьшаются на единицу. А также между ними разница — единица.

Но у нас остаются пустые клеточки… Которые, наверное, тоже закономерны:

И опять в точку! Та же закономерность — уменьшение на единицу и разница единица.

Вот такие вот интересности про симметрию дробей. Узнав закономерность, вы сможете находить симметрию из любых дробей любыми способами.

Подсказка для родителей (или то, что неплохо было бы понять ребёнку):

Закономерное изменение даёт симметричный рисунок.

В нашем случае закономерно меняются дроби. Но это касается и любых других явлений в окружающем мире.

Не верите? Проверьте! 🙂

Пишите ваши отзывы и советы в комментарии!