За последние 200 лет человечество изучило свойства веществ лучше, чем за всю историю развития химии. Естественно, количество веществ так же стремительно растет, это связано, прежде всего, с освоением различных методов получения веществ.

В повседневной жизни мы сталкиваемся с множеством веществ. Среди них – вода, железо, алюминий, пластмасса, сода, соль и множество других. Вещества, существующие в природе, например, кислород и азот, содержащиеся в воздухе, вещества, растворенные в воде, и имеющие природное происхождение, называются природными веществами. Алюминия, цинка, ацетона, извести, мыла, аспирина, полиэтилена и многих других веществ в природе не существует.

Их получают в лаборатории, и производит промышленность. Искусственные вещества не встречаются в природе, их создают из природных веществ. Некоторые вещества, существующие в природе, можно получить и в химической лаборатории.

Так, при нагревании марганцовки выделяется кислород, а при нагревании мела – углекислый газ. Ученые научились превращать графит в алмаз, выращивают кристаллы рубина, сапфира и малахита. Итак, наряду с веществами природного происхождения существует огромное множество и искусственно созданных веществ, не встречающихся в природе.

Вещества, не встречающиеся в природе, производятся на различных предприятиях: фабриках, заводах, комбинатах и т.п.

В условиях исчерпания природных ресурсов нашей планеты, сейчас перед химиками стоит важная задача: разработать и внедрить методы, при помощи которых можно искусственно, в условиях лаборатории, или промышленного производства, получать вещества, являющиеся аналогами природных веществ. Например, запасы топливных ископаемых в природе на исходе.

Может настать тот момент, когда нефть и природный газ закончатся. Уже сейчас ведутся разработки новых видов топлива, которые были бы такими же эффективными, но не загрязняли окружающую среду. На сегодняшний день человечество научилось искусственно получать различные драгоценные камни, например, алмазы, изумруды, бериллы.

Агрегатное состояние вещества

Вещества могут существовать в нескольких агрегатных состояниях, три из которых вам известны: твердое, жидкое, газообразное. Например, вода в природе существует во всех трех агрегатных состояниях: твердом (в виде льда и снега), жидком (жидкая вода) и газообразном (водяной пар). Известны вещества, которые не могут существовать в обычных условиях во всех трех агрегатных состояниях. Например, таким веществом является углекислый газ. При комнатной температуре это газ без запаха и цвета. При температуре –79°С данное вещество «замерзает» и переходит в твердое агрегатное состояние. Бытовое (тривиальное) название такого вещества «сухой лед» . Такое название дано этому веществу из-за того, что «сухой лед» превращается в углекислый газ без плавления, то есть, без перехода в жидкое агрегатное состояние, которое присутствует, например, у воды.

Таким образом, можно сделать важный вывод. Вещество при переходе из одного агрегатного состояния в другое не превращается в другие вещества. Сам процесс некоего изменения, превращения, называется явлением.

Физические явления. Физические свойства веществ.

Явления, при которых вещества изменяют агрегатное состояние, но при этом не превращаются в другие вещества, называют физическими. Каждое индивидуальное вещество обладает определенными свойствами. Свойства веществ могут быть различными или сходными друг с другом. Каждое вещество описывают при помощи набора физических и химических свойств. Рассмотрим в качестве примера воду. Вода замерзает и превращается в лед при температуре 0°С, а закипает и превращается в пар при температуре +100°С. Данные явления относятся к физическим, так как вода не превратилась в другие вещества, происходит только изменение агрегатного состояния. Данные температуры замерзания и кипения – это физические свойства, характерные именно для воды.

Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими

Испарение спирта, как и испарение воды – физические явления, вещества при этом изменяют агрегатное состояние. После проведения опыта можно убедиться, что спирт испаряется быстрее, чем вода – это физические свойства этих веществ.

К основным физическим свойствам веществ можно отнести следующие: агрегатное состояние, цвет, запах, растворимость в воде, плотность, температура кипения, температура плавления, теплопроводность, электропроводность. Такие физические свойства как цвет, запах, вкус, форма кристаллов, можно определить визуально, с помощью органов чувств, а плотность, электропроводность, температуру плавления и кипения определяют измерением. Сведения о физических свойствах многих веществ собраны в специальной литературе, например, в справочниках. Физические свойства вещества зависят от его агрегатного состояния. Например, плотность льда, воды и водяного пара различна.

Газообразный кислород бесцветный, а жидкий – голубой Знание физических свойств помогает «узнавать» немало веществ. Например, медь – единственный металл красного цвета. Соленый вкус имеет только поваренная соль. Иод – почти черное твердое вещество, которое при нагревании превращается в фиолетовый пар. В большинстве случаев для определения вещества нужно рассматривать несколько его свойств. В качестве примера охарактеризуем физические свойства воды:

  • цвет – бесцветная (в небольшом объеме)
  • запах – без запаха
  • агрегатное состояние – при обычных условиях жидкость
  • плотность – 1 г/мл,
  • температура кипения – +100°С
  • температура плавления – 0°С
  • теплопроводность – низкая
  • электропроводность – чистая вода электричество не проводит

Кристаллические и аморфные вещества

При описании физических свойств твердых веществ принято описывать структуру вещества. Если рассмотреть образец поваренной соли под увеличительным стеклом, можно заметить, что соль состоит из множества мельчайших кристаллов. В соляных месторождениях можно встретить и весьма крупные кристаллы. Кристаллы – твердые тела, имеющие форму правильных многогранников Кристаллы могут иметь различную форму и размер. Кристаллы некоторых веществ, таких как поваренная соль хрупкие, их легко разрушить . Существуют кристаллы довольно твердые. Например, одним из самых твердых минералов считается алмаз. Если рассматривать кристаллы поваренной соли под микроскопом, можно заметить, что все они имеют похожее строение. Если же рассмотреть, например, частицы стекла, то все они будут иметь различное строение – такие вещества называют аморфными. К аморфным веществам относят стекло, крахмал, янтарь, пчелиный воск. Аморфные вещества – вещества, не имеющие кристаллического строения

Химические явления. Химическая реакция.

Если при физических явлениях вещества, как правило, лишь изменяют агрегатное состояние, то при химических явлениях происходит превращение одних веществ в другие вещества. Приведем несколько простых примеров: горение спички сопровождается обугливанием древесины и выделением газообразных веществ, то есть, происходит необратимое превращение древесины в другие вещества. Другой пример: со временем бронзовые скульптуры покрываются налетом зеленого цвета. Дело в том, что в состав бронзы входит медь. Этот металл медленно взаимодействует с кислородом, углекислым газом и влагой воздуха, в результате на поверхности скульптуры образуются новые вещества зеленого цвета Химические явления – явления превращений одних веществ в другие Процесс взаимодействия веществ с образованием новых веществ называют химической реакцией. Химические реакции происходят повсеместно вокруг нас. Химические реакции происходят и в нас самих. В нашем организме непрерывно происходят превращения множества веществ, вещества реагируют друг с другом, образуя продукты реакции. Таким образом, в химической реакции всегда есть реагирующие вещества, и вещества, образовавшиеся в результате реакции.

  • Химическая реакция – процесс взаимодействия веществ, в результате которого образуются новые вещества с новыми свойствами
  • Реагенты – вещества, вступающие в химическую реакцию
  • Продукты – вещества, образовавшиеся в результате химической реакции

Химическая реакция изображается в общем виде схемой реакции РЕАГЕНТЫ -> ПРОДУКТЫ

  • реагенты – исходные вещества, взятые для проведения реакции;
  • продукты – новые вещества, образовавшиеся в результате протекания реакции.

Любые химические явления (реакции) сопровождаются определенными признаками, при помощи которых химические явления можно отличить от физических. К таким признакам можно отнести изменение окраски веществ, выделение газа, образование осадка, выделение тепла, излучение света.

Многие химические реакции сопровождаются выделением энергии в виде тепла и света. Как правило, такими явлениями сопровождаются реакции горения. В реакциях горения на воздухе вещества реагируют с кислородом, содержащимся в воздухе. Так, например, металл магний вспыхивает и горит на воздухе ярким слепящим пламенем. Именно поэтому вспышку магния использовали при создании фотографий в первой половине ХХ века. В некоторых случаях возможно выделение энергии в виде света, но без выделения тепла. Один из видов тихоокеанского планктона способен испускать ярко-голубой свет, хорошо заметный в темноте. Выделение энергии в виде света – результат химической реакции, которая протекает в организмах данного вида планктона.

Итог статьи:

  • Существуют две большие группы веществ: вещества природного и искусственного происхождения
  • В обычных условиях вещества могут находиться в трех агрегатных состояниях
  • Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими
  • Кристаллы – твердые тела, имеющие форму правильных многогранников
  • Аморфные вещества – вещества, не имеющие кристаллического строение
  • Химические явления – явления превращений одних веществ в другие
  • Реагенты – вещества, вступающие в химическую реакцию
  • Продукты – вещества, образующиеся в результате химической реакции
  • Химические реакции могут сопровождаться выделением газа, осадка, тепла, света; изменением окраски веществ
  • Горение – сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе химической реакции, сопровождающийся интенсивным выделением тепла и света (пламени)

Химия подготовка к ЗНО и ДПА
Комплексное издание

ЧАСТЬ И

ОБЩАЯ ХИМИЯ

ХИМИЯ ЭЛЕМЕНТОВ

ГАЛОГЕНЫ

Простые вещества

Химические свойства Фтора

Фтор - сильнейший окислитель в природе. Непосредственно он не реагирует только с гелием, неоном и аргоном.

Под время реакции с металлами образуются фториды, соединения ионного типа:

Фтор энергично реагирует со многими неметаллами, даже с некоторыми инертными газами:

Химические свойства Хлора. Взаимодействие со сложными веществами

Хлор является более сильным окисником, чем бром или йод, поэтому хлор вытесняет тяжелые галогены из их солей:

Растворяясь в воде, хлор частично реагирует с ней, в результате чего образуются две кислоты: хлоридная и гіпохлоритна. При этом один атом Хлора повышает степень окисления, а другой атом - снижает. Такие реакции называют реакциями диспропорціонування. Реакции диспропорціонування - это реакции самовосстановления-самоокиснення, т.е. реакции, при которых один элемент проявляет свойства и окисника, и восстановителя. При диспропорціонуванні одновременно образуются соединения, в которых элемент находится в более окисленном и восстановленном состоянии по сравнению с первобытным. Степень окисления атома Хлора в молекуле гипохлоритной кислоты равен +1:

Аналогично протекает взаимодействие хлора с растворами щелочей. При этом образуются две соли: хлорид и гипохлорит.

Хлор вступает во взаимодействие с различными оксидами:

Хлор окисляет некоторые соли, в которых металл находится не в максимальной степени окисления:

Молекулярный хлор реагирует со многими органическими соединениями. В присутствии феррум(III) хлорида как катализатора хлор реагирует с бензолом с образованием хлорбензола, а при облучении светом в результате этой же реакции образуется гексахлорциклогексан:

Химические свойства брома и йода

Обе вещества реагируют с водородом, фтором и щелочами:

Йод окисляют различные сильные окислители:

Методы добыча простых веществ

Извлечения фтора

Поскольку фтор является сильнейшим химическим окисником, то выделить его с помощью химических реакций из соединений в свободном виде невозможно, а потому фтор добывают физико-химическим методом - электролизом.

Для извлечения фтора используют расплав калий фторида и никелевые электроды. Никель используют благодаря тому, что поверхность металла пассивируется фтором вследствие образования нерастворимого NiF 2 , следовательно, сами электроды не разрушаются под действием вещества, которое на них выделяется:

Добывания хлора

Хлор в промышленных масштабах добывают электролизом раствора натрий хлорида. В результате этого процесса добывают также натрий гидроксид:

В небольших количествах хлор добывают окисненням раствора хлороводорода различными методами:

Хлор - очень важный продукт химической промышленности.

Его мировое производство составляет миллионы тонн.

Извлечения брома и йода

Для промышленного использования бром и йод добывают при окислении бромидов и йодидов, соответственно. Для окисления чаще всего используют молекулярный хлор, концентрированную сульфатную кислоту или манган диоксид:

Применение галогенов

Фтор и некоторые его соединения используют как окислитель ракетного топлива. Большие количества фтора используют для добывания различных хладагентов (фреонов) и некоторых полимеров, которым свойственна химическая и термическая стойкость (тефлон и некоторые другие). Фтор применяют в ядерной технике для разделения изотопов урана.

Большое часть хлора используют для получения соляной кислоты, а также как окислитель для добывания других галогенов. В промышленности его используют для отбеливания тканей и бумаги. В больших количествах, чем фтор, его применяют для производства полимеров (ПВХ и других) и хладагентов. По помощью хлора дезинфицируют питьевую воду. Он также нужен для добывания некоторых растворителей, таких как хлороформ, хлористый метилен, тетрахлорметан. А еще его используют для производства многих веществ, например хлората калия (бертолетовой соли), хлорной извести и многих других соединений, содержащих атомы Хлора.

Бром и йод применяют в промышленности не в таких масштабах, как хлор или фтор, однако с каждым годом использование этих веществ увеличивается. Бром используют в производстве различных медицинских препаратов успокаивающего действия. Йод используют при изготовлении антисептических препаратов. Соединения Брома и Йода широко применяют при количественном анализе веществ. С помощью йода очищают некоторые металлы (этот процесс называют йодным рафинированием), например титан, ванадий и другие.


Характерные химические свойства простых веществ – металлов

Большинство химических элементов относят к металлам - 92 из 114 известных элементов. Металлы - это химические элементы, атомы которых отдают электроны внешнего (а некоторые - и предвнешнего) электронного слоя, превращаясь в положительные ионы. Это свойство атомов металлов определяется тем, что они имеют сравнительно большие радиусы и малое число электронов (в основном от 1 до 3 на внешнем слое). Исключение составляют лишь 6 металлов: атомы германия, олова, свинца на внешнем слое имеют 4 электрона, атомы сурьмы и висмута - 5, атомы полония - 6. Для атомов металлов характерны небольшие значения электроотрицательности (от 0,7 до 1,9) и исключительно восстановительные свойства , т. е. способность отдавать электроны. В Периодической системе химических элементов Д. И. Менделеева металлы находятся ниже диагонали бор - астат, а также выше ее, в побочных подгруппах. В периодах и главных подгруппах действуют известные вам закономерности в изменении металлических, а значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор - астат (Be, Al, Ti, Ge, Nb, Sb и др.), обладают двойственными свойствами : в одних своих соединениях ведут себя как металлы, в других - проявляют свойства неметаллов. В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются.

Сравните активность известных вам металлов I группы побочной подгруппы: Cu, Ag, Au; II группы побочной подгруппы: Zn, Cd, Hg - и вы убедитесь в этом сами. Это можно объяснить тем, что на прочность связи валентных электронов с ядром у атомов данных металлов в большей степени влияет величина заряда ядра, а не радиус атома. Величина заряда ядра значительно увеличивается, притяжение электронов к ядру усиливается. Радиус атома при этом хотя и увеличивается, но не столь значительно, как у металлов главных подгрупп.

Простые вещества, образованные химическими элементами - металлами, и сложные металлосодержащие вещества играют важнейшую роль в минеральной и органической «жизни» Земли. Достаточно вспомнить, что атомы (ионы) элементов металлов являются составной частью соединений, определяющих обмен веществ в организме человека, животных. Например, в крови человека найдено 76 элементов, и из них только 14 не являются металлами.

В организме человека некоторые элементы металлы (кальций, калий, натрий, магний) присутствуют в большом количестве, т. е. являются макроэлементами. А такие металлы, как хром, марганец, железо, кобальт, медь, цинк, молибден присутствуют в небольших количествах, т. е. это микроэлементы. Если человек весит 70 кг, то в его организме содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5, цинка - 3. Все металлы чрезвычайно важны, проблемы со здоровьем возникают и при их недостатке, и при избытке.

Например, ионы натрия регулируют содержание воды в организме, передачу нервных импульсов. Его недостаток приводит к головной боли, слабости, слабой памяти, потере аппетита, а избыток - к повышению артериального давле­ния, гипертонии, заболеваниям сердца.

Простые вещества - металлы

С развитием производства металлов (простых веществ) и сплавов связано возникновение цивилизации (бронзовый век, железный век). Начавшаяся примерно 100 лет назад научно-техническая революция, затронувшая и промышленность, и социальную сферу, также тесно связана с производством металлов. На основе вольфрама, молибдена, титана и других металлов начали создавать коррозионностойкие, сверхтвердые, тугоплавкие сплавы, применение которых сильно расширило возможности машиностроения. В ядерной и космической технике из сплавов вольфрама и рения делают детали, работающие при температурах до 3000 °С; в медицине используют хирургические инструменты из сплавов тантала и платины, уникальной керамики на основе оксидов титана и циркония.

И, конечно же, мы не должны забывать, что в большинстве сплавов используют давно известный металл железо, а основу многих легких сплавов составляют сравнительно «молодые» металлы - алюминий и магний. Сверхновыми стали композиционные материалы, представляющие, например, полимер или керамику, которые внутри (как бетон железными прутьями) упрочнены металлическими волокнами из вольфрама, молибдена, стали и других металлов, и сплавов - все зависит от поставленной цели, необходимых для ее достижения свойств материала. На рисунке изображена схема кристаллической решетки металлического натрия. В ней каждый атом натрия окружен восемью соседями. У атома натрия, как и у всех металлов, имеется много свободных валентных орбиталей и мало валентных электронов. Электронная формула атома натрия: 1s 2 2s 2 2p 6 3s 1 3p 0 3d 0 , где 3s, 3p, 3d - валентные орбитали .

Единственный валент­ный электрон атома натрия 3s 1 может занимать любую из девяти свободных орбиталей - 3s (одна), 3р (три) и 3d (пять), ведь они не очень отличаются по уровню энергии. При сближении атомов, когда образуется кристалличе­ская решетка, валентные орбитали соседних ато­мов перекрываются, благодаря чему электроны свободно перемещаются с одной орбитали на дру­гую, осуществляя связь между всеми атомами кри­сталла металла. Такую химическую связь называют металлической.

Металлическую связь обра­зуют элементы, атомы кото­рых на внешнем слое имеют мало валентных электронов по сравнению с большим числом внешних энергетически близких орбиталей. Их валентные электроны слабо удерживаются в атоме. Электроны, осуществляющие связь, обобществлены и перемещаются по всей кристаллической решетке в целом нейтрального металла. Веществам с металлической связью присущи металлические кристаллические решетки, которые обычно изображают схематически так, как показано на рисунке. Катионы и атомы металлов, расположенные в узлах кристаллической решетки, обеспечивают ее стабильность и прочность (обобществленные электроны изображены в виде черных маленьких шариков).

Металлическая связь - это связь в металлах и сплавах между атом-ионами металлов, расположенными в узлах кристаллической решетки, осуществляемая обобществленными валентными электронами. Некоторые металлы кристаллизуются в двух или более кристаллических формах. Это свойство веществ - существовать в нескольких кристаллических модификациях - называют полиморфизмом. Полиморфизм простых веществ известен под названием аллотропии. Например, железо имеет четыре кристалличес­кие модификации, каждая из которых устойчива в определенном температурном интервале:

α - устойчива до 768 °С, ферромагнитная;

β - устойчива от 768 до 910 °С, неферромагнит­ная, т. е. парамагнитная;

γ - устойчива от 910 до 1390 °С, неферромаг­нитная, т. е. парамагнитная;

δ - устойчива от 1390 до 1539 °С (£° пл железа), неферромагнитная.

Олово имеет две кристаллические модифика­ции:

α - устойчива ниже 13,2 °С (р = 5,75 г/см 3). Это серое олово. Оно имеет кристаллическую решет­ку типа алмаза (атомную);

β - устойчива выше 13,2 °С (р = 6,55 г/см 3). Это белое олово.

Белое олово - серебристо-белый очень мягкий металл. При охлаждении ниже 13,2 °С он рассы­пается в серый порошок, т. к. при переходе значительно увеличивается его удельный объем. Это явление получило название «оловянной чумы».

Конечно, особый вид химической связи и тип кристаллической решетки металлов должны опре­делять и объяснять их физические свойства. Каковы же они? Это ме­таллический блеск, пластич­ность, высокая электрическая проводимость и теплопровод­ность, рост электрического сопротивления при повыше­нии температуры, а также та­кие значимые свойства, как плотность, высокие температуры плавления и кипения, твердость, магнитные свойства. Механическое воздействие на кристалл с метал­лической кристаллической решеткой вызывает сме­щение слоев ион-атомов друг относительно друга (рис. 17), а так как электроны переме­щаются по всему кристаллу, разрыв связей не происходит, поэтому для металлов харак­терна большая пластичность. Аналогичное воздействие на твердое вещество с кова­лентными свя зями (атомной кристаллической решеткой) приводит к разрыву ковалент­ных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ио­нов. Поэтому вещества с атом­ными и ионными кристаллическими решетками хрупкие. Наиболее пластичные металлы - это Au, Ag, Sn, Pb, Zn. Они легко вытягиваются в проволо­ку, поддаются ковке, прессованию, прокатыванию в листы. Например, из золота можно изготовить зо­лотую фольгу толщиной 0,003 мм, а из 0,5 г этого металла можно вытянуть нить длиной 1 км. Даже ртуть, которая при комнатной температу­ре жидкая, при низких температурах в твердом со­стоянии становится ковкой, как свинец. Не обла­дают пластичностью лишь Bi и Mn, они хрупкие.

Почему металлы имеют характерный блеск, а также непрозрачны?

Электроны, заполняющие межатомное про­странство, отражают световые лучи (а не пропу­скают, как стекло), причем большинство металлов в равной степени рассеивают все лучи видимой ча­сти спектра. Поэтому они имеют серебристо-белый или серый цвет. Стронций, золото и медь в боль­шей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют светло-желтый, желтый и «медный» цвета. Хотя на практике металл не всегда нам кажет­ся «светлым телом». Во-первых, его поверхность может окисляться и терять блеск. Поэтому само­родная медь выглядит зеленоватым камнем. А во- вторых, и чистый металл может не блестеть. Очень тонкие листки серебра и золота имеют совершенно неожиданный вид - они имеют голубовато-зеле­ный цвет. А мелкие порошки металлов кажутся темно-серыми, даже черными. Наибольшую отражательную способность име­ют серебро, алюминий, палладий. Их используют при изготовлении зеркал, в том числе и в прожек­торах.

Почему металлы имеют высокую электриче­скую проводимость и теплопроводны?

Хаотически движущиеся электроны в металле под воздействием приложенного электрического напряжения приобретают направленное движение, т. е. проводят электрический ток. При повышении температуры металла возрастают амплитуды ко­лебаний находящихся в узлах кристаллической решетки атомов и ионов. Это затрудняет переме­щение электронов, электрическая проводимость металла падает. При низких температурах ко­лебательное движение, наоборот, сильно умень­шается и электрическая проводимость металлов резко возрастает. Вблизи абсолютного нуля со­противление у металлов практически отсутству­ет, у большинства металлов появляется сверх­проводимость.

Следует отметить, что неметаллы, обладающие электрической проводимостью (например, графит), при низких температурах, наоборот, не проводят электрический ток из-за отсутствия свободных электронов. И только с повышением температуры и разрушением некоторых ковалентных связей их электрическая проводимость начинает возрастать. Наибольшую электрическую проводимость име­ют серебро, медь, а также золото, алюминий, наи­меньшую - марганец, свинец, ртуть.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется тепло­проводность металлов. Она обусловлена большой подвижностью свобод­ных электронов, которые, сталкиваясь с колеблю­щимися ионами и атомами, обмениваются с ними энергией. Происходит выравнивание температуры по всему куску металла.

Механическая прочность, плотность, температу­ра плавления у металлов очень сильно отличаются . Причем с увеличением числа электронов, связы­вающих ион-атомы, и уменьшением межатомного расстояния в кристаллах показатели этих свойств возрастают.

Так, щелочные металлы (Li, K, Na, Rb, Cs), атомы которых имеют один валентный электрон , мягкие (режутся ножом), с небольшой плотностью (литий - самый легкий металл с р = 0,53 г/см 3) и плавятся при невысоких температурах (напри­мер, температура плавления цезия 29 °С). Един­ственный металл, жидкий при обычных усло­виях, - ртуть - имеет температуру плавления, равную -38,9 °С. Кальций, имеющий два электрона на внешнем энергетическом уровне атомов, гораздо более тверд и плавится при более высокой температуре (842 °С). Еще более прочной является кристаллическая решетка, образованная ионами скандия, который имеет три валентных электрона. Но самые прочные кристаллические решетки, большие плотности и температуры плавления на­блюдаются у металлов побочных подгрупп V, VI, VII, VIII групп. Это объясняется тем, что для ме­таллов побочных подгрупп, имеющих неспаренные валентные электроны на d-подуровне, характерно образование очень прочных ковалентных связей между атомами, помимо металлической, осущест­вляемой электронами внешнего слоя с s-орбиталей.

Самый тяжелый металл - это осмий (Os) с р = 22,5 г/см 3 (компонент сверхтвердых и износостойких сплавов), самый тугоплавкий металл - это вольфрам W с t = 3420 °С (применяется для изготовления нитей накаливания ламп), самый твердый металл - это хром Cr (царапает стекло). Они входят в состав материалов, из которых изго­тавливают металлорежущий инструмент, тормоз­ные колодки тяжелых машин и др. Металлы поразному взаимодействуют с магнит­ным полем. Такие металлы, как железо, кобальт, никель и гадолиний выделяются своей способно­стью сильно намагничиваться. Их называют фер­ромагнетиками. Большинство металлов (щелоч­ные и щелочноземельные металлы и значительная часть переходных металлов) слабо намагничивают­ся и не сохраняют это состояние вне магнитного поля - это парамагнетики. Металлы, выталкива­емые магнитным полем, - диамагнетики (медь, серебро, золото, висмут).

При рассмотрении электронного строения ме­таллов мы разделили металлы на металлы главных подгрупп (s- и p-элементы) и металлы побочных под­групп (переходные d- и f-элементы).

В технике принято классифицировать металлы по различным физическим свойствам:

1. Плотность - легкие (р < 5 г/см 3) и тяжелые (все остальные).

2. Температуре плавления - легкоплавкие и ту­гоплавкие.

Существуют классификации металлов по хими­ческим свойствам. Металлы с низкой химической активностью на­зывают благородными (серебро, золото, платина и ее аналоги - осмий, иридий, рутений, палладий, родий). По близости химических свойств выделяют ще­лочные (металлы главной подгруппы I группы), щелочноземельные (кальций, стронций, барий, ра­дий), а также редкоземельные металлы (скандий, иттрий, лантан и лантаноиды, актиний и актино­иды).




Общие химические свойства металлов

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положитель­но заряженные ионы, то есть окисляются. В этом заключается главное общее свойство и атомов, и простых веществ - металлов. Металлы в химических реакциях всегда восстано­вители. Восстановительная способность атомов простых веществ - металлов, образованных химическими элементами одного периода или одной главной подгруппы Периоди­ческой системы Д. И. Менделеева, изменяется за­кономерно.

Восстановительную активность металла в хи­мических реакциях, которые протекают в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов.

На основании этого ряда напряжений можно сде­лать следующие важные заключения о химиче­ской активности металлов в реакциях, протекающих в водных растворах при стан­дартных условиях (t = 25 °С, р = 1 атм).

· Чем левее стоит металл в этом ряду, тем более силь­ным восстановителем он яв­ляется.

· Каждый металл спо­собен вытеснять (восстанав­ливать) из солей в растворе те металлы, которые в ряду напряжений стоят после него (правее).

· Металлы, находящиеся в ряду напряжений левее водорода, способны вытеснять его из кислот в растворе

· Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземель­ные), в любых водных растворах взаимодействуют прежде всего с водой.

Восстановительная активность металла, опре­деленная по электрохимическому ряду, не всегда соответствует положению его в периодической си­стеме. Это объясняется тем, что при определении положения металла в ряду напряжений учитыва­ют не только энергию отрыва электронов от от­дельных атомов, но и энергию, затрачиваемую на разрушение кристаллической решетки, а также энергию, выделяющуюся при гидратации ионов. Например, литий более активен в водных раство­рах, чем натрий (хотя по положению в периодиче­ской системе Na - более активный металл). Дело в том, что энергия гидратации ионов Li + значительно больше, чем энергия гидратации Na + , поэтому первый процесс является энергетически более выгодным. Рассмотрев общие положения, характеризую­щие восстановительные свойства металлов, пере­йдем к конкретным химическим реакциям.

Взаимодействие металлов с неметаллами

· С кислородом большинство металлов образу­ют оксиды - основные и амфотерные. Кислотные оксиды переходных металлов, например оксид хро­ма (VI) CrO g или оксид марганца (VII) Mn 2 O 7 , не образуются при прямом окислении металла кисло­родом. Их получают косвенным путем.

Щелочные металлы Na, K активно реагируют с кислородом воздуха , образуя пероксиды:

Оксид натрия получают косвенным путем, при прокаливании пероксидов с соответствующими ме­таллами:

Литий и щелочноземельные металлы взаимодействуют с кислородом воздуха, образуя основные оксиды:

Другие металлы, кроме золота и платиновых металлов, которые вообще не окисляются кислоро­дом воздуха, взаимодействуют с ним менее актив­но или при нагревании:

· С галогенами металлы образуют соли галогеноводородных кислот , например:

· С водородом самые активные металлы образуют гидриды - ионные солеподобные вещества, в которых водород имеет степень окисления -1, например:

Многие переходные металлы образуют с водо­родом гидриды особого типа - происходит как бы растворение или внедрение водорода в кристаллическую решетку металлов между ато­мами и ионами, при этом ме­талл сохраняет свой внешний вид, но увеличивается в объ­еме. Поглощенный водород находится в металле, повидимому, в атомарном виде.

Существуют и гидриды металлов промежуточ­ного характера.

· С серые металлы образуют соли - сульфиды , например:

· С азотом металлы реагируют несколько труд­нее , т. к. химичес кая связь в молекуле азота N 2 очень прочна; при этом образуются нитриды. При обычной температуре взаимодействует с азотом только литий:

Взаимодействие металлов со сложными веществами

· С водой. Щелочные и щелочноземельные металлы при обычных условиях вытесняют водород из воды и образуют растворимые основания - щелочи, например:

Другие металлы, стоящие в ряду напряжений до водо­рода, тоже могут при опреде­ленных условиях вытеснять водород из воды. Но алюми­ний бурно взаимодействует с водой, только если удалить с его поверхности оксидную пленку:

Магний взаимодействует с водой только при кипячении, при этом также выделяется водород:

Если горящий магний внести в воду, то горение продолжается, т. к. протекает реакция:

Железо взаимодействует с водой только в рас­каленном виде:

· С кислотами в растворе (HCl, H 2 SO 4 ), CH 3 COOH и др., кроме HNO 3 ) взаимодействуют металлы, стоящие в ряду напряжений до водорода. При этом образуются соль и водород.

А вот свинец (и некоторые другие металлы), не­смотря на его положение в ряду напряжений (слева от водорода), почти не растворяется в разбавленной серной кислоте, т. к. образующийся сульфат свин­ца PbSO 4 нерастворим и создает на поверхности ме­талла защитную пленку.

· С солями менее активных металлов в рас­творе. В результате такой реакции образуется соль более активного металла и выделяется менее актив­ный металл в свободном виде.

Нужно помнить, что реакция идет в тех случа­ях, когда образующаяся соль растворима. Вытесне­ние металлов из их соединений другими металлами впервые подробно изучал Н. Н. Бекетов - великий русский ученый в области физической химии. Он расположил металлы по химической активности в «вытеснительный ряд», ставший прототипом ря­да напряжений металлов.

· С органическими веществами. Взаимодей­ствие с органическими кислотами аналогично ре­акциям с минеральными кислотами. Спирты же могут проявлять слабые кислотные свойства при взаимодействии со щелочными металлами:

Аналогично реагирует и фенол:

Металлы участвуют в реакциях с галогеналка­нами, которые используют для получения низших циклоалканов и для синтезов, в ходе которых про­исходит усложнение углеродного скелета молеку­лы (реакция А. Вюрца):

· Со щелочами в растворе взаимодействуют металлы, гидроксиды которых амфотерны. Например:

· Металлы могут образовывать друг с другом химические соединения, которые получили общее название интерметаллических соединений. В них чаще всего не проявляются степени окисления атомов, которые характерны для соединений металлов с неметаллами. Например:

Cu 3 Au, LaNi 5 , Na 2 Sb, Ca 3 Sb 2 и др.

Интерметаллические соединения обычно не имеют постоянного состава, химическая связь в них в основном металлическая. Образование этих соединений более характерно для металлов побочных подгрупп.

Металлы главных подгрупп I-III групп Периодической системы химических элементов Д. И. Менделеева

Общая характеристика

Это металлы главной подгруппы I группы. Их атомы на внешнем энергетическом уровне имеют по одному электрону. Щелочные металлы - сильные восстановители . Их восстановительная способность и химическая активность возрастают с увеличением порядкового номера элемента (т. е. сверху вниз в Периодической таблице). Все они обладают электронной проводимостью. Прочность связи между атомами щелочных металлов уменьшается с увеличением порядкового номера элемента. Также снижаются их температуры плавления и кипения. Щелочные металлы взаимодействуют со многими простыми веществами - окислителями . В реакциях с водой они образуют растворимые в воде основания (щелочи). Щелочноземельными элементами называются элементы главной подгруппы II группы. Атомы этих элементов содержат на внешнем энергетическом уровне по два электрона . Они являются сильнейшими восстановителями, имеют степень окисления +2. В этой главной подгруппе соблюдаются общие закономерности в изменении физических и химических свойств, связанные с увеличением размера атомов по группе сверху вниз, также ослабевает и химическая связь между атомами. С увеличением размера иона ослабевают кислотные и усиливаются основные свойства оксидов и гидроксидов.

Главную подгруппу III группы составляют эле­менты бор, алюминий, галлий, индий и таллий. Все элементы относятся к p-элементам. На внешнем энергетическом уровне они имеют по три (s 2 p 1 ) элек­трона , чем объясняется сходство свойств. Степень окисления +3. Внутри группы с увеличением заряда ядра металлические свойства увеличиваются. Бор - эле­мент-неметалл, а у алюминия уже металлические свойства. Все элементы образуют окси­ды и гидроксиды.

Большинство металлов находится в подгруппах Пе­риодической системы. В от­личие от элементов главных подгрупп, где происходит по­степенное заполнение элек­тронами внешнего уровня атомных орбиталей, у элементов побочных подгрупп заполняются d-орбитали предпоследнего энергетического уровня и s-орбитали последнего. Число электронов соответ­ствует номеру группы. Элементы с равным числом валентных электронов входят в группу под одним номером. Все элементы подгрупп - металлы.

Простые вещества, образованные металлами подгрупп, имеют прочные кристаллические решет­ки, устойчивые к нагреванию. Эти металлы самые прочные и тугоплавкие среди других металлов. У d-элементов ярко проявляется переход с увели­чением их валентности от основных свойств через амфотерные к кислотным.

Щелочные металлы (Na, K)

На внешнем энергетическом уровне атомы щелоч­ных металлов элементов содержат по одному элек­трону , находящемуся на большом удалении от ядра. Они легко отдают этот электрон, поэтому являются сильными восстановителями. Во всех соединениях щелочные металлы проявляют степень окисления +1. Их восстановительные свойства с ростом ради­уса атомов усиливаются от Li к Cs . Все они типич­ные металлы, имеют серебристо-белый цвет, мягкие (режутся ножом), легкие и легкоплавкие. Активно взаимодействуют со всеми неметаллами :

Все щелочные металлы при взаимодействии с кислородом (исключение Li) образуют перокси­ды. В свободном виде щелочные металлы не встре­чаются из-за их высокой химической активности.

Оксиды - твердые вещества, имеют основные свойства. Их получают, прокаливая пероксиды с соответствующими металлами:

Гидроксиды NaOH, KOH - твердые белые веще­ства, гигроскопичны, хорошо растворяются в воде с выделением теплоты, их относят к щелочам:

Соли щелочных металлов почти все растворимы в воде. Важнейшие из них: Na 2 CO 3 - карбонат натрия; Na 2 CO 3 10H 2 O - кристаллическая сода; NaHCO 3 - гидрокарбонат натрия, пищевая сода; K 2 CO 3 - карбо­нат калия, поташ; Na 2 SO 4 10H 2 O - глауберова соль; NaCl - хлорид натрия, пищевая соль.

Элементы I группы в таблицах

Щелочноземельные металлы (Ca, Mg)

Кальций (Ca) является пред­ставителем щелочноземельных металлов , которыми называют­ся элементы главной подгруппы II группы, но не все, а только начиная с кальция и вниз по группе. Это те химические элементы, которые, взаимодействуя с водой, образуют щело­чи. Кальций на внешнем энергетическом уровне содержит два электрона , степень окисления +2.

Физические и химические свойства кальция и его соединений представлены в таблице.

Магний (Mg) имеет такое же строение атома, как и кальций, степень его окисления также +2. Мягкий металл, но его поверхность на воздухе покрывается защитной пленкой, что немного снижает химическую актив­ность. Его горение сопровождается ослепительной вспышкой. MgO и Mg(OH) 2 проявляют основные свойства. Хотя Mg(OH) 2 и малорастворим, но окра­шивает раствор фенолфталеина в малиновый цвет.

Mg + O 2 = MgO 2

Оксиды MO - твердые белые тугоплавкие веще­ства. В технике CaO называют негашеной известью, а MgO - жженой магнезией, эти оксиды используют в про­изводстве строительных ма­териалов. Реакция оксида кальция с водой сопровождается выде­лением теплоты и называется гашением извести, а образу­ющийся Ca(OH) 2 - гашеной известью. Прозрачный рас­твор гидроксида кальция называется известковой водой, а белая взвесь Ca(OH) 2 в воде - известковым молоком.

Соли магния и кальция получают взаимодей­ствием их с кислотами.

CaCO 3 - карбонат кальция, мел, мрамор, из­вестняк. Применяется в строительстве. MgCO 3 - карбонат магния - применяется в металлургии для освобождения от шлаков.

CaSO 4 2H 2 O - гипс. MgSO 4 - сульфат магния - называют горькой, или английской, со­лью, содержится в морской воде. BaSO 4 - сульфат ба­рия - благодаря нераство­римости и способности задерживать рентгеновские лучи применяется в диагностике («баритовая ка­ша») желудочно-кишечного тракта.

На долю кальция приходится 1,5 % массы тела человека, 98 % кальция содержится в костях. Маг­ний является биоэлементом, его в теле человека около 40 г, он участвует в образовании белковых молекул.

Щелочноземельные металлы в таблицах


Алюминий

Алюминий (Al) - элемент главной подгруппы III группы периодической системы Д. И. Менделеева. Атом алюминия содержит на внешнем энергетическом уровне три электрона , которые он легко отдает при химических взаимодействиях. У родоначальника подгруппы и верхнего соседа алюминия - бора - радиус атома меньше (у бора он равен 0,080 нм, у алюминия - 0,143 нм). Кроме того, у атома алюминия появляется один промежуточный восьмиэлектронный слой (2е; 8е; 3е), который препятствует протяжению внешних электронов к ядру. Поэтому у атомов алюминия восстановительные свойства выражены достаточно сильно.

Почти во всех своих соединениях алюминий имеет степень окисления +3 .

Алюминий простое вещество

Серебристо-белый легкий металл. Плавится при 660 °С. Очень пластичен, легко вытя­гивается в проволоку и прока­тывается в фольгу толщиной до 0,01 мм. Обладает очень большой электрической проводимостью и теплопро­водностью. Образуют с другими металлами легкие и прочные сплавы. Алюминий - очень активный металл. Если порошок алюминия или тонкую алюминиевую фольгу сильно нагреть, то они воспламеняются и сгорают ослепительным пламенем :

Эту реакцию можно наблюдать при горении бен­гальских огней и фейерверков. Алюминий, как и все металлы, легко реагирует с неметаллами , особенно в порошкообразном состо­янии. Для того чтобы началась реакция, необхо­димо первоначальное нагревание, за исключением реакций с галогенами - хлором и бромом, зато потом все реакции алюминия с неметаллами идут очень бурно и сопровождаются выделением боль­шого количества теплоты:

Алюминий хорошо растворяется в разбавлен­ных серной и соляной кислотах :

А вот концентрированные серная и азотная кис­лоты пассивируют алюминий , образуя на поверх­ности металла плотную прочную оксидную пленку , которая препятствует дальнейшему протеканию ре­акции. Поэтому эти кислоты перевозят в алюмини­евых цистернах.

Оксид и гидроксид алюминия обладают амфо­терными свойствами , поэтому алюминий растворя­ется в водных растворах щелочей, образуя соли - алюминаты:

Алюминий широко используется в металлур­гии для получения металлов - хрома, марганца, ванадия, титана, циркония из их оксидов. Этот способ носит название алюмотермия. На практике часто применяют термит - смесь Fe 3 O 4 с порош­ком алюминия. Если эту смесь поджечь, например, с помощью магниевой ленты, то происходит энер­гичная реакция с выделением большого количества теплоты:

Выделяющейся теплоты вполне достаточно для полного расплавления образующегося железа, по­этому этот процесс используют для сварки сталь­ных изделий.

Алюминий можно получить электролизом - разложением расплава его оксида Al 2 O 3 на состав­ные части с помощью электрического тока. Но температура плавления оксида алюминия около 2050 °С, поэтому для проведения электролиза не­обходимы большие затраты энергии.

Соединения алюминия

Алюмосиликаты . Эти соединения можно рас­сматривать как соли, образованные оксидом алю­миния, кремния, щелочных и щелочноземельных металлов. Они и составляют основную массу земной коры. В частности, алюмосиликаты входят в состав полевых шпатов - наиболее распространенных ми­нералов и глин.

Боксит - горная порода, из которой получают алюминий. Она содержит оксид алюминия Al 2 O 3 .

Корунд - минерал состава Al 2 O 3 , обладает очень высокой твердостью, его мелкозернистая разновид­ность, содержащая примеси, - наждак, применя­ется как абразивный (шлифовочный) материал. Эту же формулу имеет и другое природное со­единение - глинозем.

Хорошо известны прозрачные, окрашенные примесями, кристаллы корунда: красные - руби­ны и синие - сапфиры, которые используют как драгоценные камни. В настоящее время их получа­ют искусственно и применяют не только для укра­шений, но и для технических целей, например, для изготовления деталей часов и других точных при­боров. Кристаллы рубинов применяются в лазерах.

Оксид алюминия Al 2 O 3 - белое вещество с очень высокой температурой плавления. Может быть по­лучен разложением при нагревании гидроксида алюминия:

Гидроксид алюминия Al(OH) 3 выпадает в виде студенистого осадка при действии щелочей на рас­творы солей алюминия:

Как амфотерный гидроксид он легко растворяется в кислотах и растворах щелочей:

Алюминатами называют соли неустойчивых алюминиевых кислот - ортоалюминиевой H 2 AlO 3 , метаалюминиевой HAlO 2 (ее можно рассматривать как ортоалюминиевую кислоту, от молекулы кото­рой отняли молекулу воды). К природным алюми­натам относится благородная шпинель и драгоцен­ный хризоберилл. Соли алюминия, кроме фосфатов, хорошо растворимы в воде. Некоторые соли (сульфиды, суль­фиты) разлагаются водой. Хлорид алюминия AlCl 3 применяют в качестве катализатора в производстве очень многих органи­ческих веществ.

Элементы III группы в таблицах

Характеристика переходных элементов - меди, цинка, хрома, железа

Медь (Cu) - элемент побоч­ной подгруппы первой груп­пы. Электронная формула: (…3d 10 4s 1). Десятый d-электрон у нее подвижный, т. к. он пере­местился с 4S-подуровня. Медь в соединениях про­являет степени окисления +1 (Cu 2 O) и +2 (CuO). Медь - металл светло-розового цвета, тягучий, вязкий, отличный проводник электричества. Тем­пература плавления 1083 °С.

Как и другие металлы подгруппы I группы пе­риодической системы, медь стоит в ряду активно­сти правее водорода и не вытесняет его из кислот, но реагирует с кислотами-окислителями:

Под действием щелочей на растворы солей меди выпадает осадок слабого основания голубого цвета - гидроксида меди (II), который при нагревании разла­гается на основный оксид CuO черного цвета и воду:

Химические свойства меди в таблицах

Цинк (Zn) - элемент по­бочной подгруппы II группы. Его электронная формула сле­дующая: (…3d 10 4s 2). Так как в атомах цинка предпоследний d-подуровень полностью завершен, то цинк в соединениях проявляет степень окисления +2.

Цинк - металл серебристо-белого цвета, практически не изменяющийся на воздухе. Обладает коррозионной стойкостью, что объясняется наличием на его поверхности оксидной пленки. Цинк - один из активнейших металлов, при повышенной температуре реагирует с простыми веществами :

вытесняет водород из кислот :

Цинк как и другие металлы вытесняет менее активные металлы из их солей :

Zn + 2AgNO 3 = 2Ag + Zn(NO 3) 2

Гидроксид цинка амфотерен , т. е. проявляет свойства и кислоты, и основания. При постепенном приливании раствора щелочи к раствору соли цинка выпавший вначале осадок растворяется (аналогично происходит и с алюминием):

Химические свойства цинка в таблицах

На примере хрома (Cr) можно показать, что свойства переходных элементов меняются вдоль периода не принципиально : происходит количественное изменение, связанное с изменением числа электронов на валентных орбиталях. Максимальная степень окисления хрома +6. Металл в ряду активности стоит левее водорода и вытесняет его из кислот:

При добавлении раствора щелочи к такому рас­твору образуется осадок Me(OH) 2 , который быстро окисляется кислородом воздуха:

Ему соответствует амфотерный оксид Cr 2 O 3 . Ок­сид и гидроксид хрома (в высшей степени окисле­ния) проявляют свойства кислотных оксидов и кис­лот соответственно. Соли хромовой кислоты (H 2 Cr O 4 ) в кислой среде превращаются в дихроматы - соли дихромовой кислоты (H 2 Cr 2 O 7). Соединения хрома обладают высокой окислительной способностью.

Химические свойства хрома в таблицах

Железо Fe - элемент побочной подгруппы VIII группы и 4-го периода периодической системы Д. И. Менделеева. Атомы железа устроены несколько отлично от атомов элементов главных подгрупп. Как и положено элементу 4-го периода, атомы железа имеют четыре энергетических уровня, но заполняется из них не последний, а предпоследний, третий от ядра, уровень. На последнем же уровне атомы железа содержат два электрона. На предпоследнем уровне, который может вместить 18 электронов, у атома железа находятся 14 элекронов. Следовательно, распределение электронов по уровням в атомах железа таково: 2е; 8e ; 14е; 2е. Подобно всем металлам, атомы железа проявляют вос­становительные свойства , от­давая при химических вза­имодействиях не только два электрона с последнего уровня, и приобретая степень окисления +2, но и электрон с предпоследнего уровня, при этом степень окисления атома повышается до +3.

Железо простое вещество

Это серебристо-белый бле­стящий металл с температу­рой плавления 1539 °С. Очень пластичный, поэтому легко обрабатывается, куется, про­катывается, штампуется. Же­лезо обладает способностью намагничиваться и размагни­чиваться. Ему можно придать большую прочность и твер­дость методами термического и механического воздействия. Различают технически чистое и химически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродис­тую сталь, оно содержит 0,02-0,04 % углерода, а кислорода, серы, азота и фосфора - еще меньше. Химически чистое железо содержит менее 0,01 % примесей. Из технически чистого железа сделаны, например, канцелярские скрепки и кнопки. Такое железо легко корродирует, в то время как химичес­ки чистое железо почти не подвергается коррозии. В настоящее время железо - это основа совре­менной техники и сельскохозяйственного машино­строения, транспорта и средств связи, космических кораблей и вообще всей современной цивилизации. Большинство изделий, начиная от швейной иглы, и заканчивая космическими аппаратами, не может быть изготовлено без применения железа.

Химические свойства железа

Железо может проявлять степени окисления +2 и +3 , соответственно, железо дает два ряда соеди­нений. Число электронов, которое атом железа от­дает при химических реакциях, зависит от окисли­тельной способности реагирующих с ним веществ.

Например, с галогенами железо образует галоге­ниды, в которых оно имеет степень окисления +3:

а с серой - сульфид железа (II):

Раскаленное железо сгорает в кислороде с об­разованием железной окалины:

При высокой температуре (700-900 °С) железо реагирует с парами воды :

В соответствии с положением железа в электро­химическом ряду напряжений оно может вытес­нить металлы, стоящие правее него, из водных растворов их солей , например:

В разбавленных соляной и серной кислотах же­лезо растворяется , т. е. окисляется ионами водорода:

Растворяется железо и в разбавленной азотной кислоте , при этом образуется нитрат железа (III), вода и продукты восстановления азотной кисло­ты - N 2 , NO или NH 3 (NH 4 NO 3) в зависимости от концентрации кислоты.

Соединения железа

В природе железо образует ряд минералов. Это магнитный железняк (магнетит) Fe 3 O 4 , красный железняк (гематит) Fe 2 O 3 , бурый железняк (лимо­нит) 2Fe 2 O 3 3H 2 O. Еще одно природное соединение железа - же­лезный, или серный, колчедан (пирит) FeS 2 , не служит железной рудой для получения металла, но применяется для производства серной кислоты.

Для железа характерны два ряда соединений: соединения железа (II) и железа (III). Оксид железа (II) FeO и соответствующий ему гидроксид железа (II) Fe(OH) 2 получают косвенно, в частности, по следующей цепи превращений:

Оба соединения имеют ярко выраженные основ­ные свойства.

Катионы железа (II) Fe 2 + легко окисляются кис­лородом воздуха до катионов железа (III) Fe 3 + . По­этому белый осадок гидроксида железа (II) приоб­ретает зеленую окраску, а затем становится бурым, превращаясь в гидроксид железа (III):

Оксид железа (III) Fe 2 O 3 и соответствующий ему гидроксид железа (III) Fe(OH) 3 также получают косвенно, например, по цепочке:

Из солей железа наибольшее техническое зна­чение имеют сульфаты и хлориды.

Кристаллогидрат сульфата железа (II) FeSO 4 7H 2 O, известный под названием железный ку­порос, применяют для борьбы с вредителями рас­тений, для приготовления минеральных красок и в других целях. Хлорид железа (III) FeCl 3 ис­пользуют в качестве протравы при крашении тка­ней. Сульфат железа (III) Fe 2 (SO 4) 3 9H 2 O применя­ется для очистки воды и в других целях.

Физические и химические свойства железа и его соединений обобщены в таблице:

Химические свойства железа в таблицах

Качественные реакции на ионы Fe 2+ и Fe 3+

Для распознавания соединений железа (II) и (III) проводят качественные реакции на ионы Fe 2+ и Fe 3+ . Качественной реакцией на ионы Fe 2+ служит реакция солей железа (II) с соединением K 3 , называемым красной кровяной солью. Это особая группа солей, которые называются ком­плексными, с ними вы познакомитесь в дальней­шем. Пока же нужно усвоить, как диссоциируют такие соли:

Реактивом на ионы Fe 3+ является другое ком­плексное соединение - желтая кровяная соль - K 4 , которая в растворе диссоциирует ана­логично:

Если в растворы, содержащие ионы Fe 2+ и Fe 3+ , добавить, соответственно, растворы красной кро­вяной соли (реактив на Fe 2+) и желтой кровяной соли (реактив на Fe 3+), то в обоих случаях выпада­ет одинаковый синий осадок:

Для обнаружения ионов Fe 3+ еще используют взаимодействие солей железа (III) с роданидом ка­лия KNCS или аммония NH 4 NCS. При этом образу­ется ярко окрашенный ион FeNCNS 2+ , в результате чего весь раствор приобретает интенсивно красный цвет:

Таблица растворимости

Неорганические вещества бывают простыми и сложными. Простые вещества делятся на металлы (K, Na, Li) и неметаллы (O, Cl, P). Сложные вещества делят на оксиды, гидроксиды (основания), соли и кислоты.

Оксиды

Оксиды - соединения химического элемента (металла или неметалла) с кислородом (степень окисления -2), при этом кислород связан с менее электроотрицательным элементом.

Выделяют:

1. Кислотные оксиды - оксиды, проявляющие кислотные свойства. Образованы неметаллами и кислородом. Примеры: SO3, SO2, CO2, P2O5, N2O5.

2. Амфотерные оксиды - оксиды, которые могут проявлять как основные, так и кислотные свойства (такое свойство называется амфотерность). Примеры: Al2O3, CrO3, ZnO, BeO, PbO.

3. Основные оксиды - оксиды металлов, при этом металлы проявляют степень окисления +1 или +2. Примеры: K2O, MgO, CaO, BaO, Li2O, Na2O.

4. Несолеобразующие оксиды - практически не вступают в реакции, не имеют соответствующих кислот и гидроксидов. Примеры: CO, NO.

Химические свойства основных оксидов

1. Взаимодействие с водой

В реакцию вступают только оксиды щелочных и щелочноземельных металлов, гидроксиды которых образуют растворимое основание

основной оксид + вода → щелочь

K2O + H2O → 2KOH

CaO + H2O → Ca(OH)2

2. Взаимодействие с кислотой

основной оксид + кислота → соль + вода

MgO + H2SO4 → MgSO4 + H2O

Na2O + H2S(изб) → 2NaHS + H2O

MgO(изб) + HCl → Mg(OH)Cl

3. Взаимодействие с кислотными или амфотерными оксидами

основной оксид + кислотный/амфотерный оксид → соль

При этом металл, находящийся в основном оксиде, становится катионом, а кислотный/амфотерный оксид становится анионом (кислотным остатком). Реакции между твердыми оксидами идут при нагревании. Нерастворимые в воде основные оксиды не взаимодействуют с газообразными кислотными оксидами.

BaO + SiO2 (t)→ BaSiO3

K2O + ZnO (t)→ K2ZnO2

FeO + CO2 ≠

4. Взаимодействие с амфотерными гидроксидами

основной оксид + амфотерный гидроксид → соль + вода

Na2O + 2Al(OH)3 (t)→ 2NaAlO2 + 3H2O

5. Разложение при температуре оксидов благородных металлов и ртути

2Ag2O (t)→ 4Ag + O2

2HgO (t)→ 2Hg + O2

6. Взаимодействие с углеродом (С) или водородом (Н2) при высокой температуре.

При восстановлении таким образом оксидов щелочных, щелочноземельных металлов и алюминия выделяется не сам металл, а его карбид.

FeO + C (t)→ Fe + CO

3Fe2O3 + C (t)→ 2Fe3O4 + CO

CaO + 3C (t)→ CaC2 + CO

CaO + 2H2 (t)→ CaH2 + H2O

7. Активные металлы восстанавливают менее активные из их оксидов при высокой температуре

CuO + Zn (t)→ ZnO + Cu

8. Кислород окисляет низшие оксиды в высшие.

Оксиды щелочных и щелочноземельных металлов переходят в пероксиды

4FeO + O2 (t)→ 2Fe2O3

2BaO + O2 (t)→ 2BaO2

2NaO + O2 (t)→ 2Na2O2

Химические свойства кислотных оксидов

1. Взаимодействие с водой

кислотный оксид + вода → кислота

SO3+ H2O → H2SO4

SiO2 + H2O ≠

У некоторых оксидов нет соответствующих кислот, в таком случае происходит реакция диспропорционирования

2NO2 + H2O → HNO3 + HNO2

3NO2 + H2O (t)→ 2HNO3 + NO

2ClO2 + H2O → HClO3 + HClO2

6ClO2 + 3H2O (t)→ 5HClO3 + HCl

В зависимости от количества присоединенных к P2O5 молекул воды образуются три разных кислоты - метафосфорная НРО3, пирофосфорная Н4Р2О7 или ортофосфорная Н3РО4.

P2O5 + H2O → 2HPO3

P2O5 + 2H2O → H4P2O7

P2O5 + 3H2O → 2H3PO4

Оксид хрома соответствует двум кислотам - хромовой H2CrO4 и дихромовой H2Cr2O7(III)

CrO3 + H2O → H2CrO4

2CrO3 + H2O → H2Cr2O7

2. Взаимодействие с основаниями

кислотный оксид + основание → соль + вода

Нерастворимые кислотные оксиды реагируют только при сплавлении, а растворимые - в обычных условиях.

SiO2 + 2NaOH (t)→ Na2SiO3 + H2O

При избытке оксида образуется кислая соль.

CO2(изб) + NaOH → NaHCO3

P2O5(изб) + 2Ca(OH)2 → 2CaHPO4 + H2O

P2O5(изб) + Ca(OH)2 + H2O → Ca(H2PO4)2

При избытке основания образуется основная соль

CO2 + 2Mg(OH)2(изб) → (MgOH)2CO3 + H2O

Оксиды, которые не имеют соответствующих кислот, вступают в реакцию диспропорционирования и образуют при этом две соли.

2NO2 + 2NaOH → NaNO3 + NaNO2 + H2O

2ClO2 + 2NaOH → NaClO3 + NaClO2 + H2O

CO2 реагирует с некоторыми амфотерными гидроксидами (Be(OH)2, Zn(OH)2, Pb(OH)2, Cu(OH)2), при этом образуется основная соль и вода.

CO2 + 2Be(OH)2 → (BeOH)2CO3↓ + H2O

CO2 + 2Cu(OH)2 → (CuOH)2CO3↓ + H2O

3. Взаимодействие с основным или амфотерным оксидом

кислотный оксид + основной/амфотерный оксид → соль

Реакции между твердыми оксидами идут при сплавлении. Амфотерные и нерастворимые в воде основные оксиды взаимодействуют только с твердыми и жидкими кислотными оксидами.

SiO2 + BaO (t)→ BaSiO3

3SO3 + Al2O3 (t)→ Al2(SO4)3

4. Взаимодействие с солью

кислотный нелетучий оксид + соль (t)→ соль + кислотный летучий оксид

SiO2 + CaCO3 (t)→ CaSiO3 + CO2

P2O5 + Na2CO3 → 2Na3PO4 + 2CO2

5. Кислотные оксиды не взаимодействуют с кислотами, но Р2О5 реагирует с безводными кислородсодержащими кислотами.

При этом образуется НРО3 и ангидрид соответствующей кислоты

P2O5 + 2HClO4(безводн) → Cl2O7 + 2HPO3

P2O5 + 2HNO3(безводн) → N2O5 + 2HPO3

6. Вступают в окислительно-восстановительные реакции.

1. Восстановление

При высокой температуре некоторые неметаллы могут восстанавливать оксиды.

CO2 + C (t)→ 2CO

SO3 + C → SO2 + CO

H2O + C (t)→ H2 + CO

Для восстановления неметаллов из их оксидов часто используют магнийтермию.

CO2 + 2Mg → C + 2MgO

SiO2 + 2Mg (t)→ Si + 2MgO

N2O + Mg (t)→ N2 + MgO

2. Низшие оксиды превращаются в высшие при взаимодействии с озоном (или кислородом) при высокой температуре в присутствии катализатора

NO + O3 → NO2 + O2

SO2 + O3 → SO3 + O2

2NO2 + O3 → N2O5 + O2

2CO + O2 (t)→ 2CO2

2SO2 + O2 (t, kat)→ 2SO3

P2O3 + O2 (t)→ P2O5

2NO + O2 (t)→ 2NO2

2N2O3 + O2 (t)→ 2N2O4

3. Оксиды вступают и в другие окислительно-восстановительные реакции

SO2 + NO2 → NO + SO3 4NO2 + O2 + 2H2O → 4HNO3

2SO2 + 2NO → N2 + 2SO3 2N2O5 → 4NO2 + O2

SO2 + 2H2S → 3S↓ + 2H2O 2NO2 (t)→ 2NO + O2

2SO2 + O2 + 2H2O → 2H2SO4 3N2O + 2NH3 → 4N2 + 3H2O

2CO2 + 2Na2O2 → 2Na2CO3 + O2 10NO2 +8P → 5N2 + 4P2O5

N2O + 2Cu (t)→ N2 + Cu2O

2NO + 4Cu (t)→ N2 + 2Cu2O

N2O3 + 3Cu (t)→ N2 + 3CuO

2NO2 + 4Cu (t)→ N2 + 4CuO

N2O5 + 5Cu (t)→ N2 + 5CuO

Химические свойства амфотерных оксидов

1. Не взаимодействуют с водой

амфотерный оксид + вода ≠

2. Взаимодействие с кислотами

амфотерный оксид + кислота → соль + вода

Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

При избытке многоосновной кислоты образуется кислая соль

Al2O3 + 6H3PO4(изб) → 2Al(H2PO4)3 + 3H2O

При избытке оксида образуется основная соль

ZnO(изб) + HCl → Zn(OH)Cl

Двойные оксиды образуют две соли

Fe3O4 + 8HCl → FeCl2 + 2FeCl3 + 4H2O

3. Взаимодействие с кислотным оксидом

амфотерный оксид + кислотный оксид → соль

Al2O3 + 3SO3 → Al2(SO4)3

4. Взаимодействие с щелочью

амфотерный оксид + щелочь → соль + вода

При сплавлении образуется средняя соль и вода, а в растворе - комплексная соль

ZnO + 2NaOH(тв) (t)→ Na2ZnO2 + H2O

ZnO + 2NaOH + H2O → Na2

5. Взаимодействие с основным оксидом

амфотерный оксид + основной оксид (t)→ соль

ZnO + K2O (t)→ K2ZnO2

6. Взаимодействие с солями

амфотерный оксид + соль (t)→ соль + летучий кислотный оксид

Амфотерные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей

Al2O3 + K2CO3 (t)→ KAlO2 + CO2

Fe2O3 + Na2CO3 (t)→ 2NaFeO2 + CO2

Химические свойства оснований

Основания - вещества, в состав которых входит катион металла и гидроксид-анион. Основания бывают растворимыми (щелочи - NaOH, KOH, Ba(OH)2) и нерастворимыми (Al2O3, Mg(OH)2).

1. Растворимое основание + индикатор → изменение цвета

При добавлении индикатора в раствор основания его цвет меняется:

Бесцветный фенолфталеин - малиновый

Фиолетовый лакмус - синий

Метилоранж - желтый

2. Взаимодействие с кислотой (реакция нейтрализации)

основание + кислота → соль + вода

По реакции могут быть получены средние, кислые или основные соли. При избытке многоосновной кислоты образуется кислая соль, при избытке многокислотного основания - основная соль.

Mg(OH)2 + H2SO4 → MGSO4 + 2H2O

Mg(OH)2 + 2H2SO4 → MG(HSO4)2 + 2H2O

2Mg(OH)2 + H2SO4 → (MgOH)2SO4 + 2H2O

3. Взаимодействие с кислотными оксидами

основание + кислотный оксид → соль + вода

6NH4OH + P2O5 → 2(NH4)3PO4 + 3H2O

4. Взаимодействие щелочи с амфотерным гидроксидом

щелочь + амфотерный гидроксид → соль + вода

В данной реакции амфотерный гидроксид проявляет кислотные свойства. При реакции в расплаве получается средняя соль и вода, а в растворе - комплексная соль. Гидроксиды железа (III) и хрома (III) растворяются только в концентрированных растворах щелочей.

2KOH(тв) + Zn(OH)2 (t)→ K2ZnO2 + 2H2O

KOH + Al(OH)3 → K

3NaOH(конц) + Fe(OH)3 → Na3

5. Взаимодействие с амфотерным оксидом

щелочь + амфотерный оксид → соль + вода

2NaOH(тв) + Al2O3 (t)→ 2NaAlO2 + H2O

6NaOH + Al2O3 + 3H2O → 2Na3

6. Взаимодействие с солью

Между основанием и солью происходит реакция ионного обмена. Она идет только при выпадении осадка или при выделении газа (при образовании NH4OH).

А. Взаимодействие растворимого основания и растворимой кислой соли

растворимое основание + растворимая кислая соль → средняя соль + вода

Если соль и основание образованы разными катионами, то образуются две средние соли. В случае кислых солей аммония избыток щелочи приводит к образованию гидроксида аммония.

Ba(OH)2 + Ba(HCO3)2 → 2BaCO3↓ + 2H2O

2NaOH(изб) + NH4HS → Na2S + NH4OH + H2O

Б. Взаимодействие растворимого основания с растворимой средней или основной солью.

Возможно несколько вариантов развития событий

растворимое основание + растворимая средняя/основная соль → нерастворимая соль↓ + основание

→ соль + нерастворимое основание

→ соль + слабый электролит NH4OH

→ реакция не идет

Реакции идут между растворимыми основаниями и средней солью только в том случае, если в результате образуется нерастворимая соль, или нерастворимое основание, или слабый электролит NH4OH

NaOH + KCl ≠ реакция не идет

Если исходная соль образована многокислотным основанием, при недостатке щелочи образуется основная соль

При действии щелочей на соли серебра и ртути (II) выделяются не их гидроксиды, которые растворяются при 25С, а нерастворимые оксиды Ag2O и HgO.

7. Разложение при температуре

основный гидроксид (t)→ оксид + вода

Ca(OH)2 (t)→ CaO + H2O

NaOH (t)≠

Некоторые основания (AgOH, Hg(OH)2 и NH4OH) разлагаются даже при комнатной температуре

LiOH (t)→ Li2O + H2O

NH4OH (25C)→ NH3 + H2O

8. Взаимодействие щелочи и переходного металла

щелочь + переходный металл → соль + Н2

2Al + 2KOH + 6H2O → 2K +3H2

Zn + 2NaOH(тв) (t)→ Na2ZnO2 + H2

Zn + 2NaOH + 2H2O → Na2 + H2

9. Взаимодействие с неметаллами

Щелочи взаимодействуют с некоторыми неметаллами - Si, S, P, F2, Cl2, Br2, I2. При этом часто в результате диспропорционирования образуются две соли.

Si + 2KOH + H2O → K2SiO3 + 2H2

3S + 6KOH (t)→ 2K2S + K2SO3 + 3H2O

Cl2 +2KOH(конц) → KCl + KClO + H2O (для Br, I)

3Cl2 + 6KOH(конц) (t)→ 5KCl + KClO3 +3H2O (для Br, I)

Cl2 + Ca(OH)2 → CaOCl2 + H2O

4F2 + 6NaOH(разб) → 6NaF + OF2 + O2 + 3H2O

4P + 3NaOH + 3H2O → 3NaH2PO2 + PH3

Гидроксиды, обладающие восстановительными свойствами, способны окисляться кислородом

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 (=Cr)

Химические свойства кислот

1. Изменение цвета индикатора

растворимая кислота + индикатор → изменение цвета

Фиолетовый лакмус и метилоранж окрашиваются в красный, фенолфталеин становится прозрачным

2. Взаимодействие с основаниями (реакция нейтрализации)

кислота + основание → соль + вода

H2SO4 + Mg(OH)2 → MgSO4 + 2H2O

3. Взаимодействие с основным оксидом

кислота + основный оксид → соль + вода

2HCl + CuO → CuCl2 + H2O

4. Взаимодействие с амфотерными гидроксидами с образованием средних, кислых или основных солей

кислота + амфотерный гидроксид → соль + вода

2HCl + Be(OH)2 → BeCl2 + 2H2O

H3PO4() + Zn(OH)2 → ZNHPO4 + 2H2O

HCl + Al(OH)3() → Al(OH)2Cl + H2O

5. Взаимодействие с амфотерными оксидами

кислота + амфотерный оксид → соль + вода

H2SO4 + ZnO → ZnSO4 + H2O

6. Взаимодействие с солями

Общая схема реакции: кислота + соль → соль + кислота

Происходит реакция ионного обмена, которая идет до конца только в случае образования газа или выпадения осадка.

Например: HCl + AgNO3 → AgCl↓ + HNO3

2HBr + K2SiO3 → 2KBr + H2SiO3↓

А. Взаимодействие с солью более летучей или слабой кислоты с образованием газа

HCl + NaHS → NaCl + H2S

Б. Взаимодействие сильной кислоты и соли сильной или средней кислоты с образованием нерастворимой соли

сильная кислота + соль сильной/средней кислоты → нерастворимая соль + кислота

Нелетучая ортофосфорная кислота вытесняет сильные, но летучие соляную и азотную кислоты из их солей при условии образования нерастворимой соли

В. Взаимодействие кислоты с основной солью этой же кислоты

кислота1 + основная соль кислоты1 → средняя соль + вода

HCl + Mg(OH)Cl → MgCl2 + H2O

Г. Взаимодействие многоосновной кислоты с средней или кислой солью этой же кислоты с образованием кислой соли этой же кислоты, содержащей большее число атомов водорода

многоосновная кислота1 + средняя/кислая соль кислоты1 → кислая соль кислоты1

H3PO4 + Ca3(PO4)2 → 3CaHPO4

H3PO4 + CaHPO4 → Ca(H2PO4)2

Д. Взаимодействие сероводородной кислоты с солями Ag, Cu, Pb, Cd, Hg с образованием нерастворимого сульфида

кислота H2S + соль Ag, Cu, Pb, Cd, Hg → Ag2S/CuS/PbS/CdS/HgS↓ + кислота

H2S + CuSO4 → CuS↓ + H2SO4

Е. Взаимодействие кислоты со средней или комплексной солью с амфотерным металлом в анионе

а) в случае недостатка кислоты образуется средняя соль и амфотерный гидроксид

кислота + средняя/комплексная соль в амфотерным металлом в анионе → средняя соль + амфотерный гидроксид

б) в случае избытка кислоты образуются две средние соли и вода

кислота + средняя/комплексная соль с амфотерным металлом в анионе → средняя соль + средняя соль + вода

Ж. В некоторых случаях кислоты с солями вступают в окислительно-восстановительные реакции или реакции комплексообразования:

H2SO4(конц) и I‾/Br‾ (продукты H2S и I2/SO2 и Br2)

H2SO4(конц) и Fe² + (продукты SO2 и Fe³ +)

HNO3 разб/конц и Fe² + (продукты NO/NO2 и Fe³ +)

HNO3 разб/конц и SO3²‾/S²‾ (продукты NO/NO2 и SO4²‾/S или SO4²‾)

HClконц и KMnO4/K2Cr2O7/KClO3 (продукты Cl2 и Mn² + /Cr² + /Cl‾)

3. Взаимодействие концентрированной серной кислоты с твердой солью

Нелетучие кислоты могут вытеснять летучие из их твердых солей

7. Взаимодействие кислоты с металлом

А. Взаимодействие кислоты с металлами, стоящими в ряду до или после водорода

кислота + металл до Н2 → сель металла в минимальной степени окисления + Н2

Fe + H2SO4(разб) → FeSO4 + H2

кислота + металл после Н2 ≠ реакция не идет

Cu + H2SO4(разб) ≠

Б. Взаимодействие концентрированной серной кислоты с металлами

H2SO4(конц) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

H2SO4(конц) + щелочной/щелочноземельный металл и Mg/Zn → H2S/S/SO2 (в зависимости от условий) + сульфат металла в максимальной степени окисления + Н2О

Zn + 2H2SO4(конц) (t1)→ ZnSO4 + SO2 + 2H2O

3Zn + 4H2SO4(конц) (t2>t1)→ 3ZnSO4 + S↓ + 4H2O

4Zn + 5H2SO4(конц) (t3>t2)→ 4ZnSO4 + H2S + 4H2O

H2SO4(конц) + остальные металлы → SO2 + сульфат металла в максимальной степени окисления + H2O

Cu + 2H2SO4(конц) (t)→ CuSO4 + SO2 + 2H2O

2Al + 6H2SO4(конц) (t)→ Al2(SO4)3 + 3SO2 + 6H2O

В. Взаимодействие концентрированной азотной кислоты с металлами

HNO3(конц) + Au, Pt, Ir, Rh, Ta, Os ≠ реакция не идет

HNO3(конц) + Pt ≠

HNO3(конц) + металл щелочной/щелочноземельный → N2O + нитрат металла в максимальной степени окисления + H2O

4Ba + 10HNO3(конц) → 4Ba(NO3)2 + N2O + 5H2O

HNO3(конц) + остальные металлы при температуре → NO2 + нитрат металла в максbмальной степени окисления + H2O

Ag + 2HNO3(конц) → AgNO3 + NO2 + H2O

С Fe, Co, Ni, Cr и Al взаимодействует только при нагревании, так как при обычных условиях эти металлы азотной кислотой пассивируются - становятся химически стойкими

Г. Взаимодействие разбавленной азотной кислоты с металлами

HNO3(разб) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

Очень пассивные металлы (Au, Pt) могут быть растворены царской водкой - смесью одного объема концентрированной азотной кислоты с тремя объемами концентрированной соляной кислоты. Окислителем в ней является атомарный хлор, отщепляющийся от хлорида нитрозила, который образуется в результате реакции: HNO3 + 3HCl → 2H2O + NOCl + Cl2

HNO3(разб) + металл щелочной/щелочноземельный → NH3(NH4NO3) + нитрат металла в максимальной степени окисления + H2O

NH3 превращается в NH4NO3 в избытке азотной кислоты

4Ca + 10HNO3(разб) → 4Ca(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл в ряду напряжений до Н2 → NO/N2O/N2/NH3 (в зависимости от условий) + нитрат металла в максимальной степени окисления + Н2О

С остальными металлами, стоящими в ряду напряжений до водорода и неметаллами, HNO3(разб) образует соль, воду и, в основном NO, но, может, в зависимости от условий и N2O, и N2, и NH3/NH4NO3 (чем больше разбавлена кислота, тем ниже степень окисления азота в выделяющемся газообразной продукте)

3Zn + 8HNO3(разб) → 3Zn(NO3)2 + 2NO + 4H2O

4Zn + 10HNO3(разб) → 4Zn(NO3)2 + N2O + 5H2O

5Zn + 12HNO3(разб) → 5Zn(NO3)2 + N2 + 6H2O

4Zn + 10HNO3(оч.разб) → 4Zn(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл после Н2 → NO + нитрат металла в максимальной степени окисления + H2O

С малоактивными металлами, стоящими после Н2, HNO3разб образует соль, воду и NO

3Cu + 8HNO3(разб) → 3Cu(NO3)2 + 2NO + 4H2O

8. Разложение кислот при температуре

кислота (t)→ оксид + вода

H2CO3 (t)→ CO2 + H2O

H2SO3 (t)→ SO2 + H2O

H2SiO3 (t)→ SiO2 + H2O

2H3PO4 (t)→ H4P2O7 + H2O

H4P2O7 (t)→ 2HPO3 + H2O

4HNO3 (t)→ 4NO2 + O2 + 2H2O

3HNO2 (t)→ HNO3 + 2NO + H2O

2HNO2 (t)→ NO2 + NO + H2O

3HCl (t)→ 2HCl + HClO3

4H3PO3 (t)→ 3H3PO4 + PH3

9. Взаимодействие кислоты с неметаллами (окислительно-восстановительная реакция). При этом неметалл окисляется до соответствующей кислоты, а кислота восстанавливается до газообразного оксида: H2SO4(конц) - до SO2; HNO3(конц) - до NO2; HNO3(разб) - до NO.

S + 2HNO3(разб) → H2SO4 + 2NO

S + 6HNO3(конц) → H2SO4 + 6NO2 + 2H2O

S + 2H2SO4(конц) → 3SO2 + CO2 + 2H2O

C + 2H2SO4(конц) → 2SO2 + CO2 + 2H2O

C + 4HNO3(конц) → 4NO2 + CO2 + 2H2O

P + 5HNO3(разб) + 2H2O → 3H3PO4 + 5NO

P + 5HNO3(конц) → HPO3 + 5NO2 + 2H2O

H2S + Г2 → 2HГ + S↓ (кроме F2)

H2SO3 + Г2 + H2O → 2HГ + H2SO4 (кроме F2)

2H2S(водн) + O2 → 2H2O + 2S↓

2H2S + 3O2 → 2H2O + 2SO2 (горение)

2H2S + O2(недост) → 2H2O + 2S↓

Более активные галогены вытесняют менее активные из кислот НГ (исключение: F2 реагирует с водой, а не с кислотой)

2HBr + Cl2 → 2HCl + Br2↓

2HI + Cl2 → 2HCl + I2↓

2HI + Br2 → 2HBr + I2↓

10. Окислительно-восстановительные реакции между кислотами

H2SO4(конц) 2HBr → Br2↓ + SO2 + 2H2O

H2SO4(конц) + 8HI → 4I2↓ + H2S + 4H2O

H2SO4(конц) + HCl ≠

H2SO4(конц) + H2S → S↓ + SO2 + 2H2O

3H2SO4(конц) + H2S → 4SO2 + 4H2O

H2SO3 + 2H2S → 3S↓ + 3H2O

2HNO3(конц) + H2S → S↓ + 2NO2 + 2H2O

2HNO3(конц) + SO2 → H2SO4 + 2NO2

6HNO3(конц) + HI → HIO3 + 6NO2 + 3H2O

2HNO3(конц) + 6HCl → 3Cl2 + 2NO + 4H2O

Химические свойства амфотерных гидроксидов

1. Взаимодействие с основным оксидом

амфотерный гидроксид + основной оксид → соль + вода

2Al(OH)3 +Na2O (t)→ 2NaAlO2 + 3H2O

2. Взаимодействие с амфотерным или кислотным оксидом

амфотерный гидроксид + амфотерный/кислотный оксид ≠ реакция не идет

Некоторые амфотерные оксиды (Be(OH)2, Zn(OH)2, Pb(OH)2) реагируют с кислотным оксидом СО2 с образованием осадков основных солей и воды

2Be(OH)2 + CO2 → (BeOH)2CO3↓ + H2O

3. Взаимодействие с щелочью

амфотерный гидроксид + щелочь → соль + вода

Zn(OH)2 + 2KOH(тв) (t)→ K2ZnO2 + 2H2O

Zn(OH)2 + 2KOH → K2

4. Не взаимодействуют с нерастворимыми основаниями или амфотерными гидроксидами

амфотерный гидроксид + нерастворимое основание/амфотерный гидроксид ≠ реакция не идет

5. Взаимодействие с кислотами

амфотерный гидроксид + кислота → соль + вода

Al(OH)3 + 3HCl → AlCl3 + 3H2O

6. Не реагируют с солями

амфотерный гидроксид + соль ≠ реакция не идет

7. Не реагируют с металлами/неметаллами (простыми веществами)

амфотерный гидроксид + металл/неметалл ≠ реакция не идет

8. Термическое разложение

амфотерный гидроксид (t)→ амфотерный оксид + вода

2Al(OH)3 (t)→ Al2O3 + 3H2O

Zn(OH)2 (t)→ ZnO + H2O

Общие сведения о солях

Представим, что у нас есть кислота и щелочь, проведем между ними реакцию нейтрализации и получим кислоту и соль.

NaOH + HCl → NaCl (хлорид натрия) + H2O

Получается, что соль состоит из катиона металла и аниона кислотного остатка.

Соли бывают:

1. Кислые (с одним или двумя катионами водорода (то есть имеют кислую (или слабо-кислую) среду) - KHCO3, NaHSO3).

2. Средние (имею катион металла и анион кислотного остатка, среду надо определять при помощи рН-метра - BaSO4, AgNO3).

3. Основные (имеют гидроксид-ион, то есть щелочную (или слабо-щелочную) среду - Cu(OH)Cl, Ca(OH)Br).

Также существуют двойные соли, образующие при диссоциации катионы двух металлов (K).

Соли, за небольшим исключением, являются твердыми кристаллическими веществами с высокими температурами плавления. Большинство солей белого цвета (KNO3, NaCl, BaSO4 и др.). Некоторые соли имеют окраску (K2Cr2O7 - оранжевого цвета, K2CrO4 - желтого, NiSO4 - зеленого, CoCl3 - розового, CuS - черного). По растворимости их можно разделить на растворимые, малорастворимые и практически нерастворимые. Кислые соли, как правило, лучше растворимы в воде, чем соответствующие средние, а основные - хуже.

Химические свойства солей

1. Соль + вода

При растворении многих солей в воде происходит их частичное или полное разложение - гидролиз . Некоторые соли образуют кристаллогидраты. При растворении в воде средних солей, содержащих амфотерный металл в анионе, образуются комплексные соли.

NaCl + H2O → NaOH + HCl

Na2ZnO2 + 2H2O = Na2

2. Соль + Основной оксид ≠ реакция не идет

3. Соль + амфотерный оксид → (t) кислотный летучий оксид + соль

Амфотерные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей.

Al2O3 +K2CO3 → KAlO2 + CO2

Fe2O3 + Na2CO3 → 2NaFeO2 + CO2

4. Соль + кислотный нелетучий оксид → кислотный летучий оксид + соль

Нелетучие кислотные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей.

SiO2 + CaCO3 → (t) CaSiO3 + CO2

P2O5 + Na2CO3 → (t) 2Na3PO4 + 3CO2

3SiO2 + Ca3(PO4)2 → (t) 3CaSiO3 + P2O5

5. Соль + основание → основание + соль

Реакции между солями о основаниями являются реакциями ионного обмена. Поэтому в обычных условиях они протекают только в растворах (и соль и основание должны быть растворимыми) и только при условии, что в результате обмена образуется осадок или слабый электролит (Н2О/NH4OH); газообразные продукты в этих реакциях не образуются.

А. Растворимое основание + растворимая кислая соль → средняя соль + вода

Если соль и основание образованные разными катионами, то образуются две средние соли; в случае кислых солей аммония избыток щелочи приводит к образованию гидроксида аммония.

Ba(OH)2 + Ba(HCO3) → 2BaCO3 + 2H2O

2KOH + 2NaHCO3 → Na2CO3 + K2CO3 + 2H2O

2NaOH + 2NH4HS → Na2S + (NH4)2S + 2H2O

2NaOH(изб) + NH4Hs → Na2S + NH4OH + H2O

Б. Растворимое основание + растворимая средняя/основная соль → нерастворимая соль↓ + основание

Растворимое основание + растворимая средняя/основная соль → соль + нерастворимое основание↓

Растворимое основание + растворимая средняя/основная соль → соль + слабый электролит NH4OH

Растворимое основание + растворимая средняя/основная соль → реакция не идет

Реакция между растворимыми основаниями и средней/основной солью идет только в том случае, если в результате обмена ионами образуется нерастворимая соль, или нерастворимое основание, или слабый электролит NH4OH.

Ba(OH)2 + Na2SO4 → BaSO4↓ + 2NaOH

2NH4OH + CuCl2 → 2NH4Cl + Cu(OH)2↓

Ba(OH)2 + NH4Cl → BaCl2 + NH4OH

NaOH + KCl ≠

Если исходная соль образована многокислотным основанием, при недостатке щелочи образуется основная соль.

NaOH(недост) + AlCl3 → Al(OH)Cl2 + NaCl

При действии щелочей на соли серебра и ртути (II) выделяются не AgOH и Hg(OH)2, которые разлагаются при комнатной температуре, а нерастворимые оксиды Ag2O и HgO.

2AgNO3 + 2NaOH → Ag2O↓ 2NaNO3 + H2O

Hg(NO3)2 + 2KOH → HgO↓ + 2KNO3 + H2O

6. Соль + амфотерны гидроксид → реакция не идет

7. Соль + кислота → кислота + соль

В основном. реакции кислот с солями - реакции ионного обмена, поэтому они протекают в растворах и только в том случае, если при этом образуется нерастворимая в кислотах соль или более слабая и летучая кислота.

HCl + AgNO3 → AgCl↓ + HNO3

2HBr + K2SiO3 → 2KBr +H2SiO3↓

2HNO3 + Na2CO3 → 2NaNO3 + H2O + CO2

А. Кислота1 + соль более летучей/слабой кислоты2 → соль кислоты1 + более летучая/слабая кислота2

Кислоты взаимодействуют с растворами солей более слабых или летучих кислот. Независимо от состава соли (средняя, кислая, основная), как правило, образуется средняя соль и более слабая летучая кислота.

2CH3COOH + Na2S → 2CH3COONa + H2S

HCl + NaHS → NaCl + H2S

Б. Сильная кислота + соль сильной/средней кислоты → нерастворимая соль↓ + кислота

Сильные кислоты взаимодействуют с растворами солей других сильных кислот, если при этом образуется нерастворимая соль. Нелетучая Н3РО4 (кислота средней силы) вытесняет сильные, но летучие соляную НСl и азотную HNO3 кислоты из их солей при условии образования нерастворимой соли.

H2SO4 + Ca(NO3)2 → CaSO4↓ + 2HNO3

2H3PO4 + 3CaCl2 → Ca3(PO4)2↓ + 6HCl

H3PO4 + 3AgNO3 → Ag3PO4↓ + 3HNO3

В. Кислота1 + основная соль кислоты1 → средняя соль + вода

При действии кислоты на основную соль этой же кислоты образуется средняя соль и вода.

HCl + Mg(OH)Cl → MgCl2 + H2O

Г. Многоосновная кислота1 + средняя/кислая соль кислоты1 → кислая соль кислоты1

При действии многоосновной кислоты на среднюю соль этой же кислоты образуется кислая соль, а при действии на кислую соль образуется кислая соль, содержащая большее число атомов водорода.

H3PO4 + Ca3(PO4) → 3CaHPO4

H3PO4 + CaHPO4 → Ca(H2PO4)2

CO2 + H2O + CaCO3 → Ca(HCO3)2

Д. Кислота H2S + соль Ag, Cu, Pb, Cd, Hg → Ag2S/CuS/PbS/CdS/HgS↓ + кислота

Слабая и летучая сероводородная кислота H2S вытесняет даже сильные кислоты из растворов солей Ag, Cu, Pb, Cd и Hg, образуя с ними осадки сульфидов, нерастворимые не только в воде, но и в образующейся кислоте.

H2S + CuSO4 → CuS↓ + H2SO4

Е. Кислота + средняя/комплексная соль с амфотерным Ме в анионе → средняя соль + амфотерный гидроксид↓

→ средняя соль + средняя соль + Н2О

При действии кислоты на среднюю или комплексную соль с амфотерным металлом в анионе, соль разрушается и образуется:

а) в случае недостатка кислоты - средняя соль и амфотерный гидроксид

б) в случае избытка кислоты - две средние соли и вода

2HCl(нед) + Na2ZnO2 → 2NaCl + Zn(OH)2↓

2HCl(нед) + Na2 → 2NaCl + Zn(OH)2↓ + 2H2O

4HCl(изб) + Na2ZnO2 → 2NaCl + ZnCl2 + 2H2O

4HCl(изб) + Na2 → 2NaCl + ZnCl2 + 4H2O

Следует иметь ввиду, что в ряде случаев между кислотами и солями протекают ОВР или реакции комплексообразования. Так, в ОВР вступают:

H2SO4 конц. и I‾/Br‾ (продукты H2S и I2/SO2 и Br2)

H2SO4 конц. и Fe² + (продукты SO2 и Fe³ + )

HNO3 разб./конц. и Fe² + (продукты NO/NO2 и Fe 3 + )

HNO3 разб./конц. и SO3²‾/S²‾ (продукты NO/NO2 и сульфат/сера или сульфат)

HCl конц. и KMnO4/K2Cr2O7/KClO3 (продукты хлор (газ) и Mn² + /Cr³ + /Cl‾.

Ж. Реакция протекает без растворителя

Серная кислота конц. + соль (тв.) → соль кислая/средняя + кислая

Нелетучие кислоты могут вытеснять летучие из их сухих солей. Чаще всего используется взаимодействие концентрированной серной кислоты с сухими солями сильных и слабых кислот, при этом образуется кислота и кислая или средняя соль.

H2SO4(конц) + NaCl(тв) → NaHSO4 + HCl

H2SO4(конц) + 2NaCl(тв) → Na2SO4 + 2HCl

H2SO4(конц) + KNO3(тв) → KHSO4 + HNO3

H2SO4(конц) + CaCO3(тв) → CaSO4 + CO2 + H2O

8. Растворимая соль + растворимая соль → нерастворимая соль↓ + соль

Реакции между солями являются реакциями обмена. Поэтому в обычных условиях они протекают только в том случае, если:

а) обе соли растворимы в воде и взяты в виде растворов

б) в результате реакции образуется осадок или слабый электролит (последний - очень редко).

AgNO3 + NaCl → AgCl↓ + NaNO3

Если одна из исходных солей нерастворима, реакция идет лишь тогда, когда в результате ее образуется еще более неарстворимая соль. Критерием "нерастворимости" служит величина ПР (произведение растворимости), однако, поскольку ее изучение выходит за рамки школьного курса, случаи, когда одна из солей-реагентов нерастворима, далее не рассматриваются.

Если в реакции обмена образуется соль, полностью разлагающаяся в результате гидролиза (в таблице растворимости на месте таких солей стоят прочерки), то продуктами реакции становятся продукты гидролиза этой соли.

Al2(SO4)3 + K2S ≠ Al2S3↓ + K2SO4

Al2(SO4)3 + K2S + 6H2O → 2Al(OH)3↓ + 3H2S + K2SO4

FeCl3 + 6KCN → K3 + 3KCl

AgI + 2KCN → K + KI

AgBr + 2Na2S2O3 → Na3 + NaBr

Fe2(SO4)3 + 2KI → 2FeSO4 + I2 + K2SO4

NaCl + NaHSO4 → (t) Na2SO4 + HCl

Средние соли иногда взаимодействуют друг с другом с образованием комплексных солей. Между солями возможны ОВР. Некоторые соли взаимодействуют при сплавлении.

9. Соль менее активного металла + металл более активный → металл менее активный↓ + соль

Более активный металл вытесняет менее активный металл (стоящий правее в ряду напряжения) из раствора его соли, при этом образуется новая соль, а менее активный металл выделяется в свободном виде (оседает на пластинке активного металла). Исключение - щелочные и щелочноземельные металлы в растворе взаимодействуют с водой.

Соли, обладающие окислительными свойствами, в растворе вступают с металлами и в другие окислительно-восстановительные реакции.

FeSO4 + Zn → Fe↓ + ZnSO4

ZnSO4 + Fe ≠

Hg(NO3)2 + Cu → Hg↓ + Cu(NO3)2

2FeCl3 + Fe → 3FeCl2

FeCl3 + Cu → FeCl2 + CuCl2

HgCl2 + Hg → Hg2Cl2

2CrCl3 + Zn → 2CrCl2 + ZnCl2

Металлы могут вытеснять друг друга и из расплавов солей (реакция осуществляется без доступа воздуха). При этом надо помнить, что:

а) при плавлении многие соли разлагаются

б) ряд напряжения металлов определяет относительную активность металлов только в водных растворах (так, например, Аl в водных растворах менее активен, чем щелочноземельные металлы, а в расплавах - более активен)

K + AlCl3(распл) →(t) 3KCl + Al

Mg + BeF2(распл) → (t) MgF2 + Be

2Al + 3CaCl2(распл) → (t) 2AlCl3 + 3Ca

10. Соль + неметалл

Реакции солей с неметаллами немногочисленны. Это окислительно-восстановительные реакции.

5KClO3 + 6P →(t) 5KCl + 3P2O5

2KClO3 + 3S →(t) 2KCl + 2SO2

2KClO3 + 3C →(t) 2KCl + 3CO2

Более активные галогены вытесняют менее активные из растворов солей галогеноводородных кислот. Исключение - молекулярный фтор, который в растворах реагирует не с солью, а с водой.

2FeCl2 + Cl2 →(t) 2FeCl3

2NaNO2 + O2 → 2NaNO3

Na2SO3 + S →(t) Na2S2O3

BaSO4 + 2C →(t) BaS + 2CO2

2KClO3 + Br2 →(t) 2KBrO3 + Cl2 (такая же реакция характерна и для йода)

2KI + Br2 → 2KBr + I2↓

2KBr + Cl2 → 2KCl + Br2↓

2NaI + Cl2 → 2NaCl + I2↓

11. Разложение солей.

Соль →(t) продукты термического разложения

1. Соли азотной кислоты

Продукты термического разложения нитратов зависят от положения катиона металла в ряду напряжений металлов.

MeNO3 → (t) (для Me левее Mg (исключая Li)) MeNO2 + O2

MeNO3 → (t) (для Me от Mg до Cu, а также Li) MeO + NO2 + O2

MeNO3 → (t) (для Me правее Cu) Me + NO2 + O2

(при термическом разложении нитрата железа (II)/хрома (II) образуется оксид железа (III)/ хрома (III).

2. Соли аммония

Все соли аммония при прокаливании разлагаются. Чаще всего при этом выделяется аммиак NH3 и кислота или продукты ее разложения.

NH4Cl →(t) NH3 + HCl (=NH4Br, NH4I, (NH4)2S)

(NH4)3PO4 →(t) 3NH3 + H3PO4

(NH4)2HPO4 →(t) 2NH3 + H3PO4

NH4H2PO4 →(t) NH3 + H3PO4

(NH4)2CO3 →(t) 2NH3 + CO2 + H2O

NH4HCO3 →(t) NH3 + CO2 + H2O

Иногда соли аммония, содержащие анионы - окислители, разлагаются при нагревании с выделением N2, NO или N2O.

(NH4)Cr2O7 →(t) N2 + Cr2O3 + 4H2O

NH4NO3 →(t) N2O + 2H2O

2NH4NO3 →(t) N2 + 2NO + 4H2O

NH4NO2 →(t) N2 + 2H2O

2NH4MnO4 →(t) N2 + 2MnO2 + 4H2O

3. Соли угольной кислоты

Почти все карбонаты разлагаются до оксида металла и СО2. Карбонаты щелочных металлов кроме лития не разлагаются при нагревании. Карбонаты серебра и ртути разлагаются до свободного металла.

MeCO3 →(t) MeO + CO2

2Ag2CO3 →(t) 4Ag + 2CO2 + O2

Все гидрокарбонаты разлагаются до соответствующего карбоната.

MeHCO3 →(t) MeCO3 + CO2 + H2O

4. Соли сернистой кислоты

Сульфиты при нагревании диспропорционируют, образуя сульфид и сульфат. Образующийся при разложении (NH4)2SO3 сульфид (NH4)2S сразу же разлагается на NH3 и H2S.

MeSO3 →(t) MeS + MeSO4

(NH4)2SO3 →(t) 2NH3 + H2S + 3(NH4)2SO4

Гидросульфиты разлагаются до сульфитов, SO2 и H2O.

MeHSO3 →(t) MeSO3 + SO2 +H2O

5. Соли серной кислоты

Многие сульфаты при t > 700-800 С разлагаются до оксида металла и SO3, который при такой температуре разлагается до SO2 и О2. Сульфаты щелочных металлов термостойки. Сульфаты серебра и ртути разлагаются до свободного металла. Гидросульфаты разлагаются сначала до дисульфатов, а затем до сульфатов.

2CaSO4 →(t) 2CaO + 2SO2 + O2

2Fe2(SO4)3 →(t) 2Fe2O3 + 6SO2 + 3O2

2FeSO4 →(t) Fe2O3 + SO3 + SO2

Ag2SO4 →(t) 2Ag + SO2 + O2

MeHSO4 →(t) MeS2O7 + H2O

MeS2O7 →(t) MeSO4 + SO3

6. Комплексные соли

Гидроксокомплексы амфотерных металлов разлагаются в основном на среднюю соль и воду.

K →(t) KAlO2 + 2H2O

Na2 →(t) ZnO + 2NaOH + H2O

7. Основные соли

Многие основные соли при нагревании разлагаются. Основные соли бесислородных кислот разлагаются на воду и оксосоли

Al(OH)2Br →(t) AlOBr + H2O

2AlOHCl2 →(t) Al2OCl4 + H2O

2MgOHCl →(t) Mg2OCl2 + H2O

Основные соли кислородсодержащих кислот разлагаются на оксид металла и продукты термического разложения соответствующей кислоты.

2AlOH(NO3)2 →(t) Al2O3 + NO2 + 3O2 + H2O

(CuOH)2CO3 →(t) 2CuO + H2O + CO2

8. Примеры термического разложения других солей

4K2Cr2O7 →(t) 4K2CrO4 + 2Cr2O3 + 3O2

2KMnO4 →(t) K2MnO4 + MnO2 + O2

KClO4 →(t) KCl + O2

4KClO3 →(t) KCl + 3KClO4

2KClO3 →(t) 2KCl +3O2

2NaHS →(t) Na2S + H2S

2CaHPO4 →(t) Ca2P2O7 + H2O

Ca(H2PO4)2 →(t) Ca(PO3)2 +2H2O

2AgBr →(hν) 2Ag + Br2 (=AgI)

Большая часть представленного материала взята из пособия Дерябиной Н.Е. "Химия. Основные классы неорганических веществ". ИПО "У Никитских ворот" Москва 2011.

Элементарными частицами физической материи на нашей планете являются атомы. В свободном виде они могут существовать только при очень высоких температурах. В обычных условиях элементарные частицы стремятся к объединению между собой при помощи химических связей: ионной, металлической, ковалентной полярной или неполярной. Таким способом образуются вещества, примеры которых мы и рассмотрим в нашей статье.

Простые вещества

Процессы взаимодействия между собой атомов одного и того же химического элемента заканчиваются образованием химических веществ, называемых простыми. Так, уголь образован только атомами углерода, газ водород - атомами гидрогена, а жидкая ртуть состоит из частиц ртути. Понятие простое вещество не нужно отождествлять с понятием химического элемента. Например, углекислый газ состоит не из простых веществ углерода и кислорода, а из элементов карбона и оксигена. Условно соединения, состоящие из атомов одного и того же элемента, можно разделить на металлы и неметаллы. Рассмотрим некоторые примеры химических свойств таких простых веществ.

Металлы

Исходя из положения металлического элемента в периодической системе, можно выделить следующие группы: активные металлы, элементы главных подгрупп третьей - восьмой групп, металлы побочных подгрупп четвертой - седьмой групп, а также лантаноиды и актиноиды. Металлы - простые вещества, примеры которых мы приведем далее, имеют следующие общие свойства: тепло- и электропроводность, металлический блеск, пластичность и ковкость. Такие характеристики присущи железу, алюминию, меди и другим. С увеличением порядкового номера в периодах возрастают температуры кипения, плавления, а также твердость металлических элементов. Это объясняется сжатием их атомов, то есть уменьшением радиуса, а также накоплением электронов. Все параметры металлов обусловлены внутренним строением кристаллической решетки данных соединений. Ниже рассмотрим химические реакции, а также приведем примеры свойств веществ, относящихся к металлам.

Особенности химических реакций

Все металлы, имеющие степень окисления 0, проявляют только свойства восстановителей. Щелочные и щелочноземельные элементы взаимодействуют с водой с образованием химически агрессивных оснований - щелочей:

  • 2Na+2H 2 0=2NaOH+H 2

Типичная реакция металлов - окисление. В результате соединения с атомами кислорода, возникают вещества класса оксидов:

  • Zn+O 2 =ZnO

Это бинарные соединения, относящиеся к сложным веществам. Примерами основных окислов являются оксиды натрия Na 2 O, меди CuO, кальция CaO. Они способны ко взаимодействию с кислотами, в результате в продуктах обнаруживается соль и вода:

  • MgO+2HCl=MgCl 2 +H 2 O

Вещества классов кислот, оснований, солей относятся к сложным соединениям и проявляют разнообразные химические свойства. Например, между гидроксидами и кислотами происходит реакция нейтрализации, приводящая к появлению соли и воды. Состав солей будет зависеть от концентрации реагентов: так, при избытке в реагирующей смеси кислоты, получаются кислые соли, например, NaHCO 3 - гидрокарбонат натрия, а высокая концентрация щелочи вызывает образование основных солей, таких как Al(OH) 2 Cl - дигидроксохлорид алюминия.

Неметаллы

Наиболее важные неметаллические элементы находятся в подгруппах азота, карбона, а также относятся к группам галогенов и халькогенов периодической системы. Приведем примеры веществ, относящихся к неметаллам: это сера, кислород, азот, хлор. Все их физические особенности противоположны свойствам металлов. Они не проводят электрический ток, плохо пропускают тепловые лучи, имеют низкую твердость. Взаимодействуя с кислородом, неметаллы образуют сложные соединения - кислотные оксиды. Последние, реагируя с кислотами, дают кислоты:

  • H 2 O+CO 2 → H 2 CO 3

Типичная реакция, характерная для кислотных окислов - это взаимодействие со щелочами, приводящее к появлению соли и воды.

Химическая активность неметаллов в периоде усиливается, это связано с увеличением способности их атомов притягивать электроны от других химических элементов. В группах наблюдаем обратное явление: неметаллические свойства ослабевают вследствие раздувания объема атома за счет добавления новых энергетических уровней.

Итак, мы рассмотрели виды химических веществ, примеры, иллюстрирующие их свойства, положение в периодической системе.