По изменению степени окисления все химические реакции можно разделить на два типа:

I.Реакции, протекающие без изменения степени окисления элементов, входящих в состав реагирующих веществ. Такие реакции относятся к реакциям ионного обмена.

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + CO 2 + H 2 O.

II. Реакции, идущие с изменением степени окисления элементов,

входящих в состав реагирующих веществ. Такие реакции относятся к окислительно-восстановительным реакциям.

5NaNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5NaNO 3 +2MnSO 4 + K 2 SO 4 + 3H 2 O.

Степень окисления (окисленности) – характеристика состояния атомов элементов в составе молекулы. Она характеризует неравномерность распределения электронов между атомами элементов и соответствует заряду, который приобрел бы атом элемента, если бы все общие электронные пары его химических связей сместились в сторону более электроотрицательного элемента. В зависимости от относительной электроотрицательности элементов, образующих связь, электронная пара может быть смещена к одному из атомов или симметрично расположена относительно ядер атомов. Поэтому степень окисления элементов может иметь отрицательное, положительное или нулевое значение.

Элементы, атомы которых принимают электроны от других атомов, имеют отрицательную степень окисления. Элементы, атомы которых отдают свои электроны другим атомам, имеют положительную степень окисления. Нулевую степень окисления имеют атомы в молекулах простых веществ, а также, если вещество находится в атомном состоянии.

Степень окисления обозначается +1, +2.

Заряд иона 1+, 2+.

Степень окисления элемента в соединении определяется по правилам:

1.Степень окисления элемента в простых веществах равна нулю.

2.Некоторые элементы почти во всех своих соединениях проявляют постоянную степень окисления. К таким элементам относятся:

Hимеет степень окисления +1 (за исключением гидридов металлов).

Oимеет степень окисления –2 (за исключением фторидов).

3.Элементы I, II и III групп главных подгрупп Периодической системы элементов Д.И.Менделеева имеют постоянную степень окисления, равную номеру группы.

Элементы Na, Ba, Al: степень окисления +1, +2,+3 соответственно.

4.Для элементов, имеющих переменную степень окисления, существует понятие высшая и низшая степени окисления.

Высшая степень окисления элемента равна номеру группы Периодической системы элементов Д.И.Менделеева, в которой находится элемент.

Элементы N,Cl: высшая степень окисления +5,+7соответственно.

Низшая степень окисления элемента равна номеру группы Периодической системы элементов Д.И Менделеева, в которой находится элемент минус восемь.

Элементы N,Cl: низшая степень окисления -3,-1 соответственно.

5.В одноэлементных ионах степень окисления элемента равна заряду иона.

Fe 3+ - степень окисления равна +3; S 2- - степень окисления равна -2.

6.Сумма степеней окисления всех атомов элементов в молекуле равна нулю.

KNO 3 ; (+1) + X+ 3 · (-2) = 0; X= +5. Степень окисления азота равна +5.

7.Сумма степеней окисления всех атомов элементов в ионе равна заряду иона.

SO 4 2- ; X+ 4· (-2) = -2; X= +6. Степень окисления серы равна +6.

8.В соединениях, состоящих из двух элементов, элемент, который записан справа, всегда имеет низшую степень окисления.

Реакции, в которых изменяется степень окисления элементов, относятся к окислительно-восстановительным реакциям /ОВР/. Эти реакции состоят из процессов окисления и восстановления.

Окислением называется процесс отдачи электронов элементом, входящим в состав атома, молекулы или иона.

Al 0 – 3e = Al 3+

H 2 – 2e = 2H +

Fe 2+ - e = Fe 3+

2Cl - - 2e= Cl 2

При окислении степень окисления элемента повышается. Вещество (атом, молекула или ион), в состав которого входит элемент, отдающий электроны, называется восстановителем. Al, H 2 , Fe 2+ , Cl - - восстановители. Восстановитель окисляется.

Восстановлением называется процесс присоединения электронов элементом, входящим в состав атома, молекулы или иона.

Cl 2 + 2e = 2Cl -

Fe 3+ + e = Fe 2+

При восстановлении степень окисления элемента понижается. Вещество (атом, молекула или ион), в состав которого входит элемент, принимающий электроны, называется окислителем. S, Fe 3+ , Cl 2 – окислители. Окислитель восстанавливается.

Общее число электронов в системе при химической реакции не изменяется. Число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем.

Для составления уравнения окислительно-восстановительной реакции (ОВР) в растворах используют ионно-электронный метод (метод полуреакций).

ОВР могут протекать в кислой, нейтральной или щелочной средах. В уравнениях реакций учитывают возможное участие молекул воды (HOH) и содержащихся в растворе в зависимости от характера среды избытка ионов Н + или ОН - :

в кислой среде – НОН и ионы Н + ;

в нейтральной среде – только НОН;

в щелочной среде – НОН и ионы ОН - .

При составлении уравнений ОВР необходимо придерживаться определенной последовательности:

1.Написать схему реакции.

2.Определить элементы, которые изменили степень окисления.

3.Написать схему в кратком ионно-молекулярном виде: сильные электролиты в виде ионов, слабые электролиты в виде молекул.

4.Составить уравнения процессов окисления и восстановления (уравнения полуреакций). Для этого записать элементы, изменяющие степень окисления в виде реальных частиц (ионов, атомов, молекул) и уравнять число каждого элемента в левой и правой частях полуреакции.

Примечание:

Если исходное вещество содержит меньше атомов кислорода, чем продукты (Р РО 4 3-) , то недостаток кислорода поставляется средой.

Если исходное вещество содержит больше атомов кислорода, чем продукты (SO 4 2- SO 2) , то освобождающийся кислород связывается средой.

5.Уравнять левую и правую части уравнений по числу зарядов. Для этого прибавить или вычесть необходимое число электронов.

6.Подобрать множители для полуреакций окисления и восстановления так, чтобы число электронов при окислении было равно числу электронов при восстановлении.

7.Суммировать полуреакции окисления и восстановления с учетом найденных множителей.

8.Полученное ионно-молекулярное уравнение записать в молекулярной форме.

9.Провести проверку по кислороду.

Различают три типа окислительно-восстановительных реакций:

а) Межмолекулярные – реакции, в которых степень окисления изменяется у элементов, входящих в состав различных молекул.

2KMnO 4 + 5NaNO 2 + 3H 2 SO 4 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

б) Внутримолекулярные – реакции, в которых степень окисления изменяется у элементов, входящих в состав одной молекулы.

Окислительно-восстановительные процессы. Составление окислительно-восстановительных реакций (ОВР). Метод учета изменения степеней окисления элементов. Типы ОВР. Ионно-электронный метод составления ОВР. Понятие о стандартном электродном потенциале. Использование стандартных окислительно-восстановительных потенциалов для выяснения принципиальной возможности окислительно-восстановительного процесса.

Тема 4.2.1. Степень окисления

Степень окисления - это положительное или отрицательное число, присваиваемое каждому атому в соединении и равное заряду атома при условии, что все химические связи в соединении являются ионными. Поскольку соединения с чисто ионным характером химической связи не существуют, действительные заряды на атомах никогда не совпадают со степенями окисления. Тем не менее, использование степеней окисления позволяет решать целый ряд химических задач.

Степень окисления элемента в соединениях определяется числом валентных электронов, участвующих в образовании химической связи данного элемента. Но обычно для определения степеней окисления элементов не расписывают электронную конфигурацию валентных электронов, а пользуются рядом эмпирических правил:

1. Сумма степеней окисления атомов в частице равна ее электрическому заряду.

2. В простых веществах (состоящих из атомов только одного элемента) степень окисления элемента равна нулю.

3. В бинарных соединениях (состоящих из атомов двух элементов) отрицательная степень окисления присваивается атому с большей электроотрицательностью. Обычно формулы химических соединений записываются таким образом, что более электроотрицательный атом стоит в формуле вторым, хотя некоторые формулы могут быть записаны и иначе:

Или (общепринятая запись), или .

4. В сложных соединениях некоторым атомам приписываются постоянные степени окисления:

– фтор всегда имеет степень окисления -1;

– элементы-металлы обычно имеют положительную степень окисления;

– водород обычно имеет степень окисления +1 (, ), но в соединениях с металлами (гидридах) его степень окисления -1: , ;

– для кислорода характерна степень окисления -2, но с более электроотрицательным фтором – , а в пероксидных соединениях – , , , (надпероксид натрия);

– максимальная положительная степень окисления элемента обычно совпадает с номером группы, в которой находится элемент (табл.1).

Исключения:

1) максимальная степень окисления меньше, чем номер группы: F, O, He, Ne, Ar, подгруппа кобальта: Co(+2,+3); Rh, Ir (+3,+4,+6), подгруппа никеля: Ni (+2, редко +4); Pd, Pt (+2,+4, редко +6);

2) максимальная степень окисления выше, чем номер группы: элементы подгруппы меди: Cu (+1, +2), Au (+1, +3).

–низшая отрицательная степень окисления элементов-неметаллов определяется как номер группы минус 8 (табл. 4.1).

Таблица 4.1. Степени окисления некоторых элементов

Элемент

Номер группы

Максимальная положительная степень окисления

Низшая отрицательная степень окисления

Na

Al

N

5 – 8 = -3

S

6 – 8 = -2

Cl

7 – 8 = -1

Часто возникают сложности в определении степеней окисления в сложные соединения – солях, формула которых содержит несколько атомов, для которых возможны разные степени окисления. В этом случае не обойтись без знания генетической связи между основными классами неорганических соединений, а именно, знания формул кислот, производными которых являются те или иные соли.

Например: определите степень окисления элементов в соединении Cr 2 (SO 4 ) 3 . Рассуждения учащегося в этом случае могут строиться таким путём: Cr 2 (SO 4 ) 3 – это средняя соль серной кислоты , в которой степени окисления элементов расставить достаточно просто. В Cr 2 (SO 4 ) 3 сера и кислород имеют такие же степени окисления, при этом сульфат-ион имеет заряд 2-: . Приняв за легко определить степень окисления хрома: . То есть данная соль - сульфат хрома (III): .

Тема 4.2.2. Окислительно-восстановительные процессы

Окислительно-восстановительные реакции (ОВР) – это реакции, протекающие с изменением степени окисления элементов. Изменение степеней окисления происходит за счет перехода электронов от одних частиц к другим.

Процесс потери частицей электронов называется окислением, сама частица при этом окисляется. Процесс присоединения частицей электронов называется восстановлением, сама она при этом восстанавливается. То есть, окислительно-восстановительные реакции - это единство двух противоположных процессов.

Окислитель – это реагент, в котором есть элемент, понижающий в ходе ОВР свою степень окисления за счет присоединения электронов. Восстановитель – это реагент, в котором есть элемент, повышающий свою степень окисления за счет потери электронов.

Например:

восстановитель:

окислитель:

восстановитель:

окислитель:

Многие окислительно-восстановительные реакции сопровождаются изменением окраски раствора.

Например:

фиолетовый

зеленый

бурый

бесцветный

Многие окислительно-восстановительные реакции широко используются на практике.

ОСНОВНЫЕ ТИПЫ

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ

1) Межмолекулярные (реакции внешнесферного электронного переноса) – это реакции, в которых осуществляется электронный перенос между различными реагентами, то есть окислитель и восстановитель входят в состав разных веществ.

Ок-ль восс-ль

2) Внутримолекулярные (реакции внутрисферного электронного переноса) – в этих реакциях атомы разных элементов одного и того же вещества являются окислителем и восстановителем.

3) Реакции самоокисления - самовосстановления (диспропорционирования) –в этих реакциях степень окисления одного и того же элемента и повышается, и понижается.

Тема 4.2.3. Типичные окислители

1) Тетраоксоманганат (VII) калия -

Окислительные свойства иона зависят от характера среды:

Кислая среда:

Нейтральная среда:

Щелочная среда:

2) Дихромат калия –

Окислительные свойства также зависят от характера среды:

Кислая среда:

Нейтральная среда:

Щелочная среда:

3) Галогены.

4) Водород в разбавленных кислотах.

5) Концентрированная серная кислота

Продукты восстановления серы зависят от природы восстановителя:

Малоактивный металл:

Металл средней активности:

Активный металл:

6) Азотная кислота

В азотной кислоте любой концентрации в роли окислителя выступают не протоны, а азот, имеющий степень окисления +5. Поэтому в этих реакциях никогда не выделяется водород. Вследствие того, что у азота имеется широкое разнообразие степеней окисления, он имеет также широкий спектр продуктов восстановления. Продукты восстановления азотной кислоты зависят от ее концентрации и активности восстановителя.

При взаимодействии концентрированной азотной кислоты с металлами обычно выделяется оксид азота(IV), а с неметаллами - оксид азота(II):

Взаимодействие с металлом:

Взаимодействие с неметаллом:

При взаимодействии разбавленной азотной кислоты с металлами продукты зависят от активности металла:

Малоактивный металл:

Активный металл:

- активный металл и очень разбавленная кислота:

7) В качестве окислителей используют также PbO 2 , MnO 2 .

Тема 4.2.4. Типичные восстановители

1). Галогенид ионы.

В ряду восстановительные свойства возрастают:

2). и ее соли:

3). Аммиак и соли катиона аммония :

4). Производные :

В водных растворах комплексы легко переходят в комплексы :

5). Все металлы способны, хотя и в различной степени, проявлять восстановительные свойства.

6). В промышленности используются водород, углерод (в виде угля или кокса) и СО .

Тема 4.2.5. Соединения способные проявлять и окислительные и восстановительные свойства

Некоторые элементы в промежуточной степени окисления обладают окислительно-восстановительной двойственностью, т.е. с окислителями способны проявлять себя как восстановители, а с восстановителями ведут себя как окислители.

NaNO 3 ; Na 2 SO 4 ; S; NH 2 OH; H 2 O 2 . Например:

H 2 O 2 - восстановитель:

H 2 O 2 - окислитель:

Например , H 2 O 2 может подвергаться реакциям диспропорционирования:

Тема 4.2.3. Составление окислительно-восстановительных реакций

Для составления ОВР используют два метода:

1) метод электронного баланса:

Этот метод основан на использовании степеней окисления.

Степень окисления марганца понижается на 5 единиц,

при этом степень окисления хлора повышается на 1 единицу, но с учетом образующегося продукта реакции - простого вещества , содержащего 2 моля атомов хлора, - на 2 единицы.

Запишем эти рассуждения в виде баланса и найдем основные коэффициенты, используя понятие общего кратного для чисел, показывающих повышение и понижение степеней окисления:

Расставим полученные коэффициенты в уравнение. Учтем при этом, что не только является окислителем, но и связывает продукты реакции - ионы марганца и калия (степень окисления в этом случае не меняется), то есть коэффициент перед будет больше, чем следует из баланса.

Остальные коэффициенты находим при подсчете баланса атомов , затем по балансу атомов находим окончательный коэффициент перед и по балансу атомов находим число молей воды.

Для проверки правильности подобранных коэффициентов подсчитываем баланс молей атомов кислорода. По окончательному уравнению видно, что из 16 молей кислоты, взятой для реакции, 10 молей расходуется на восстановление , а 6 молей - на связывание образующихся в результате реакции ионов марганца (II) и калия.

2) ионно - электронный метод (метод полуреакции):

Окислителем является , входящий в состав иона .

В частном уравнении реакции восстановления для баланса атомов в левую часть надо добавить катионы водорода, чтобы связать атомы кислорода в воду,

а для баланса зарядов в эту же левую часть уравнения добавить 5 молей электронов. Получим:

Восстановителем является ион , в состав которого входит .

В частном уравнении реакции окисления для баланса атомов в правую часть надо добавить катионы водорода, чтобы связать лишние атомы кислорода в воду, а для баланса зарядов в эту же правую часть уравнения добавить 2 моля электронов. Получим:

Таким образом имеем две полуреакции:

Для уравнивания умножим первую полуреакцию на 2, а вторую - на 5. Сложим две полуреакции.

Полное ионное уравнение:

Сократим одинаковые слагаемые:

После сокращения коэффициенты полного ионного уравнения можно перенести в молекулярное уравнение.

Тема 4.2.4. Понятие о стандартном электродном потенциале

О возможности протекания окислительно-восстановительной реакции судят по значениям электродных потенциалов отдельных полуреакций.

Если пластинку металла погрузить в раствор, содержащий ионы этого металла, то на границе металл – раствор возникнет разность потенциалов, которую принято называть электродным потенциалом φ. Электродные потенциалы определяются экспериментально. Для стандартных условий (концентрация растворов 1 моль/л, Т = 298 К) эти потенциалы называют стандартными, обозначают φ 0 . Значения стандартных электродных потенциалов обычно измеряют относительно стандартного водородного электрода и приводят в справочных таблицах.

2Н + + 2ē = Н 2 φ 0 = 0.

Стандартный электродный потенциал связан со свободной энергией Гиббса. Для реакции в стандартных условиях:

ΔG = - nFφ 0

F-константа Фарадея (F=96500 Кл/моль), n - число переносимых электронов.

Значение электродного потенциала зависит от концентрации реагентов и температуры. Эта зависимость выражается уравнением Нернста:

где φ - значение электродного потенциала, зависящее от температуры и концентрации.

NO 3 - + 2ē + H 2 O = NO 2 - + 2OH - , φ 0 = - 0,01В

Учтем, что = = 1 моль/л, рН + рОН = 14, рН = -lg , lg = -lg - 14.

Электродный потенциал зависит от кислотности среды рН. C подкислением раствора (с уменьшением рН) окислительная функция NO 3 - будет возрастать.

Тема 4.2.5. Направление протекания ОВР

окислительно-восстановительных реакций

По значению стандартного электродного потенциала φ о можно судить о восстановительных свойствах системы: чем отрицательнее значение φ о, тем сильнее восстановительные свойства, и полуреакция легче протекает справа налево.

Например, сравним системы:

Li + + e ─ = Li, φ 0 = -3,045 B; Восстановительная

Ba 2+ + 2e ─ = Ba, φ 0 = - 2,91B активность металлов

Mg 2+ + 2e ─ = Mg, φ 0 = -2,363 B; падает по мере увеличения

Zn 2+ + 2e – = Zn, φ о = -0,763 В значения стандартного

Fe 2+ + 2e ─ = Fe, φ 0 = -0,44 B; электродного потенциала φ о

Cd 2+ + 2e ─ = Cd, φ 0 = - 0,403 B;

Pd 2+ + 2e – = Pd, φ о = 0,987 В

Pt 2+ + 2e – = Pt, φ о = 1,188 В

Au 3+ + 3e ─ = Au, φ 0 = 1,50 B.

В ряду приведенных систем убывающее отрицательное значение φ о отвечает падению восстановительной способности систем. Самой наибольшей восстановительной способностью обладает литий, то есть литий – самый активный из представленных металлов, он легче всех теряет свои электроны и переходит в положительную степень окисления. Восстановительная активность металлов падает в ряду Li - Ba - Mg - Zn - Fe - Cd - Pd - Pt - Au.

По величине электродных потенциалов Н. Н. Бекетов расположил металлы в так называемый электрохимический ряд металлов, в котором за точку сравнения принят электродный потенциал водородного электрода

Li Na K Mn Zn Cr Fe Co Ni H Cu Ag Pd Hg Pt Au

Активность металлов уменьшается

1) Металлы, стоящие в ряду напряжения до водорода (активные металлы, для которых φ 0 < 0), взаимодействуют с разбавленными кислотами с вытеснением водорода.

2) Каждый последующий металл вытесняет предыдущие металлы из его соли.

Чем больше значение φ о, тем сильнее окислительные свойства системы , и полуреакция легче протекает слева направо.

Например, сравним системы:

Как видно из значений стандартных электродных потенциалов F 2 - самый сильный окислитель, в ряду F 2 - Cl 2 - Br 2 - I 2 окислительные свойства простых веществ-галогенов падают.

Сравнивая значения стандартных электродных потенциалов различных систем можно судить о направлении окислительно-восстановительной реакции в целом: система с более положительным значением φ о является окислителем, а система с менее положительным значением стандартного электродного потенциала является восстановителем .

Так, например:

а) для получения Br 2 окислением ионов Br – можно использовать Cl 2:

Cl 2 + 2e – = 2Cl – , φ о = 1,359 В

Br 2 + 2e – = 2Br – , φ о = 1,065 В

Суммарная реакция: Cl 2 + 2Br – = Br 2 + 2Cl –

Полная реакция: Cl 2 + 2 КBr = Br 2 + 2 КCl;

б) а для получения F 2 окислением ионов F – использовать Cl 2 нельзя:

F 2 + 2e – = 2F – , φ о = 2,870 В

Cl 2 + 2e – = 2Cl – , φ о = 1,359 В

Суммарная реакция: F 2 + 2 Cl – = Cl 2 + 2F – , то есть реакция Cl 2 + 2 КF = протекать не может.

Также можно определить направление протекания и более сложных окислительно-восстановительных реакций.

Например, ответим на вопрос: возможно ли восстановить ионы MnO 4 – ионами Fe 3+ в кислой среде? То есть, протекает ли реакция:

MnO 4 – + H + + Fe 3+ = Mn 2+ + Fe 2+ + H 2 O ?

Осн. коэф.

MnO 4 – + 8H + + 5e – = Mn 2+ + 4H 2 O, φ о 1 = 1,505 В, 1

Так как φ о 1 > φ о 2 , то первая полуреакция протекает в прямом направлении, а вторая относительно первой протекает в обратном направлении. Тогда, уравняв число переносимых в реакциях окисления и восстановления электронов, получим следующую суммарную реакцию:

В этой реакции коэффициенты перед всеми соединениями удваиваются по сравнению с коэффициентами, полученные в ионном уравнении, так как в продуктах реакции получился сульфат железа (III), имеющий формулу Fe 2 (SO 4) 3 и содержащий 2 моля атомов Fe(III).

Практика 4.2. Окислительно-восстановительные реакции

1. Составление окислительно-восстановительных реакций методом, основанным на изменении степени окисления элементов в соединении.

ПРИМЕР 1.

KMnO 4 + Na 2 SO 3 + H 2 SO 4 → MnSO 4 + …

KMn +7 O 4 – окислитель: в кислой среде Mn +7 → Mn +2 , степень окисления понижается на 5 единиц; Na 2 S +4 O 3 – восстановитель: S +4 → S +6 , степень окисления повышается на 2 единицы. Чтобы поставить коэффициенты в уравнении реакции, найдем кратное для чисел, показывающих повышение и понижение степеней окисления:

На 2 моля атомов Mn(VII) требуется 5 молей атомов S(IV):

2 Mn +7 + 5 S +4 = 2 Mn +2 + 5 S +6 – это основные коэффициенты при окислителе и восстановителе. Допишем продукты реакции, подставим основные коэффициенты в уравнение реакции, затем подсчитаем баланс других элементов: K, Na, S и Н:

Для проверки правильности подобранных коэффициентов подсчитаем баланс молей атомов кислорода. Сумма коэффициентов в уравнении окислительно-восстановительной реакции равна 21.

ПРИМЕР 2.

Допишите и уравняйте окислительно-восстановительную реакцию:

KMnO 4 + Na 2 SO 3 + H 2 O → MnO 2 +…

KMn +7 O 4 – окислитель: в нейтральной среде Mn +7 → Mn +4 , степень окисления понижается на 3 единицы; Na 2 S +4 O 3 – восстановитель: S +4 → S +6 , степень окисления повышается на 2 единицы. Чтобы поставить коэффициенты в уравнении реакции, найдем кратное для чисел, показывающих повышение и понижение степеней окисления:

На 2 моля атомов Mn(VII) требуется 3 моля атомов S(IV):

2 Mn +7 + 3 S +4 = 2 Mn +4 + 3 S +6 – это основные коэффициенты при окислителе и восстановителе. Допишем продукты реакции, подставим основные коэффициенты в уравнение реакции, затем подсчитаем баланс других элементов: K, Na и Н:

Для проверки правильности подобранных коэффициентов подсчитываем баланс молей атомов кислорода. Сумма коэффициентов в уравнении окислительно-восстановительной реакции равна 13.

ПРИМЕР 3

Допишите и уравняйте окислительно-восстановительную реакцию:

KMnO 4 + Na 2 SO 3 + KOH → K 2 MnO 4 +…

KMn +7 O 4 – окислитель: в щелочной среде Mn +7 → Mn +6 , степень окисления понижается на 1 единицу; Na 2 S +4 O 3 – восстановитель: S +4 → S +6 , степень окисления повышается на 2 единицы. Чтобы поставить коэффициенты в уравнении реакции, найдем кратное для чисел, показывающих повышение и понижение степеней окисления:

На 2 моля атомов Mn(VII) требуется 1 моль атомов S(IV):

2 Mn +7 + S +4 = 2 Mn +6 + S +6 – это основные коэффициенты при окислителе и восстановителе. Допишем продукты реакции, подставим основные коэффициенты в уравнение реакции, затем подсчитаем баланс других элементов: K, Na и Н:

Для проверки правильности подобранных коэффициентов подсчитываем баланс молей атомов кислорода.

Сумма коэффициентов в уравнении окислительно-восстановительной реакции равна 9.

ПРИМЕР 4

Допишите и уравняйте окислительно-восстановительную реакцию:

K 2 Cr 2 O 7 + Na 2 SO 3 + H 2 SO 4 → Cr 2 (SO 4) 3 + …

K 2 Cr 2 +6 O 7 – окислитель: 2Cr +6 → 2Cr +3 , степень окисления понижается на 6 единиц; Na 2 S +4 O 3 – восстановитель: S +4 → S +6 , степень окисления повышается на 2 единицы. Чтобы поставить коэффициенты в уравнении реакции, найдем кратное для чисел, показывающих повышение и понижение степеней окисления:

На 2 моля атомов Cr(VI) требуется 3 моля атомов S(IV):

2 Cr +6 + 3 S +4 = 2 Cr +3 + 3 S +6 – это основные коэффициенты при окислителе и восстановителе. Допишем продукты реакции, подставим основные коэффициенты в уравнение реакции, затем подсчитаем баланс других элементов: K, Na, S и Н:

Для проверки правильности подобранных коэффициентов подсчитаем баланс молей атомов кислорода. Сумма коэффициентов в уравнении окислительно-восстановительной реакции равна 17.

ПРИМЕР 5

Сумма коэффициентов в уравнении окислительно-восстановительной реакции

K 2 MnO 4 + FeSO 4 + H 2 SO 4 → MnSO 4 + …

K 2 Mn +6 O 4 – окислитель: в кислой среде Mn +6 → Mn +2 , степень окисления понижается на 4 единицы; Fe +2 SO 4 – восстановитель: Fe +2 → Fe +3 , степень окисления повышается на 1 единицу. Чтобы поставить коэффициенты в уравнении реакции, найдем кратное для чисел, показывающих повышение и понижение степеней окисления:

На 1 моль атомов Mn(VII) требуется 4 моля атомов Fe(II):

Mn +6 + 4 Fe +2 = Mn +2 + 4 Fe +3 – это основные коэффициенты при окислителе и восстановителе. Допишем продукты реакции, подставим основные коэффициенты в уравнение реакции, затем подсчитаем баланс других элементов: K, S и Н:

Для проверки правильности подобранных коэффициентов подсчитываем баланс молей атомов кислорода. Сумма коэффициентов в уравнении окислительно-восстановительной реакции равна 17.

2. Составление окислительно-восстановительных реакций методом электронного баланса

ПРИМЕР 6

Если в качестве окислителя использовать кислый раствор тетраоксоманганата (VII) калия:

то восстановителем может быть система:

Fe 3+ + e – = Fe 2+ , φ о = 0,771 В

Co 3+ + e – = Co 2+ , φ о = 1,808 В

По значению стандартного окислительно-восстановительного потенциала φ о можно судить об окислительно-восстановительных свойствах системы. Система с более положительным значением φ о является окислителем, а система с менее положительным значением стандартного окислительно-восстановительного потенциала φ о является восстановителем. Поэтому для системы MnO 4 – + 8H + + 5e – = Mn 2+ + 4H 2 O, φ о = 1,505 В восстановителем может быть система Fe 3+ + e – = Fe 2+ , φ о = 0,771 В.

ПРИМЕР 7

Rh 3+ + 3e – = Rh, φ о = 0,8 В

Bi 3+ + 3e – = Bi, φ о = 0,317 В

Ni 2+ + 2e – = Ni, φ о = -0,250 В

2H + + 2e – = H 2 , φ о = 0,0 В

какой из металлов может растворяться в соляной кислоте?

По значению стандартного электродного потенциала φ о можно судить об окислительно-восстановительных свойствах системы. Система с более положительным значением φ о является окислителем, а система с менее положительным значением стандартного электродного потенциала является восстановителем. В соляной кислоте (HCl) катионы Н + являются окислителем, принимают электроны и восстанавливаются до H 2 , для этой реакции φ о = 0 В. Поэтому в HCl растворяется только тот металл, который может быть в этих условиях восстановителем, то есть для которого φ о < 0, а именно никель:

Ni + 2 HCl =NiCl 2 + H 2

ПРИМЕР 8

Исходя из значений стандартных электродных потенциалов полуреакций:

Zn 2+ + 2e – = Zn, φ о = -0,763 В

Cd 2+ + 2e – = Cd, φ о = -0,403 В

какой металл является наиболее активным?

Чем активнее металл, тем больше его восстановительные свойства. О восстановительных свойствах системы можно судить по значению стандартного окислительно-восстановительного потенциала φ о: чем отрицательнее значение φ о, тем сильнее восстановительные свойства системы, и полуреакция легче протекает справа налево. Следовательно, наибольшей восстановительной способностью обладает цинк, то есть цинк – самый активный из представленных металлов.

ПРИМЕР 9

Если в качестве окислителя использовать кислый раствор хлорида железа(III):

то какая система может быть восстановителем:

I 2 + 2e – = 2I – , φ о = 0,536 В

Br 2 + 2e – = 2Br – , φ о = 1,065 В

Pb 4+ + 2e – = Pb 2+ , φ о = 1,694 В?

По значению стандартного окислительно-восстановительно потенциала φ о можно судить об окислительно-восстановительных свойствах системы. Система с более положительным значением φ о является окислителем, а система с менее положительным значением стандартного окислительно-восстановительного потенциала является восстановителем. Поэтому для системы Fe 3+ + e – = Fe 2+ , φ о = 0,771 В восстановителем может быть система I 2 + 2e – = 2I – , φ о = 0,536 В.

Осн. коэф.

Fe 3+ + e – = Fe 2+ , φ о 1 = 0,771 В 2

I 2 + 2e – = 2I – , φ о 2 = 0,536 В 1

Так как φ о 1 >

2 Fe 3+ + 2I – = 2 Fe 2+ + I 2

Добавив ионы противоположного знака, получим полное уравнение:

2 FeCl 3 + 2 KI = 2 FeCl 2 + 2 KCl + I 2

ПРИМЕР 10

Можно ли восстановить ионы MnO 4 – ионами Fe 3+ в кислой среде?

Запишем вопрос в виде уравнения реакции:

MnO 4 – + H + + Fe 3+ = Mn 2+ + Fe 2+ + H 2 O.

Подберем из справочной таблицы подходящие полуреакции и приведем их стандартные электродные потенциалы:

Осн. коэф.

MnO 4 – + 8H + + 5e – = Mn 2+ + 4H 2 O, φ о 1 = 1,505 В, 1

Fe 3+ + e – = Fe 2+ , φ о 2 = 0,771 В 5

Так как φ о 1 > φ о 2 , первая полуреакция протекает в прямом направлении, а вторая относительно первой протекает в обратном направлении. Тогда, уравняв число переносимых в реакциях окисления и восстановления электронов, получим следующую суммарную реакцию:

MnO 4 – + 8H + + 5 Fe 3+ = Mn 2+ + 5Fe 2+ + 4H 2 O

То есть, восстановить ионы MnO 4 – ионами Fe 3+ в кислой среде возможно. Полная реакция имеет вид:

В этой реакции коэффициенты перед всеми соединениями удваиваются по сравнению с коэффициентами, полученные в ионном уравнении, так как в продуктах реакции получился сульфат железа (III), имеющий формулу Fe 2 (SO 4) 3 .

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Определите степени окисления элементов в соединениях:

H 3 PO 4 , K 3 PO 4 , N 2 O 5 , NH 3 , Cl 2 , KCl , KClO 3 , Ca (ClO 4 ) 2 , NH 4 Cl , HNO 2 , Li , Li 3 N , Mg 3 N 2 , NF 3 , N 2 , NH 4 NO 3 , H 2 O , H 2 O 2 , KOH , KH, K 2 O 2 , BaO , BaO 2 , OF 2 , F 2 , NF 3 , Na 2 S , FeS , FeS 2 , NaHS , Na 2 SO 4 , NaHSO 4 , SO 2 , SOCl 2 , SO 2 Cl 2 , MnO 2 , Mn (OH ) 2 , KMnO 4 , K 2 MnO 4 , Cr , Cr (OH ) 2 , Cr (OH ) 3 , K 2 CrO 4 , K 2 Cr 2 O 7 , (NH 4 ) 2 Cr 2 O 7 , K 3 [ Al (OH ) 6 ], Na 2 [ Zn (OH ) 4 ], K 2 [ ZnCl 4 ], H 2 SO 3 , FeSO 3 , Fe 2 (SO 3 ) 3 , H 3 PO 4 , Cu 3 PO 4 , Cu 3 (PO 4 ) 2 , Na 2 SiO 3 , MnSiO 3 , PbSO 4 , Al 2 (SO 4 ) 3 , Fe 2 (SO 4 ) 3 , NH 4 Cl , (NH 4 ) 2 SO 4 , Cr 2 (SO 4 ) 3 , CrSO 4 , NiSO 4 , [ Zn (OH 2 ) 6 ] SO 4 , Fe (NO 3 ) 2 , Fe (NO 3 ) 3 , PbCO 3 , Bi 2 (CO 3 ) 3 , Ag 2 S , Hg 2 S , HgS , Fe 2 S 3 , FeS , SnSO 4 .

2. Укажите окислитель и восстановитель, составьте схемы изменения степеней окисления, допишите и расставьте коэффициенты в уравнение реакций:

а. MnO 2 + HCl(конц) →

б. KMnO 4 +H 2 S + H 2 SO 4 →

в. FeCl 3 + SnCl 2 →

г. KMnO 4 + H 2 O 2 + H 2 SO 4 → O 2

д. Br 2 + KOH →

е. Zn + HNO 3 → NH 4 NO 3 +…

ж. Cu + HNO 3 → NO 2 + …

з. K 2 MnO 4 + FeSO 4 + H 2 SO 4 →

и. K 2 Cr 2 O 7 + (NH 4) 2 S + H 2 O → Cr(OH) 3 + …+ NH 3 +…

к. H 2 S + Cl 2 →

л. K 2 Cr 2 O 7 +HCl → CrCl 3 + …

м. FeCl 3 + H 2 S →

н. KMnO 4 + NaNO 2 + H 2 SO 4 →

о. Cl 2 + KOH →

а) На основе стандартных значений электродных потенциалов расположите металлы в порядке усиления восстановительных свойств:

Ba 2+ + 2e ─ = Ba , φ 0 = -2,91 B;

Au 3+ + 3e ─ = Au, φ 0 = 1,50 B;

Fe 2+ + 2e ─ = Fe, φ 0 = -0,44 B.

Что произойдет при погружении железной пластины в раствор AuCl 3

б) На основе стандартных значений электродных потенциалов полуреакций

MnO 4 – + 8H + + 5e – = Mn 2+ + 4H 2 O, φ о = 1,505 В,

Pb 4+ + 2e – = Pb 2+ , φ о = 1,694 В

дайте обоснованный ответ на вопрос - возможно ли окислить ионы Mn 2+ с помощью ионов Pb 4+ ? Приведите суммарную реакцию, укажите окислитель и восстановитель.

в) На основе стандартных значений электродных потенциалов полуреакций дайте обоснованный ответ на вопрос - возможно ли окислить ионы Fe 2+ с помощью ионов Pb 4+ ? Приведите суммарную реакцию, укажите окислитель и восстановитель.

г) На основе стандартных значений электродных потенциалов расположите металлы в порядке усиления восстановительных свойств:

Mg 2+ + 2e ─ = Mg

Cd 2+ + 2e ─ = Cd

Сu 2+ + 2e ─ = Cu

Что произойдет при погружения медной пластинки в раствор хлорида кадмия?

д) На основе стандартных значений электродных потенциалов полуреакций

Ir 3+ + 3e – = Ir,

NO 3 - + 4H + + 3e – = NO + 2H 2 O,

дайте обоснованный ответ на вопрос – растворяется ли иридий в азотной кислоте? Приведите суммарную реакцию, укажите окислитель и восстановитель

е) На основе стандартных значений электродных потенциалов расположите галогены в порядке усиления их окислительных свойств:

Cl 2 + 2e ─ = 2Cl ─ φ 0 = 1,359 B;

Br 2 + 2e ─ = 2Br ─ φ 0 = 1,065 B;

I 2 + 2e ─ = 2I ─ φ 0 = 0,536 B;

F 2 + 2e ─ = 2F ─ φ 0 = 2,87 B.

Докажите, можно ли для получения брома использовать реакцию окисления ионов Br ─ хлором Cl 2 ?

ж) На основе стандартных значений электродных потенциалов полуреакций

Fe 3+ + e – = Fe 2+ , φ о = 0,771 В,

Br 2 + 2e – = 2Br – , φ о = 1,065 В

дайте обоснованный ответ на вопрос - возможно ли окислить ионы Fe 2+ с помощью Br 2 ? Приведите суммарную реакцию, укажите окислитель и восстановитель.

з) На основе стандартных значений электродных потенциалов расположите металлы в порядке усиления восстановительных свойств:

Zn 2+ + 2e – = Zn, φ о = - 0,763 В

Hg 2+ + 2e – = Hg, φ о = 0,850 В

Cd 2+ + 2e – = Cd, φ о = - 0,403 В.

Что произойдет при погружения кадмиевой пластинки в раствор хлорида цинка?

Классификацию химических реакций в неорганической и органической химии осуществляют на основании различных классифицирующих признаков, сведения о которых приведены в таблице ниже.

По изменению степени окисления элементов

Первый признак классификации — по изменению степени окисления элементов, образующих реагенты и продукты.
а) окислительно-восстановительные
б) без изменения степени окисления
Окислительно-восстановительными называют реакции, сопровождающиеся изменением степеней окисления химических элементов, входящих в состав реагентов. К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разло­жения и соединения, в которых участвует хотя бы одно прос­тое вещество. К реакциям, идущим без изменения степе­ней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

По числу и составу реагентов и продуктов

Химические реакции классифицируются по характеру процесса, т.е по числу и составу реагентов и продуктов.

Реакциями соединения называют химические реакции, в результате которых сложные молекулы получаются из нескольких более простых, например:
4Li + O 2 = 2Li 2 O

Реакциями разложения называют химические реакции, в результате которых простые молекулы получаются из более сложных, например:
CaCO 3 = CaO + CO 2

Реакции разложения можно рассматривать как процессы, обратные соединению.

Реакциями замещения называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:
Fe + 2HCl = FeCl 2 + H 2 

Их отличительный признак - взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии.
Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.
— обмена (в том числе и нейтрализации).
Реакциями обмена называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:
AgNO 3 + KBr = AgBr + KNO 3

По возможности протекать в обратном направлении

По возможности протекать в обратном направлении – обратимые и необратимые.

Обратимыми называют химические реакции, протекающие при данной температуре одновременно в двух противоположных направлениях с соизмеримыми скоростями. При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками. Простейшим примером обратимой реакции является синтез аммиака взаимодействием азота и водорода:

N 2 +3H 2 ↔2NH 3

Необратимыми называют реакции, протекающие только в прямом направлении, в результате которых образуются продукты, не взаимодействующие между собой. К необратимым относят химические реакции, в результате которых образуются малодиссоциированные соединения, происходит выделение большого количества энергии, а также те, в которых конечные продукты уходят из сферы реакции в газообразном виде или в виде осадка, например:

HCl + NaOH = NaCl + H2O

2Ca + O 2 = 2CaO

BaBr 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaBr

По тепловому эффекту

Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии (теплосодержания) ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.

Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.

Реакции соединения как правило будут реак­циями экзотермическими, а реакции разложения - эндотер­мическими. Редкое исключение - реакция азота с кислородом - эндотермиче­ская:
N2 + О2 → 2NO – Q

По фазе

Гомогенными называют реакции, протекающие в однородной среде (однородные вещества, в одной фазе, например г-г, реакции в растворах).

Гетерогенными называют реакции, протекающие в неоднородной среде, на поверхности соприкосновения реагирующих веществ, находящихся в разных фазах, например, твердой и газообразной, жидкой и газообразной, в двух несмешивающихся жидкостях.

По использованию катализатора

Катализатор – вещество ускоряющее химическую реакцию.

Каталитические реакции протекают только в присутствии катализатора (в том числе и ферментативные).

Некаталитические реакции идут в отсутствие катализатора.

По типу разрыва связей

По типу разрыва химической связи в исходной молекуле различают гомолитические и гетеролитические реакции.

Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон - свободные радикалы.

Гетеролитическими называют реакции, протекающие через образование ионных частиц - катионов и анионов.

  • гомолитические (равный разрыв, каждый атом по 1 электрону получает)
  • гетеролитический (неравный разрыв – одному достается пара электронов)

Радикальными (цепными) называют химические реакции с участием радикалов, например:

CH 4 + Cl 2 hv →CH 3 Cl + HCl

Ионными называют химические реакции, протекающие с участием ионов, например:

KCl + AgNO 3 = KNO 3 + AgCl↓

Электрофильными называют гетеролитические реакции органических соединений с электрофилами - частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного замещения и электрофильного присоединения, например:

C 6 H 6 + Cl 2 FeCl3 → C 6 H 5 Cl + HCl

H 2 C =CH 2 + Br 2 → BrCH 2 –CH 2 Br

Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами - частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения, например:

CH 3 Br + NaOH → CH 3 OH + NaBr

CH 3 C(O)H + C 2 H 5 OH → CH 3 CH(OC 2 H 5) 2 + H 2 O

Классификация органических реакций

Классификация органических реакций приведена в таблице:

ОПРЕДЕЛЕНИЕ

Степень окисления - это количественная оценка состояния атома химического элемента в соединении, основанная на его электроотрицательности.

Она принимает как положительные, так и отрицательные значения. Чтобы указать степень окисления элемента в соединении нужно поставить сверху над его символом арабскую цифру с соответствующим знаком («+» или «-»).

Следует помнить, что степень окисления — величина, не имеющая физического смысла, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.

Таблица степени окисления химических элементов

Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.

Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно (+1) и (+2).

Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера - (-2), 0, (+2), (+4), (+6) и др.).

Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

(-1), 0, (+1), (+2), (+3)

Углерод / Carbon

(-4), (-3), (-2), (-1), 0, (+2), (+4)

Азот / Nitrogen

(-3), (-2), (-1), 0, (+1), (+2), (+3), (+4), (+5)

Кислород / Oxygen

(-2), (-1), 0, (+1), (+2)

Фтор / Fluorine

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

(-4), 0, (+2), (+4)

Фосфор / Phosphorus

(-3), 0, (+3), (+5)

Сера / Sulfur

(-2), 0, (+4), (+6)

Хлор / Chlorine

(-1), 0, (+1), (+3), (+5), (+7), редко (+2) и (+4)

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

(+2), (+3), (+4)

Ванадий / Vanadium

(+2), (+3), (+4), (+5)

Хром / Chromium

(+2), (+3), (+6)

Марганец / Manganese

(+2), (+3), (+4), (+6), (+7)

Железо / Iron

(+2), (+3), редко (+4) и (+6)

Кобальт / Cobalt

(+2), (+3), редко (+4)

Никель / Nickel

(+2), редко (+1), (+3) и (+4)

Медь / Copper

+1, +2, редко (+3)

Галлий / Gallium

(+3), редко (+2)

Германий / Germanium

(-4), (+2), (+4)

Мышьяк / Arsenic

(-3), (+3), (+5), редко (+2)

Селен / Selenium

(-2), (+4), (+6), редко (+2)

Бром / Bromine

(-1), (+1), (+5), редко (+3), (+4)

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

(+4), редко (+2) и (+3)

Ниобий / Niobium

(+3), (+5), редко (+2) и (+4)

Молибден / Molybdenum

(+3), (+6), редко (+2), (+3) и (+5)

Технеций / Technetium

Рутений / Ruthenium

(+3), (+4), (+8), редко (+2), (+6) и (+7)

Родий / Rhodium

(+4), редко (+2), (+3) и (+6)

Палладий / Palladium

(+2), (+4), редко (+6)

Серебро / Silver

(+1), редко (+2) и (+3)

Кадмий / Cadmium

(+2), редко (+1)

Индий / Indium

(+3), редко (+1) и (+2)

Олово / Tin

(+2), (+4)

Сурьма / Antimony

(-3), (+3), (+5), редко (+4)

Теллур / Tellurium

(-2), (+4), (+6), редко (+2)

(-1), (+1), (+5), (+7), редко (+3), (+4)

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

(+3), (+4)

Празеодим / Praseodymium

Неодим / Neodymium

(+3), (+4)

Прометий / Promethium

Самарий / Samarium

(+3), редко (+2)

Европий / Europium

(+3), редко (+2)

Гадолиний / Gadolinium

Тербий / Terbium

(+3), (+4)

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

(+3), редко (+2)

Иттербий / Ytterbium

(+3), редко (+2)

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

(+5), редко (+3), (+4)

Вольфрам / Tungsten

(+6), редко (+2), (+3), (+4) и (+5)

Рений / Rhenium

(+2), (+4), (+6), (+7), редко (-1), (+1), (+3), (+5)

Осмий / Osmium

(+3), (+4), (+6), (+8), редко (+2)

Иридий / Iridium

(+3), (+4), (+6), редко (+1) и (+2)

Платина / Platinum

(+2), (+4), (+6), редко (+1) и (+3)

Золото / Gold

(+1), (+3), редко (+2)

Ртуть / Mercury

(+1), (+2)

Талий / Thallium

(+1), (+3), редко (+2)

Свинец / Lead

(+2), (+4)

Висмут / Bismuth

(+3), редко (+3), (+2), (+4) и (+5)

Полоний / Polonium

(+2), (+4), редко (-2) и (+6)

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

(+3), (+4), (+6), редко (+2) и (+5)

Примеры решения задач

ПРИМЕР 1

Ответ Будем поочередно определять степень окисления фосфора в каждой из предложенных схем превращений, а затем выберем верный вариант ответа.
  • Степень окисления фосфора в фосфине равна (-3), а в ортофосфорной кислоте - (+5). Изменение степени окисления фосфора: +3 → +5, т.е. первый вариант ответа.
  • Степень окисления химического элемента в простом веществе равна нулю. Степень окисления фосфора в оксиде состава P 2 O 5 равна (+5). Изменение степени окисления фосфора: 0 → +5, т.е. третий вариант ответа.
  • Степень окисления фосфора в кислоте состава HPO 3 равна (+5), а H 3 PO 2 — (+1). Изменение степени окисления фосфора: +5 → +1, т.е. пятый вариант ответа.

ПРИМЕР 2

Задание Степень окисления (-3) углерод имеет в соединении: а) CH 3 Cl; б) C 2 H 2 ; в) HCOH; г) C 2 H 6 .
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять степень окисления углерода в каждом из предложенных соединений.

а) степень окисления водорода равна (+1), а хлора - (-1). Примем за «х» степень окисления углерода:

x + 3×1 + (-1) =0;

Ответ неверный.

б) степень окисления водорода равна (+1). Примем за «у» степень окисления углерода:

2×у + 2×1 = 0;

Ответ неверный.

в) степень окисления водорода равна (+1), а кислорода - (-2). Примем за «z» степень окисления углерода:

1 + z + (-2) +1 = 0:

Ответ неверный.

г) степень окисления водорода равна (+1). Примем за «a» степень окисления углерода:

2×а + 6×1 = 0;

Верный ответ.

Ответ Вариант (г)

Существует два типа химических реакций:

A Реакции, в которых не изменяется степень окисления элементов:

Реакции присоединения

SO 2 + Na 2 O = Na 2 SO 3

Реакции разложения

Cu(OH) 2 = CuO + H 2 O

Реакции обмена

AgNO 3 + KCl = AgCl + KNO 3

NaOH + HNO 3 = NaNO 3 + H 2 O

B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений и передача электронов от одних соединений к другим:

2Mg 0 + O 2 0 = 2Mg +2 O -2

2KI -1 + Cl 2 0 = 2KCl -1 + I 2 0

Mn +4 O 2 + 4HCl -1 = Mn +2 Cl 2 + Cl 2 0 + 2H 2 O

Такие реакции называются окислительно - восстановительными.

Степень окисления - это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

Наиболее электроотрицательные элементы в соединении имеют отрицательные степени окисления, а атомы элементов с меньшей электроотрицательностью - положительные.

Степень окисления - формальное понятие; в ряде случаев степень окисления не совпадает с валентностью.

Например :

N 2 H 4 (гидразин)

степень окисления азота – -2; валентность азота – 3.

Расчет степени окисления

Для вычисления степени окисления элемента следует учитывать следующие положения:

1. Степени окисления атомов в простых веществах равны нулю (Na 0 ; H 2 0).

2. Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.

3. Постоянную степень окисления в соединениях с атомами других элементов имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), фтора

(-1), водорода (+1) (кроме гидридов металлов Na + H - , Ca 2+ H 2 - и др., где степень окисления водорода -1), кислорода (-2) (кроме F 2 -1 O +2 и пероксидов, содержащих группу –O–O–, в которой степень окисления кислорода -1).

4. Для элементов положительная степень окисления не может превышать величину, равную номеру группы периодической системы.

Примеры :

V 2 +5 O 5 -2 ; Na 2 +1 B 4 +3 O 7 -2 ; K +1 Cl +7 O 4 -2 ; N -3 H 3 +1 ; K 2 +1 H +1 P +5 O 4 -2 ; Na 2 +1 Cr 2 +6 O 7 -2

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

H 2 0 - 2ē = 2H + + 1/2О 2

S -2 - 2ē = S 0

Al 0 - 3ē = Al +3

Fe +2 - ē = Fe +3

2Br - - 2ē = Br 2 0

Процесс присоединения электронов - восстановление: При восстановлении степень окисления понижается.

Mn +4 + 2ē = Mn +2

S 0 + 2ē = S -2

Cr +6 +3ē = Cr +3

Cl 2 0 +2ē = 2Cl -

O 2 0 + 4ē = 2O -2

Атомы, молекулы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а которые отдают электроны - восстановителями.

Окислитель в процессе реакции восстанавливается, восстановитель - окисляется.

Окислительно-восстановительные свойства вещества и степени окисления входящих в него атомов

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами. Минимальная степень окисления у атомов металлов равна 0, для неметаллов - (n–8) (где n- номер группы в периодической системе). Соединения, содержащие атомы элементов с промежуточной степенью окисления, могут быть и окислителями и восстановителями, в зависимости от партнера, с которым взаимодействуют и от условий реакции.

Важнейшие восстановители и окислители

Восстановители

Окись углерода (II) (CO).

Сероводород (H 2 S);

оксид серы (IV) (SO 2);

сернистая кислота H 2 SO 3 и ее соли.

Галогеноводородные кислоты и их соли.

Катионы металлов в низших степенях окисления: SnCl 2 , FeCl 2 , MnSO 4 , Cr 2 (SO4) 3 .

Азотистая кислота HNO 2 ;

аммиак NH 3 ;

гидразин NH 2 NH 2 ;

оксид азота(II) (NO).

Катод при электролизе.

Окислители

Галогены.

Перманганат калия(KMnO 4);

манганат калия (K 2 MnO 4);

оксид марганца (IV) (MnO 2).

Дихромат калия (K 2 Cr 2 O 7);

хромат калия (K 2 CrO 4).

Азотная кислота (HNO 3).

Серная кислота (H 2 SO 4) конц.

Оксид меди(II) (CuO);

оксид свинца(IV) (PbO 2);

оксид серебра (Ag 2 O);

пероксид водорода (H 2 O 2).

Хлорид железа(III) (FeCl 3).

Бертоллетова соль (KClO 3).

Анод при электролизе.