Во всех теоретических и практических медицинских науках используются общебиологические закономерности.

Вопрос 2. Методы биологических наук

Основные методы биологии

Основными частными методами в биологии являются:

Описательный,

Сравнительный,

Исторический,

Экспериментальный.

Для того чтобы выяснить сущность явлений, необходимо прежде всего собрать фактический материал и описать его. Собирание и описание фактов были главным приемом исследования в ранний период развития биологии , который, однако, не утратил значения и в настоящее время.

Еще в XVIII в. получил распространение сравнительный метод, позволяющий путем сопоставления изучать сходство и различие организмов и их частей. На принципах этого метода была основана систематика и сделано одно из крупнейших обобщений – создана клеточная теория. Сравнительный метод перерос в исторический , но не потерял своего значения и сейчас.

Исторический метод

Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функций. Утверждением в биологии исторического метода наука обязана Ч. Дарвину.

Экспериментальный метод

Экспериментальный метод исследования явлений природы связан с активным воздействием на них путем постановки опытов (экспериментов) в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот метод позволяет изучать явления изолированно и добиваться повторяемости их при воспроизведении тех же условий. Эксперимент обеспечивает не только более глубокое, чем другие методы, проникновение в сущность явлений, но и непосредственное овладение ими.

Высшей формой эксперимента является моделирование изучаемых процессов. Блестящий экспериментатор И.П. Павлов говорил: «Наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что он хочет».



Комплексное использование различных методов позволяет наиболее полно познать явления и объекты природы. Происходящее в настоящее время сближение биологии с химией, физикой, математикой и кибернетикой, использование их методов для решения биологических задач оказались весьма плодотворными.

Вопрос 3. Этапы развития биологии

Эволюция биологии

Развитие каждой науки находится в известной зависимости от способа производства , общественного строя, потребностей практики, общего уровня науки и техники. Первые сведения о живых организмах начал накапливать еще первобытный человек. Живые организмы доставляли ему пищу, материал для одежды и жилища. Уже в то время появилась необходимость знать свойства растений и животных, места их обитания и произрастания, сроки созревания плодов и семян, особенности поведения животных. Так постепенно не из праздной любознательности, а вследствие насущных повседневных потребностей накапливались сведения о живых организмах. Приручение животных и начало возделывания растений потребовали более глубоких сведений о живых организмах.

Первоначально накапливающийся опыт передавался устно от одного поколения другому. Появление письменности способствовало лучшему сохранению и передаче знаний.

Информация становилась полней и богаче. Однако длительное время вследствие низкого уровня развития общественного производства биологической науки еще не существовало.

Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины.

Биология - наука о жизни. Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Термин Б. предложен Ламарков в 1802 г. Предметов изучения биологии являются живые организмы, их строение, функции, их природные сообщества.

Биология лежит в основе таких наук, как медицина, экология, генетика, селекция, ботаника, зоология, анатомия, физиология, микробиология, эмбриология и др. Биология совместно с другими науками образовала такие науки, как биофизика, биохимия, бионика, геоботаника, зоогеография.

«Медицина, взятая в плане теории- это прежде всего общая биология»,- писал Давыдовский. Теоретические достижения биологии широко применяются в медицине. Именно успехи и открытия в биологии определяют современный уровень медицинской науки. Так данные генетики позволили разрабатывать методы ранней диагностики, лечения и профилактики наследственных болезней человека. Селекция микроорганизмов позволяет получать ферменты, витамины, гормоны, необходимые для лечения ряда заболеваний. Развитие генной инженерии открывает широкие перспективы для производства биологически активных соединений и лекарственных веществ.

Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого. Химический состав клетки.

Жизнь - макромолекулярная открытая система, которой свойственна иерархическая организация, способность к самовоспроизведению, обмен веществ, тонко регулируемый поток энергии. Жизнь, согласно этому определению, представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Стр.9 слюсарев

самообновление . Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;

самовоспроизведение . Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

саморегуляция . Базируется на совокупности потоков вещества, энергии и информации через живой организм;

Саморегуляция в биологии - свойство биологичес­ких систем автоматически устанавливать и поддерживать на определенном, относительно постоянном уровне те или иные физиологические и другие биологические показате­ли.

раздражимость . Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;

поддержание гомеостаза (от гр. homoios - «подобный, одинаковый» и stasis - «неподвижность, состояние») - относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

структурная организация - определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой - биогеоценозов;

адаптация - способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

репродукция (воспроизведение) . Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

наследственность . Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

изменчивость - свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;

индивидуальное развитие (процесс онтогенеза) - воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;

филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе.

В результате эволюции появилось, огромное количество видов. Прогрессивная эволюция прошла ряд ступеней. Это доклеточные, одноклеточные и многоклеточные организмы

вплоть до человека. При этом онтогенез человека повторяет филогенез (т. е. индивидуальное развитие проходит те же этапы, что и эволюционный процесс);

дискретность (прерывистость) и в то же время целостность . Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также

дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять

развитие того или иного признака.

Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

К макроэлементам относят кислород (65-75 %), углерод (15-18 %), водород (8-10 %), азот (2,0-3,0 %), калий (0,15-0,4 %), сера (0,15-0,2 %), фосфор (0,2-1,0 %), хлор (0,05-0,1 %), магний (0,02-0,03 %), натрий (0,02-0,03 %), кальций (0,04-2,00 %).

микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк.

Доклеточный уровень организации живой материи. Вирусы. Роль вирусов в изменчивости и их применение в генной инженерии и терапии. Опыты Х.Френкель-Конрада и А.Херши и М.Чейз с использованием двух типов вирусов.

Доклеточный (или молекулярный, или молекулярно-генетический) уровень организации жив.материи: Начальный уровень организации живого. Предмет исследования - молекулы нуклеиновых кислот, белков, углеводов, липидов и других биологических молекул, т.е. молекул, находящихся в клетке.

С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

P.S. Ивановский и Половцев первыми в мире высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под названием мозаичной, представляет не одно, а два совершенно различных заболевания одного и того же растения. Одно из них - рябуха, возбудителем которой является грибок, а другое - неизвестного происхождения.
Конец XIX века ознаменовался крупными достижениями в микробиологии, и, естественно, Ивановский решил узнать, не вызывает ли табачную мозаику какая-нибудь бактерия. Он просмотрел под оптическим микроскопом (электронных тогда еще не было) множество больных листьев, но тщетно - никаких признаков бактерий обнаружить не удалось. "А может быть, они такие маленькие, что их нельзя увидеть? " - подумал ученый. Если это так, то они должны пройти через фильтры, которые задерживают на своей поверхности обычные бактерии. Подобные фильтры в то время уже имелись.

Мелко растертый лист больного табака Ивановский помещал в жидкость, которую затем фильтровал. Бактерии при этом задерживались фильтром, а прошедшая фильтрацию жидкость должна была быть стерильной и не способной заразить здоровое растение при попадании на него. Но она заражала! В этом суть открытия Ивановского (как просто всё гениальное!) .

Здесь сказывается различие в размерах. Вирусы мельче бактерий приблизительно в 100 раз, поэтому они свободно проходили сквозь все фильтры и заражали здоровые растения, попадая на них вместе с отфильтрованной жидкостью. Бактерии к тому же отличаются способностью размножаться в искусственно созданных питательных средах, а открытые Ивановским вирусы этого не делали. "Значит, это нечто новое", - решил ученый. На дворе стоял 1892 год.

Зрелые частицы вирусов – вирионы или вироспоры- состоят из белковой оболочки и нуклеокапсида, представлен нуклеиновой кислотой. Жизн.цикл: вироспора-прикрепление к клетке-внедрение в нее-латентная стадия-образование нового поколения-выход вироспор.

Типы взаимодействия вируса с клеткой

Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип - завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип - не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения - характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация)

http://biofile.ru/bio/5222.html

Вирусы открыты Д.И.Ивановским (1892 г., вирус табачной мозаики).

Если вирусы выделить в чистом виде, то они существуют в форме кристаллов (у них нет собственного обмена веществ, размножения и других свойств живого). Из-за этого многие ученые считают вирусы промежуточной стадией между живыми и неживыми объектами.

Вирусы – это неклеточная форма жизни. Вирусные частицы (вирионы) – это не клетки:

· вирусы гораздо меньше клеток;

· вирусы гораздо проще клеток по строению – состоят только из нуклеиновой кислоты и белковой оболочки, состоящей из множества одинаковых молекул белка.

Синтез компонентов вируса:

· В нуклеиновой кислоте вируса содержится информация о вирусных белках. Клетка делает эти белки сама, на своих рибосомах.

· Нуклеиновую кислоту вируса клетка размножает сама, с помощью своих ферментов.

· Затем происходит самосборка вирусных частиц.

Значение вирусов:

· вызывают инфекционные заболевания (грипп, герпес, СПИД и т.д.)

· некоторые вирусы могут встраивать свою ДНК в хромосомы клетки-хозяина, вызывая мутации.

Й этап. Подготовительный этап. Образование мономеров из полимеров.

Расщепление полимеров до мономеров. Процесс протекает в пищ.тракте или цитоплазме клеток. Вся энергия расходуется в виде тепла.

Из липидов глицерин и жирные кислоты; из белков аминокислоты и из углеводов глюкоза.

Cлюсарев стр.178

Регенерация – способность организмов восстанавливать поврежденные ткани/органы.

Различают физиологическую, репаративную и патологическую регенерацию.

Физиологическая естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, кожного эпителия.

Репаративная восстановление после повреждения или гибели клеток и тканей.

Патологическая разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща - на месте перелома, размножение клеток соединительной ткани - на месте мышечной ткани сердца, раковая опухоль.

Проблемы:

Возраст, особенности обмена веществ, состояние нервной и эндокринной систем, питание, интенсивность кровообращения в повреждённой ткани, сопутствующие заболевания могут ослабить, усилить или качественно изменить процесс регенерации. В некоторых случаях это приводит к возникновению еще одного вида регенерации - патологической регенерации. Её проявления: длительно незаживающие язвы, нарушения срастания переломов костей, избыточные разрастания тканей или переход одного типа ткани в другой.

Гетеро- и эухроматин.

Оперон

участок ДНК, транскрипция которого осуществляется на одну молекулу информационной РНК под контролем одного специального белка-регулятора. Концепция оперона была пред­ложена в 1961 г. Ф. Жакобом и Ж. Мано для объяснения меха­низма «включения» и «выключения» генов в зависимости от по­требности клетки прокариотического организма в веществах, синтез которых контролируют эти гены. Дальнейшие эксперимен­ты позволили дополнить эту концепцию, а также подтвердили, что оперонная регуляция (т. е. регуляция на уровне транскрип­ции) является основным механизмом регуляции активности ге­нов у прокариот и ряда вирусов.

В состав оперона входят структурные гены и регуляторные элементы (не путать с геном-регулятором). Структурные гены кодируют белки, осуществляющие последовательно этапы биосинтеза какого-либо вещества.

Регуляторными элементами являются сле­дующие:

Промотор - Промотор – посадочная площадка для РНК-полимеразы

Оператор - особый участок ДНК, с которого начинается операция – синтез иРНК.

Терминатор - участок в конце оперона, сигнализирующий о прекращении транскрипции.


Структурные гены- гены, в которых записана наследственная информация о структуре белков.

Промотор – посадочная площадка для РНК-полимеразы.

Оператор – особый участок ДНК, с которого начинается операция – синтез иРНК.

Факторы транскрипции (транскрипционные факторы) - белки́, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК

24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.

Гемоглобин - специфический белок эритроцитов, легко выделяемый из организма без применения трудоемких биохимических методик. Молекула гемоглобина состоит из четырех полипептидных цепей (двух α- и двух β-цепей), каждая из которых соединена с небелковым компонентом - гемом, содержащим железо.

Серповидноклеточная анемия - это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение - так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидноклеточной анемии.

25.Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (HLA). Его значение в трансплантологии.

Иммуногенетика - раздел иммунологии, занятый изучением четырех основных проблем:

1) генетики гистосовместимости;

2) генетического контроля структуры иммуноглобулинов и других иммунологически значимых молекул;

3) генетического контроля силы иммунного реагирования и

4) генетики антигенов.

Иммуногенетика- раздел иммунологии, изучающий генетич. обусловленность факторов иммунитета, внутривидовое разнообразие и наследование тканевых антигенов, генетич. и популяц. аспекты взаимоотношений макро- и микроорганизма и тканевую несовместимость.

Начало И. положили работы Э. Дунгерна и Л. Хиршфельда, открывших наследование групповых антигенов крови (1910). Термин «И.» предложили М. Ирвин и Л. Коле (1936).

Человеческие лейкоцитарные антигены, Система генов тканевой совместимости человека (англ. HLA, Human Leucocyte Antigens) - группа антигенов гистосовместимости, главный комплекс гистосовместимости (далее MHC) у людей. Представлены более, чем 150 антигенами. Локус, расположенный на 6-й хромосоме содержит большое количество генов, связанных с иммунной системой человека. Этими генами кодируются в том числе и антигенпредставляющие белки, расположенные на поверхности клетки. Гены HLA являются человеческой версией генов MHC многих позвоночных (на них проводилось множество исследований MHC генов).

Роли HLA важны в защите от болезней, могут быть причиной отторжения органов после пересадки, могут защищать от рака или увеличивать его вероятность (если разрегулированы из-за частых инфекций. Они могут влиять на развитие аутоиммунных заболеваний (например, сахарный диабет 1-го типа, целиакию).

Структурно-функциональные уровни организации наследственного материала у прокариот и эукариот: генный, хромосомный, геномный. Ген и его свойства. Триплетный код. Внутриклеточная регуляция (гипотеза Жакоба и Моно).

Генный уровень:

Изучение этого уровня связано с функциями и строением нуклеиновых кислот.

Известны две группы нуклеиновых кислот: РНК и ДНК.

ДНК находится в ядре и входит в состав хроматина, а также митохондрии, центросомы, пластиды, а РНК - в ядрышках, матриксе цитоплазмы, рибосомах.

Носителем наследственной информации в клетке является ДНК, а РНК - служит для передачи и реализации генетической информации у про- и эукариот. С помощью и-РНК происходит процесс перевода последовательности нуклеотидов ДНК в полипептид.

У некоторых организмов, кроме ДНК, носителем наследственной информации может быть РНК, например, у вирусов табачной мозаики, полиомиелита, СПИДа.

Хромосомный уровень организации наследственного материала характеризуется особенностями морфологии и функций хромосом.

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни.

Ген – участок молекулы ДНК, определяющий порядок аминокислот в молекуле белка.

Свойства гена:

1 дискретность действия- развитие различных признаков контролируется разными генами.

2 стабильность - передается в ряду поколений в неизменном виде.

3 специфичность - каждый из генов обуславливает развитие определенного признака.

4 плейотропия - способность генов обеспечивать развитие одновременно нескольких признаков

Ген (от греч. genos - происхождение) представляет собой мельчайшую единицу наследственности, которая обеспечивает преемственность в потомстве того или иного элементарного признака организма. У высших организмов ген входит в состав особых нитевидных образований - хромосом, находящихся внутри ядра клетки. Совокупность всех генов организма составляет его геном. В геноме человека насчитывается около ста тысяч генов. По своим химическим характеристикам ген представляет собой участок молекулы ДНК (у некоторых вирусов - РНК), в определенной структуре которого закодирована та или иная наследственная информация. Каждый ген содержит некоторый рецепт, который обеспечивает соответствующий синтез определенного белка, и таким образом совокупность генов управляет всеми химическими реакциями организма и определяет все его признаки. Важнейшим свойством гена является сочетание высокой устойчивости, неизменяемости в ряду поколений со способностью к наследуемым изменениям -мутациям, которые являются источником изменчивости организмов и основой для действия естественного отбора.

Триплетный код . - генетический код , в котором каждая аминокислота полипептидной цепи определяется группой из трех нуклеотидов ДНК.

Общую схему строения генетического аппарата прокариот предложили фр. Жакоб и Моно. Долго не могли объяснить факт: бактерии начинают синтезировать определенный фермент тогда, когда в среде имеется вещество, расщепляемое данным ферментом (субстрат реакции). Если в среде присутствует лактоза и глюкоза, то вначале разлагается глюкоза, т.к. у бактерий этот фермент есть постоянно. Лишь потом начинается синтезироваться фермент, разлагающий лактозу.

Схема генетического контроля белкового синтеза получила название гипотезы оперона. По этой схеме гены функционально неодинаковы: одни из них (структурные гены) содержат информацию о расположении аминокислот в молекуле белка-фермента, другие (гены-регуляторы) выполняют регуляторные функции, оказывающие влияние на активность структурных генов.

Морфология семенников

Семенники – мужские парные половые железы, в которых вырабатываются половые продукты и половые гормоны. По своему строению семенники различны у разных животных. У низших позвоночных (рыбы) семенники расположены в полости тела. У плацентарных млекопитающих они вынесены за пределы полости тела и располагаются в особом органе – мошонке в связи с высокой температурой тела.

Морфология яичников

Яичник у большинства животных представляет собой парную половую железу, в которой развиваются яйцеклетки. У птиц яичник непарный, что связано с приспособлением к полету. У некоторых животных он располагается в полости тела (рыбы), у млекопитающих и человека в полости малого таза. Строение яичника состоит из соединительнотканной основы – стромы. В ней различают внутреннюю – мозговую часть, и наружный – корковый слой. Снаружи железа покрыта однослойным зачатковым эпителием.

Постнатальный онтогенез и его периоды. Роль эндокринных желез: щитовидной, гипофиза, половых в регуляции жизнедеятельности организма в постнатальном онтогенезе. Влияние мелатонина на физиологические процессы.

Онтогенез , или индивидуальное развитие организма, делится на два периода: пренатальный (внутриутробный) и постнатальный (после рождения).

Пренатальный период продолжается от момента зачатия и формирования зиготы до рождения; постнатальный – от момента рождения и до смерти.

Постнатальный период онтогенеза подразделяют на одиннадцать периодов:

1-й-10-й день – новорожденные;

10-й день–1 год – грудной возраст;

1–3 года – раннее детство;

4-7 лет – первое детство;

8-12 лет – второе детство;

13-16 лет – подростковый период;

17-21 год – юношеский возраст;

22-35 лет – первый зрелый возраст;

36-60 лет – второй зрелый возраст;

61-74 года – пожилой возраст;

с 75 лет – старческий возраст,

после 90 лет – долгожители.

Завершается онтогенез естественной смертью.

Эндокринные железы играют большую роль в развитии организма. При недостаточной функции щитовидной железы , если она проявляется в детском возрасте, развивается заболевание кретинизм, характеризующиеся психической отсталостью, задержкой роста и полового развития, нарушение пропорций тела.

Гипофиз . В нем находится гормон, стимулирующий рост, соматотропный гормон. При пониженной функции в детском возрасте развивается карликовость (нанизм), при повышенной – гигантизм. При выделении гормона в зрелом возрасте происходит патологический рост отдельных органов. Наблюдается разрастание костей кисти, стопы, лица (акромегалия).

Половые железы вырабатывают половые клетки и половые гормоны под влиянием которых происходит формирование вторичных половых признаков.

Мелатонин :

Доносит до всех клеток организма о времени дня и световой фазе солнечного дня. Разрушается на свету. Вырабатывается в темноте.

При недостатке мелатонина: раннее старение, ранняя менопауза, развитие ожирения и рака.

Понятие о гомеостазе-гомеокинезе. Общие закономерности гомеостаза живых систем. Генетические, клеточные и системные основы гомеостатических реакций организма. Роль эндокринной и иммунной систем в обеспечении гомеостаза и адаптивных изменений. Виды гомеостаза.

См. стр 190 Слюсарева!

Гомеостаз - относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных.

Гомеокинез это процесс изменения работы организма, направленный на установление гомеостаза (т.н. подвижное равновесие).

Нормализация физиологических показателей осуществляется на основе свойства раздражимости. Способность к поддержанию гомеостаза неодинакова у различных видов. По мере усложнения организмов эта способность прогрессирует, делая их в большей степени независимыми от колебаний внешних условий. Особенно это проявляется у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции. Влияние среды на организм человека в основном является не прямым, а опосредованным благодаря созданию им искусственной среды, успехам техники и цивилизации.

В системных механизмах гомеостаза действует кибернетический принцип отрицательной обратной связи: при любом возмущающем воздействии происходит включение нервных и эндокринных механизмов, которые тесно взаимосвязаны.

Виды гомеостаза:

Генетический гомеостаз на молекулярно-генетическом, клеточном и организменном уровнях направлен на поддержание сбалансированной системы генов, содержащей всю биологическую информацию организма. На популяционновидовом уровне генетический гомеостаз - это способность популяции поддерживать относительную стабильность и целостность наследственного материала, которые обеспечиваются процессами редукционного деления и свободным скрещиванием особей, что способствует сохранению генетического равновесия частот аллелей.

Физиологический гомеостаз связан с формированием и непрестанным поддержанием в клетке специфических физико-химических условий. Постоянство внутренней среды многоклеточных организмов поддерживается системами дыхания, кровообращения, пищеварения, выделения и регулируется нервной и эндокринной системами.

Структурный гомеостаз основывается на механизмах регенерации, обеспечивающих морфологическое постоянство и целостность биологической системы на разных уровнях организации. Это выражается в восстановлении внутриклеточных и органных структур, путем деления и гипертрофии.

Нарушение механизмов, лежащих в основе гомеостатических процессов, рассматривается как «болезнь» гомеостаза.

36.Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути ее преодоления. Искусственные органы.

ТРАНСПЛАНТАЦИЯ - пересадка или приживление органов и тканей. Пересаженный участок называется ТРАНСПЛАНТАНТОМ, организм у которого берут ткань для пересадки является ДОНОРОМ, которому пересаживают - РЕЦИПИЕНТОМ. Успех трансплантации зависит от иммунологических реакций организма.

При АУТОТРАНСПЛАНТАЦИИ (пересадка на другую часть тела того же организма) белки (антигены) трансплантанта не отличаются от белков реципиента и операция наиболее успешна, иммунологическая операция не возникает.

При АЛЛОТРАНСПЛАНТАЦИИ (от одной особи к другой одного вида) донор и реципиент отличаются по антигенам, у высших животных наблюдается длительное приживание.

КСЕНОТРАНСПЛАНТАЦИЯ(гетеротрансплантация) (донор и реципиент относятся к разным видам) удается у некоторых беспозвоночных, но у высших животных такие трансплантанты рассасываются.

Тканевая несовместимость - комплекс иммунных реакций организма к трансплантируемым чужеродным клеткам, тканям или органам.

При трансплантации большое значение имеет явление ИММУНОЛОГИЧЕСКОЙ ТОЛЕРАНТНОСТИ (терпимости) к чужеродным клеткам вследствие реакции отторжения. Подавление иммунитета в случае пересадки тканей (иммунодепрессия) достигается: подавлением активности иммунной системы, облучением, введением антилимфотической сыворотки, гормонов коры надпочечников, химических препаратов - антидепрессантов (имуран). Основная задача подавить не просто иммунитет, а трансплантационный иммунитет.

Искусственные органы – это созданные человеком органы -имплантанты, которые могут заменить настоящие органы тела.

Общие закономерности онтогенеза многоклеточных. Дифференциация и интеграция в развитии. Избирательная активность генов в развитии: роль цитоплазматических факторов яйцеклетки, контактных взаимодействий клеток, межтканевых и гормональных влияний.

Онтогенез - это индивидуальное развитие организма (особи) с момента его зарождения до прекращения существования.

В ходе онтогенеза многоклеточных организмов происходит рост, дифференцировка и интеграция частей организма.

Дифференцировка –специализация клеток; изменение развивающейся структуры.

Интеграция -процесс объединения структур и функций в целостном организме, характерный для живых систем на каждом из уровней их организации.

Показано, что в яйцеклетке, а позже в зиготе цитоплазматические факторы белковой природы проникают в ядро бластомера и определяют характер считываемой информации. Следовательно, развитие эмбриональных закладок детерминировано (определено).

Цитокины - это наиболее универсальный класс внутри - и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях влияют на реакции клеточного роста, пролиферацию и дифференцировку. Часто их рассматривают как тканевые гормоны, то есть гормоны местного действия, распространяющиеся через межклеточное вещество в пределах одной или близлежащих тканей.

Контактные взаимодействия между клетками важны для дифференцировки на всех стадиях развития - от самых ранних и до взрослого состояния.

Обнаружено, что при формировании сложных фасеточных глаз у дрозофилы межклеточные взаимодействия распространяются по эмбриональной ткани в виде волны. Области образующихся межклеточных контактов имеют разную форму. Установлено, что дифференцировка клеток зависит от геометрии их контактных зон с соседними клетками. Клетки с одинаковой формой контактов дифференцируются в одном и том же направлении. Среди всех остальных выявляется одна фоторе-цепторная клетка, которая отличается от других по этому показателю. Именно она может воспринимать ультрафиолетовую область спектра.

Таким образом, межклеточные взаимодействия важны для развития организма и его целостности, особенно в период дробления. Начиная со стадии бластулы, ведущим интегрирующим механизмом онтогенеза становится эмбриональная индукция.

Концепция волчка

Наблюдается увеличение амплитуды циркадианных биоритмов на ранних этапах онтогенеза млекопитающих, развитие их до максимума в молодом и зрелом возрасте и последующее угасание амплитуд в старости.

Гетерохронность - различие во времени наступления старения отдельных тканей, органов и систем. Так, гипотрофические изменения тимуса начинаются уже после 13-15 лет, половых желёз - в климактерическом периоде, а гипофиза - незадолго до смерти.

(когда старение наступает в разных тканях в разные стадии возраста)

Гетеротропность - неодинаковая выраженность старения в разных структурах одного и того же органа или в различных органах.

(Когда старение в разных клетках неодинаково выражена)

Гетерокатефность - разнонаправленность возрастных изменений. Например, по мере старения происходит снижение функции половых гормонов периферическими железами и повышение образования гонадотропных гормонов аденогипофизом.

(Когда старение вызывает не только угасание каких-либо функций, но вызывает увеличение некоторых функций)

Влияние фотопериодических факторов на сезонную адаптацию у простейших и многоклеточных, на ритмы рождаемости. Роль мелатонина. Климатогеографические особенности влияния фотопериодизма на жизнедеятельность. Полярная ночь и полярный день. Проблема «светового загрязнения».

Фотопериодизм – реакция организмов на сезонные изменения долготы дня. Открыт В. Гарнером и Н. Аллардом в 1920 г. во время селекционной работы с табаком.

Мелатонин - основной гормон эпифиза, регулятор суточных ритмов:

Доносит до всех клеток организма о времени дня и световой фазе солнечного дня. Разрушается на свету. Вырабатывается в темноте. При недостатке мелатонина: раннее старение, ранняя менопауза, развитие ожирения и рака. Антоним: сератонин.

Правило Ашоффа

"У ночных животных активный период (бодрствование) более продолжителен при постоянном освещении, в то время как у дневных животных бодрствование более продолжительно при постоянной темноте". И действительно, как впоследствии установил Ашофф, при длительной изоляции человека или животных в темноте цикл "бодрствование - сон" удлиняется за счет увеличения продолжительности фазы бодрствования. Из правила Ашоффа следует, что именно свет определяет циркадные колебания организма.

Поля́рная ночь - период, когда Солнце более 24 часов (то есть более суток) не появляется из-за горизонта.

Поля́рный де́нь - период, когда Солнце не заходит за горизонт дольше 1 суток.

План работы:

1. Понятие о биологии, её связь с другими науками………………..2

14. Особенности строения растительной клетки……………………7

30. Проникновение питательных веществ в клетку. Понятие о тургоре, плазмолизе, плазмоплизе микроорганизмов……………...13

45. Антибиотики и ингибирующие вещества. Пути попадания и влияния их на качество молока. Меры предотвращения попадания их в молоко……………………………………………………………15

50. Микрофлора растений и кормов………………………………...18

66. Охарактеризовать возбудителей туберкулёза и бруцеллёза…..22

1. Понятие о биологии, её связь с другими науками.

Наука - это сфера исследовательской деятельности, направленная на получение новых знаний о предметах и явлениях. Наука включает знания о предмете изучения, ее основная задача - полнее и глубже познать его. Главная функция науки - исследование. Предметом исследования методики обучения биологии являются теория и практика обучения, воспитания и развития учащихся по данному предмету.

Методика обучения биологии как любая наука познает объективные законы процессов и явлений, которые она изучает. Выявление их общих закономерностей позволяет ей объяснить и предсказать ход событий и действовать целенаправленно.

Основными признаками науки, как правило, являются цели, предмет ее изучения, методы познания и формы выражения знаний (в виде фундаментальных научных положений, принципов, законов, закономерностей, теорий и фактов, терминов). Имеют значение также история становления и развития науки, имена ученых, обогативших ее своими открытиями.

Цели, стоящие перед методикой обучения биологии, лежат в русле общих педагогических целей и задач. Поэтому данная методика - особая область педагогики, обусловленная спецификой предмета исследования.

Методика обучения биологии базируется на общих педагогических положениях применительно к изучению биологического материала. Вместе с тем она интегрирует специальные (естественно-научные и биологические), психолого-педагогические, мировоззренческие, культурологические и другие профессионально-педагогические знания, умения и отношения.

Методика обучения биологии определяет цели образования, содержание учебного предмета "Биология" и принципы его отбора.

Цели образования наряду с содержанием, процессом и результатом образования являются важным элементом любой педагогической системы. Образование учитывает как социальные цели, так и цели личности. Социальные цели определяются потребностями развивающегося общества. Личностные цели учитывают индивидуальные способности, интересы, потребности в образовании, самообразовании.

Уровень образованности, т. е. овладение биологическими знаниями, умениями и навыками, способствующими активному и полноценному включению в учебную, трудовую, общественную деятельность;

Уровень воспитанности, характеризующий систему мировоззренческих взглядов, убеждений, отношение к окружающему миру, природе, обществу, личности;

Уровень развития, определяющий способности, потребность в саморазвитии и совершенствовании физических и умственных качеств. Цель общего среднего биологического образования определяется с учетом названных ценностей и таких факторов, как:

Целостность человеческой личности;

Прогностичность, т. е. ориентация целей биологического образования на современные и будущие биологические и образовательные ценности. Таким образом общее среднее биологическое образование становится более открытым для обновления и корректировки;

Преемственность в системе непрерывного образования.

Методика обучения биологии также отмечает, что одна из важнейших целей биологического образования - формирование научного мировоззрения, базирующегося на целостности и единстве природы, ее системном и уровневом построении, многообразии, единстве человека и природы. Кроме того, биология ориентирована на формирование знаний о структуре и функционировании биологических систем, об устойчивом развитии природы и общества в их взаимодействии.

Объект и предмет исследования - важнейшие понятия любой науки. Они представляют собой философские категории. Объект выражает содержание реальности, не зависящей от наблюдателя.

Предметами научного познания являются зафиксированные в опыте и включенные в процесс практической деятельности различные аспекты, свойства и отношения объекта. Объект исследования методики обучения биологии - учебно-воспитательный (образовательный) процесс, связанный с данным предметом. Предметом исследования методики являются цели и содержание образовательного процесса, методы, средства и формы обучения, воспитания и развития учащихся.

В развитии науки, ее практическом приложении и оценке достижений достаточно существенная роль принадлежит методам научного исследования. Они являются средством познания изучаемого предмета и способом достижения поставленной цели. Ведущие методы обучения биологии следующие: наблюдение, педагогический эксперимент, моделирование, прогнозирование, тестирование, качественный и количественный анализ педагогических достижений. Названные методы основаны на опыте, чувственном познании. Однако эмпирическое познание не является единственным источником достоверного знания. Выявить сущность предмета и явления, их внутренние связи помогают такие методы теоретического познания, как систематизация, интеграция, дифференциация, абстрагирование, идеализация, системный анализ, сравнение, обобщение.

Научно обоснована структура содержания методики обучения биологии. Она разделяется на общую и частные, или специальные, методики обучения: природоведению, по курсам "Растения. Бактерии. Грибы и Лишайники", по курсу "Животные", по курсам "Человек", "Общая биология".

Общая методика обучения биологии рассматривает основные вопросы всех биологических курсов: концепции биологического образования, цели, задачи, принципы, методы, средства, формы, модели реализации, содержание и структуры, этапность, непрерывность, историю становления и развития биологического образования в стране и мире; мировоззренческое, нравственное и экокультурное воспитание в процессе обучения; единство содержания и методов обучения; взаимосвязь между формами учебной работы; целостность и развитие всех элементов системы биологического образования, которая обеспечивает прочность и осознанность знаний, умений и навыков.

Частные методики исследуют специальные для каждого курса вопросы обучения в зависимости от содержания учебного материала и возраста учащихся.

Общая методика обучения биологии тесно связана со всеми частными биологическими методиками. Ее теоретические выводы базируются на частнометодических исследованиях. А они, в свою очередь, руководствуются общеметодическими положениями для каждого учебного курса. Таким образом, методика как наука едина, в ней неразрывно сочетаются общая и специальные части.

СВЯЗЬ МЕТОДИКИ ОБУЧЕНИЯ БИОЛОГИИ С ДРУГИМИ НАУКАМИ.

Методика обучения биологии, являясь педагогической наукой, неразрывно связана с дидактикой. Это раздел педагогики, изучающий закономерности усвоения знаний, умений и навыков и формирования убеждений учащихся. Дидактика разрабатывает теорию образования и принципы обучения, общие для всех предметов. Методика обучения биологии, давно сложившаяся как самостоятельная область педагогики, разрабатывает теоретические и практические проблемы содержания, форм, методов и средств обучения и воспитания, обусловленные спецификой биологии.

Следует отметить, что дидактика, с одной стороны, опирается в своем развитии на теорию и практику методики (не только биологии, но и других учебных предметов), а с другой - дает общие научные подходы к исследованиям в области методики, обеспечивая единство методологических принципов в исследовании процесса обучения.

Методика обучения биологии находится в тесной взаимосвязи с психологией, поскольку в своей основе опирается на возрастные особенности детей. Методика подчеркивает, что воспитывающее обучение может быть действенным только в том случае, если оно соответствует возрастному развитию учащихся.

Методика обучения биологии тесно связана с биологической наукой. Предмет "Биология" носит синтетический характер. Он отражает едва ли не все основные области биологии: ботанику, зоологию, физиологию растений, животных и человека, цитологию, генетику, экологию, эволюционное учение, происхождение жизни, антропогенез и пр. Для правильного научного объяснения природных явлений, распознавания растений, грибов, животных в природе, их определения, препарирования и экспериментирования необходима хорошая теоретическая и практическая подготовка.

Цель биологической науки - получить новые знания о природе путем исследования. Цель предмета "Биология" - дать знания учащимся (факты, закономерности), добытые биологической наукой.

Методика обучения биологии тесно связана с философией. Она способствует развитию самопознания человека, пониманию места и роли научных открытий в системе общего развития человеческой культуры, позволяет связать разрозненные фрагменты знаний в единую научную картину мира. Философия является теоретической основой методики, вооружает ее научным подходом к многообразным аспектам обучения, воспитания и развития.

Связь методики с философией тем более важна, поскольку изучение основ науки биологии о всевозможных проявлениях живой материи на разных уровнях ее организации ставит целью формирование и развитие материалистического мировоззрения. Эту важную задачу методика обучения биологии решает постепенно, от курса к курсу, с расширением и углублением биологических знаний, подводя учащихся к пониманию природных явлений, движения и развития материи, окружающего мира.

14. Особенности строения растительной клетки.

1.Биология как наука. Связь биологии с другими науками. Место и задачи биологии и подготовке врача. Новая биология.

Термин «биология» введен Ж.Б.Ламарком и Тревиранусом в 1802 году.

Биоло́гия - система наук, объектами изучения которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия.

В биологии выделяют следующие уровни организации:


  1. Клеточный , субклеточный и молекулярный уровень : клетки содержат внутриклеточные структуры, которыестроятся из молекул .

  2. Организменный и органно-тканевой уровень : у многоклеточных организмов клетки составляют ткани иорганы . Органы же, в свою очередь, взаимодействуют в рамках целого организма .

  3. Популяционный уровень : особи одного и того же вида, обитающие на части ареала, образуют популяцию .

  4. Видовой уровень : свободно скрещивающиеся друг с другом особи обладающие морфологическим,физиологическим, биохимическим сходством и занимающие определённый ареал (район распространения)формируют биологический вид .

  5. Биогеоценотический и биосферный уровень : на однородном участке земной поверхности складываются биогеоценозы , которые, в свою очередь, образуют биосферу .
Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов: ботаника изучает растения , зоология - животных, микробиология - одноклеточные микроорганизмы. Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам: биохимия изучает химические основы жизни, молекулярная биология - сложные взаимодействия между биологическими молекулами, клеточная биология и цитология - основные строительные блоки многоклеточных организмов, клетки, гистология и анатомия - строение тканей и организма из отдельных органов и тканей, физиология - физические и химические функции органов и тканей, этология - поведение живых существ, экология - взаимозависимость различных организмов и их среды.

Передачу наследственной информации изучает генетика. Развитие организма в онтогенезе изучается биологией развития. Зарождение и историческое развитие живой природы - палеобиология и эволюционная биология.

На границах со смежными науками возникают: биомедицина, биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления, как космическая биология, социобиология, физиология труда, бионика.

Биология тесно связана с другими науками и иногда очень трудно провести грань между ними. Изучение жизнедеятельности клетки включает в себя изучение молекулярных процессов протекающих внутри клетки, этот раздел называется молекулярная биология и иногда относится к химии а не к биологии. Химические реакции протекающие в организме изучает биохимия, наука которая существенно ближе к химии чем к биологии. Многие аспекты физического функционирования живых организмов изучает биофизика, которая очень тесно связана с физикой. Иногда как независимую науку выделяют экологию - науку о взаимодействии живых организмов с окружающей средой (живой и неживой природы) . Как отдельная область знаний давно выделилась наука изучающая здоровье живых организмов. Эта область включает в себя ветеринарию и очень важную прикладную науку - медицину, отвечающую за здоровье людей.

Биология поможет студентам понять существо жизненных процессов и правильно оценить возможности лечебного действия лекар​ственных веществ на организм человека.

2.Человек как объект биологии. Значение биологического и социального наследства для медицины.

Человек, отличаясь несомненным своеобразием в сравнении с другими живыми формами, тем не менее представляет собой закономерный результат и этап развития жизни на Земле, поэтому само его существование прямо зависит от общебиологических (молекулярных, клеточных, системных) механизмов жизнедеятельности.

Связь людей с живой природой не ограничивается рамками исторического родства. Человек был и остается неотъемлемой частью этой природы, влияет на нее и в то же время испытывает на себе влияние окружающей среды. Характер таких двусторонних отношений сказывается на состоянии здоровья человека.

Развитие промышленности, сельского хозяйства, транспорта, рост народонаселения, интенсификация производства, информационные перегрузки, усложнение отношений в семьях и на работе порождают серьезные социальные и экологические проблемы: хроническое психоэмоциональное напряжение, опасное для здоровья загрязнение среды жизни, уничтожение лесов, разрушение природных сообществ растительных и животных организмов, снижение качества рекреационных зон. Поиск эффективных путей преодоления указанных проблем невозможен без понимания биологических закономерностей внутривидовых и межвидовых отношений организмов, характера взаимодействия живых существ, включая человека, и среды их обитания. Уже отмеченного достаточно, чтобы уяснить, что многие разделы науки о жизни, даже в ее классическом формате, имеют очевидное прикладное медицинское значение.

На самом деле в наше время в решении проблем охраны здоровья и борьбы с болезнями биологические знания и «высокие биотехнологии» (генетическая, клеточная инженерия) начинают занимать не просто важное, но по-настоящему определяющее место. Действительно, минувшее XX столетие, наряду с тем, что оно, в соответствие с главными направлениями научно-технического прогресса, характеризовалось химизацией, технизацией, компьютеризацией медицины, стало также веком превращения последней в биомедицину.

Главным объектом внимания и профессиональной деятельности врача является человек, представляющий неотъемлемую часть природы. Известно, что отличительной чертой природы людей является наличие социальной составляющей, что проявляется в определенной специфике некоторых важных сторон их развития и жизнедеятельности. Вытекающие из указанной специфики особенности, наиболее заметно проявляющиеся в структуре онтогенеза, особенно постнатального (наличие только у людей периода отрочества и юности, отчетливо представленный период старости), на уровне генетико-популяционных процессов (доминирующая роль социальных факторов в определении состава популяций в сравнении с климатогеографическими), в биогеоценозах и биосфере (целенаправленное преобразование природы, очеловечивание среды жизни).

На планете среди других существ людям принадлежит уникальное место, что обусловлено приобретением ими в процессе антропогенеза особого качества - социальной сущности. Это означает, что уже не биологические механизмы, а в первую очередь общественное устройство, интеллект, производство, труд обеспечивают выживание, всесветное и даже космическое расселение , благополучие человечества. Социальность, однако, не противопоставляет людей остальной живой природе. Приобретение этого качества указывает лишь на то, что отныне историческое развитие представителей вида Homo sapiens , т.е. человечества, подчиняется законам общественного, а не биологического развития.

Человек остается включенным в систему органического мира. Этот мир складывался и развивался на протяжении большей части истории планеты независимо от человеческого фактора, более того, на определенном этапе своего развития он этот фактор породил. Человечество составляет своеобразный, но неотъемлемый компонент биосферы. Благодаря животному происхождению жизнедеятельность человеческого организма основывается на фундаментальных биологических механизмах, которые составляют его биологическое наследство. Биологическому наследству, формировавшемуся в процессе эволюции жизни, отводится видная роль в патологии человека. Крупный отечественный патолог И. В. Давыдовский писал, что естественность и законность болезней вытекают из основных свойств жизни, а именно из универсального и важнейшего свойства организмов - приспосабливаться к меняющимся условиям внешней среды. По его мнению, полнота такого приспособления и есть полнота здоровья.

Развитие жизни в одной из ее ветвей привело к появлению современного человека, объединяющего в себе биологическое и социальное. Характер взаимоотношения социального и биологического в человеке нельзя представить как простое сочетание в некоторой пропорции или прямое подчинение одного другому. Особенностью человеческого биологического является то, что оно проявляется в условиях определяющего действия законов общественного развития. Биологические процессы с необходимостью совершаются в организме человека, и им принадлежит фундаментальная роль в определении важнейших сторон жизнеобеспечения и развития. Вместе с тем эти процессы в популяциях людей не дают результата, закономерного и обязательного для популяций остальных представителей мира живых существ.

В качестве примера обратимся к процессу эволюции, которым в конечном итоге обусловливаются биологические механизмы главных уровней организации жизни - молекулярно-генетического, клеточного, онтогенетического, популяционно-видового, биогеоценотического. Генофонды популяций людей и в настоящее время изменяются в результате мутаций, комбинативной изменчивости, неслучайного подбора брачных пар, дрейфа генов, изоляции и некоторых форм естественного отбора. Однако благодаря действию в социальной сфере естественный отбор утратил здесь свою важнейшую биологическую функцию - видообразование. В таком случае среди людей исключается возможность завершенного эволюционного цикла путем достижения закономерного биологического результата - появления новых видов рода Человек. Сохраняющееся же действие элементарных эволюционных факторов, перечисленных выше, оборачивается в отношении человеческих популяций необычными с эволюционно-биологической точки зрения последствиями (например, не имеющим по масштабам равных в других видах организмов генетическим и, следовательно, фенотипическим разнообразием).

Знакомство с уже обширными, но еще мало систематизированными материалами, касающимися естественнонаучной стороны проблемы человека, указывает на неуклонный рост интереса к биологическим основам жизнедеятельности людей. Отчасти это обусловливается успехами биологической науки, открывающими перспективы активно влиять на ход многих физиологических процессов в организме. В немалой степени это связано с тем, что в условиях современной энергетической и технической оснащенности воздействие человечества на биосферу оказывается по своим результатам таким, что уже невозможно, даже с медицинской точки зрения, дальнейшее игнорирование людьми своей собственной биологии, своего биологического наследства.

3. Развитие понятия жизни на современном этапе. Определения понятия «Жизнь». Фундаментальные свойства живого.

Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений. В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков , учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь – это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.

Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».

Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.

Существует много определений жизни , поскольку изменялись представления о ней, совершенствовалась научная картина мира и ее философское осмысление.

По Озангеру и Моровицу «Жизнь есть свойство материи, приводящее к сопряженной циркуляции биоэлементов в водной среде, движимая, в конечном счете, энергией солнечного излучения по пути увеличения сложности»

1878 г. Фридрих Энгельс «Диалектика природы» : «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой , причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка»

Свойства живого:


  1. Самообновление , которое связано с постоянным обменом веществ и энергии, и в основе которого лежит особенность хранить и использовать биологическую информацию в виде уникальных информационных молекул: белков и нуклеиновых кислот.

  2. с амовоспроизведение . Обеспечивает преемственность между сменяющимися генерациями биологических систем.

  3. саморегуляция . Базируется на совокупности потоков вещества, энергии и информации через живой организм;

  4. раздражимость . Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель.

  5. поддержание гомеостаза - относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы ;

  6. структурная организация - определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой - биогеоценозов;

  7. адаптация - способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

  8. репродукция (воспроизведение) . Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

  9. наследственность . Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

  10. изменчивость - свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;

  11. индивидуальное развитие (процесс онтогенеза) - воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;

  12. филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе.

  13. дискретность (прерывистость) и в то же время целостность . Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.

4. Происхождение жизни: гипотеза панспермии и абиогенного происхождения жизни. Главные этапы возникновения и развития жизни.

Согласно гипотезе панспермии , жизнь занесена из космоса либо в виде спор микроорганизмов, либо путем намеренного «заселения» планеты разумными пришельцами из других миров.

Прямых свидетельств в пользу космического происхождения жизни нет. Космос, однако, наряду с вулканами мог быть источником низкомолекулярных органических соединений, раствор которых послужил средой для развития жизни.

Современной наукой возраст Земли оценивается в 4,5-4,6 млрд. лет. Появление на планете первых водоемов, с которыми связывают зарождение жизни , отстоит от настоящего времени на 3,8-4 млрд. лет. Полагают, что около 3,8 млрд. лет назад жизнь могла стать определяющим фактором планетарного круговорота углерода. В породах вблизи местечка Фиг-Три (Южная Африка), имеющих возраст более 3,5 млрд. лет, обнаружены бесспорные следы жизнедеятельности микроорганизмов.

Таким образом, процесс образования примитивных живых существ шел относительно быстро. Ускорению процесса могло способствовать то, что простейшие органические вещества были из нескольких источников: абиогенно образующиеся в первичной атмосфере и в то же время поступающие с оседающей на поверхность планеты космической и вулканической пылью. Подсчитано, что Земля, проходя через пылевое облако в течение 1 млрд. лет, могла получить с космической пылью 10 млрд. т органического материала. Это всего в 300 раз меньше суммарной биомассы современных наземных организмов (3 10 12 т). Вулкан за одно извержение выбрасывает до 1000 т органических веществ.
Согласно гипотезе абиогенного происхождения жизни , жизнь возникла на Земле, когда сложилась благоприятная совокупность физических и химических условий, сделавших возможным абиогенное образование органических веществ из неорганических.

В середине прошлого столетия Л. Пастер окончательно доказал невозможность самозарождения жизни в теперешних условиях. В 20-х годах текущего столетия биохимики А. И. Опарин и Дж. Холдейн предположили, что в условиях, имевших место на планете несколько миллиардов лет назад, образование живого вещества было возможно. К таким условиям они относили наличие атмосферы восстановительного типа, воды, источников энергии (в виде ультрафиолетового (УФ) и космического излучения, теплоты остывающей земной коры, вулканической деятельности, атмосферных электрических явлений, радиоактивного распада), приемлемой температуры, а также отсутствие других живых существ.

Главные этапы на пути возникновения и развития жизни :

1) образовании атмосферы из газов, которые могли бы служить «сырьем» для синтеза органических веществ (метана, оксида и диоксида углерода, аммиака, сероводорода, цианистых соединений), и паров воды;

2) абиогенном (т.е. происходящем без участия организмов) образовании простых органических веществ, в том числе мономеров биологических полимеров - аминокислот, Сахаров, азотистых оснований, АТФ и других мононуклеотидов;

3) полимеризации мономеров в биологические полимеры, прежде всего белки (полипептиды) и нуклеиновые кислоты (полинуклеотиды);

4) образовании предбиологических форм сложного химического состава - протобионтов, имеющих некоторые свойства живых существ;

5) возникновении простейших живых форм, имеющих всю совокупность главных свойств жизни,-примитивных клеток;

6) биологической эволюции возникших живых существ.

5. Химический состав живых организмов

Основу живого составляют два класса химических соединений - белки и нуклеиновые кислоты . Причем в живых организмах, в отличие от неживого вещества, эти соединения характеризуются так называемой хиральной чистотой. В частности, белки построены только на основе левовращающих (поляризующих свет влево) аминокислот , а нуклеиновые кислоты состоят исключительно из правовращающих сахаров . Эта хиральная чистота сложилась на самых начальных этапах эволюции живого вещества. Считается, что минимальное время глобального перехода от полного хаоса к хиральной чистоте составляет от 1 до 10 млн. лет. Следовательно, в этом смысле зарождение жизни могло произойти на Земле относительно мгновенно за отрезок времени , в 5 тыс. раз меньший предполагаемого возраста планеты.

Белки ответственны прежде всего за обмен веществ и энергии в живой системе, т.е. за все реакции синтеза и распада, осуществляющиеся в любом организме от рождения и до смерти. Нуклеиновые кислоты обеспечивают способность живых систем к самовоспроизведению. Они - основа матрицы, удивительного "изобретения" природы. Матрица представляет своего рода чертеж, т. е. полный набор информации, на основе которого синтезируются видоспецифические молекулы белка.

Помимо белков и нуклеиновых кислот, в состав живых организмов входят липиды (жиры) , углеводы и очень часто аскорбиновая кислота .

В живых системах найдены многие химические элементы, присутствующие в окружающей среде, однако необходимы для жизни лишь около 20 из них. Эти элементы получили название биогенных. В среднем около 70% массы организмов составляет кислород , 18% - углерод , 10% - водород (вещества-органогены). Далее идут азот , фосфор , калий , кальций , сера , магний , натрий , хлор ,железо . Эти так называемые универсальные биогенные элементы, присутствующие в клетках всех организмов, нередко называют макроэлементами .

Часть элементов содержится в организмах в крайне низких концентрациях (не выше тысячной доли процента), но они также необходимы для нормальной жизнедеятельности. Это биогенные микроэлементы . Их функции и роль весьма разнообразны. Многие микроэлементы входят в состав ряда ферментов , витаминов , дыхательных пигментов , некоторые влияют на рост, скорость развития, размножение и т. д.

Присутствие в клетках целого ряда элементов зависит не только от особенностей организма, но и от состава среды, пищи, экологических условий, в частности от растворимости и концентрации солей в почвенном растворе. Резкая недостаточность или избыточность биогенных элементов приводит к ненормальному развитию организма или даже к его гибели. Добавки биогенных элементов в почву для создания их оптимальных концентраций широко используются в сельском хозяйстве.

Минеральные элементы, называемые также биоэлементами, в организме человека играют важную роль:
являются строительным материалом (кальций, фосфор, железо);
регулируют многие биохимические процессы в ходе обмена веществ (калий, натрий, йод, хлор, медь, марганец, селен и другие);
принимают участие в процессе свертывания крови (кальций);
поддерживают водный баланс организма (натрий, калий);
влияют на сохранение кислотно-щелочного равновесия;
входят в состав ферментов (энзимов).

Биоэлементы подразделяются на две группы:
Макроэлементы, присутствующие в больших количествах в пище (до нескольких процентов сухой массы) и необходимые организму в конкретных весовых количествах для правильного его функционирования.
Микроэлементы, необходимые организму в следовых количествах (порядка от 10-2 до 10-11% живой массы организма). Они очень важны для метаболических процессов и выработки гормонов и энзимов.
(дополнительно еще материал) Все живые организмы избирательно относятся к окружающей среде. Состав химических элементов живых систем отличаются от химических элементов земной коры. В земной коре O,Si,Al,Na,Fe,K,в живых организмах H,O,C,N. Всех других элементов менее 1%. В любом живом организме можно найти все элементы окружающей среды, правда, в разном количестве. Однако это не означает, что они необходимы. Необходимы 20 химических элементов – тех, без которых живая система обойтись не может. В зависимости от окружающей среды и обмена веществ набор этих веществ разный. Некоторые химические элементы входят в состав всех живых организмов (универсальные химические элементы) H,C,N,O.Na,Mg,P,S,Ca,K,Cl,Fe,Cu,Mn,Zn,B , V , Si , Co , Mo . Кремнийвходит в состав мукополисахаридов соединительной ткани.

В состав живых организмов входят 4 элемента, которые удивительно подошли для выполнения функций живого: О,С,Н,N. Они обладают общим свойством: они легко образуют ковалентные связи посредством спаривания электронов. Атомы С обладают свойством: могут соединяться в длинные цепи и кольца, с которыми могут связываться другие химические элементы. Соединений С очень много. Ближе всего к углероду кремний, но С образует СО2, который широко распространен в природе и доступен всем, а оксид кремния - элемент песка (нерастворим).

Макромолекулы – нуклеиновые кислоты, белки, полипептиды, липиды, полисахариды – полимеры, образованные мономерами, соединенными ковалентными связями. Любой живой организм на 90% состоит из 6 химических элементов – С,О,Н,Р,N,S – биоэлементы (биогенные элементы).

Клетка

Все живые организмы используют общие материалы для жизнедеятельности. Используются около 120 (20 аминокислот, 5 азотистых оснований, 4 класса липидов, малых молекул – простых кислот, воды, фосфатов – 70). Это продукты химической эволюции (органические соединения живых систем и компоненты неживой материи).

6. Биологическая роль воды

Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, во-вторых, для многих организмов она служит еще и средой обитания. Именно поэтому следует сказать несколько слов о ее химических и физических свойствах.

Свойства эти довольно необычны и обусловлены главным образом малыми размерами молекул воды , их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой - отрицательный. Такую молекулу называют диполем. У атома кислорода способность притягивать электроны выражена сильнее, чем у водородных атомов, поэтому атом кислорода в молекуле воды стремится оттянуть к себе электроны двух водородных атомов. Электроны заряжены отрицательно, в связи с чем атом кислорода приобретает небольшой отрицательный заряд, а водородные атомы - положительный.

В результате между молекулами воды возникает слабое электростатическое взаимодействие и, поскольку противоположные заряды притягиваются , молекулы как бы «склеиваются». Эти взаимодействия, более слабые, чем обычные ионные или ковалентные связи, называются водородными связями. Водородные связи постоянно образуются, распадаются и вновь возникают в толще воды. И хотя это слабые связи, но их совокупный эффект обусловливает многие необычные физические свойства воды. Учитывая данную особенность воды, мы можем теперь перейти к рассмотрению тех ее свойств, которые важны с биологической точки зрения.

Водородные связи между молекулами воды. А. Две молекулы воды, соединенные водородной связью-6+ - очень маленький положительный заряд; 6 - очень маленький отрицательный заряд. Б. Сеть из молекул воды, удерживаемых вместе водородными связями. Такие структуры постоянно образуются, распадаются и вновь возникают в воде, находящейся в жидком состоянии.

Вопрос 1. Введение в биологию

1. Определение биологии

Биология – наука о жизни . Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Предметом изучения биологии являются живые организмы, их строение, функции, их природные сообщества. Термин «биология», предложенный в 1802 г. впервые Ж.Б. Ламарком, происходит от двух греческих слов: bios - жизнь и logos – наука. Вместе с астрономией, физикой, химией, геологией и другими науками, изучающими природу, биология относится к числу естественных наук. В общей системе знаний об окружающем мире другую группу наук составляют социальные, или гуманитарные (лат. humanitas – человеческая природа), науки, изучающие закономерности развития человеческого общества.

2. Современная биология

Классификацией живых существ занимается систематика.

Ряд биологических наук изучает морфологию, т. е. строение организмов, другие – физиологию, т. е. процессы, протекающие в живых организмах, и обмен веществ между организмами и средой. К морфологическим наукам относятся анатомия, изучающая макроскопическую организацию животных и растений, и гистология – наука о тканях и о микроскопическом строении тела.

Многие общебиологические закономерности являются предметом изучения цитологии, эмбриологии, геронтологии, генетики, экологии, дарвинизма и других наук.

3. Наука о клетке

Цитология – наука о клетке. Благодаря применению электронного микроскопа, новейших химических и физических методов исследования современная цитология изучает строение и жизнедеятельность клетки не только на микроскопическом, но и на субмикроскопическом, молекулярном уровне.

4. Эмбриология и генетика

Эмбриология изучает закономерности индивидуальности развития организмов, развитие зародыша. Геронтология – учение о старении организмов и борьбе за долголетие.

Генетика – наука о закономерностях изменчивости и наследственности. Она является теоретической базой селекции микроорганизмов, культурных растений и домашних животных.

5. Экологические науки
6. Палеонтология. Антропология

Палеонтология изучает вымершие организмы, ископаемые останки прежней жизни.

Дарвинизм , или эволюционное учение, рассматривает общие закономерности исторического развития органического мира.

Антропология – наука о происхождении человека и его рас. Правильное понимание биологической эволюции человека невозможно без учета закономерностей развития человеческого общества, поэтому антропология является не только биологической, но и социальной наукой.

7. Связь биологии с другими науками

Во всех теоретических и практических медицинских науках используются общебиологические закономерности.

Вопрос 2. Методы биологических наук

1. Основные методы биологии

Основными частными методами в биологии являются:

Описательный,

Сравнительный,

Исторический,

Экспериментальный.

Для того чтобы выяснить сущность явлений, необходимо прежде всего собрать фактический материал и описать его. Собирание и описание фактов были главным приемом исследования в ранний период развития биологии , который, однако, не утратил значения и в настоящее время.

Еще в XVIII в. получил распространение сравнительный метод, позволяющий путем сопоставления изучать сходство и различие организмов и их частей. На принципах этого метода была основана систематика и сделано одно из крупнейших обобщений – создана клеточная теория. Сравнительный метод перерос в исторический , но не потерял своего значения и сейчас.

2. Исторический метод

Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функций. Утверждением в биологии исторического метода наука обязана Ч. Дарвину.

3. Экспериментальный метод

Экспериментальный метод исследования явлений природы связан с активным воздействием на них путем постановки опытов (экспериментов) в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот метод позволяет изучать явления изолированно и добиваться повторяемости их при воспроизведении тех же условий. Эксперимент обеспечивает не только более глубокое, чем другие методы, проникновение в сущность явлений, но и непосредственное овладение ими.

Высшей формой эксперимента является моделирование изучаемых процессов. Блестящий экспериментатор И.П. Павлов говорил: «Наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что он хочет».

Комплексное использование различных методов позволяет наиболее полно познать явления и объекты природы. Происходящее в настоящее время сближение биологии с химией, физикой, математикой и кибернетикой, использование их методов для решения биологических задач оказались весьма плодотворными.

Вопрос 3. Этапы развития биологии

1. Эволюция биологии

Развитие каждой науки находится в известной зависимости от способа производства , общественного строя, потребностей практики, общего уровня науки и техники. Первые сведения о живых организмах начал накапливать еще первобытный человек. Живые организмы доставляли ему пищу, материал для одежды и жилища. Уже в то время появилась необходимость знать свойства растений и животных, места их обитания и произрастания, сроки созревания плодов и семян, особенности поведения животных. Так постепенно не из праздной любознательности, а вследствие насущных повседневных потребностей накапливались сведения о живых организмах. Приручение животных и начало возделывания растений потребовали более глубоких сведений о живых организмах.

Первоначально накапливающийся опыт передавался устно от одного поколения другому. Появление письменности способствовало лучшему сохранению и передаче знаний.

Информация становилась полней и богаче. Однако длительное время вследствие низкого уровня развития общественного производства биологической науки еще не существовало.

2. Изучение биологии в древности

Значительный фактический материал о живых организмах был собран великим врачом Греции Гиппократом (460–377 гг. до н. э.). Ему принадлежат первые сведения о строении животных и человека, описание костей, мышц, сухожилий, головного и спинного мозга. Гиппократ учил: «Необходимо, чтобы каждый врач понимал природу».

Естествознание и философия античного мира в наиболее концентрированном виде представлены в трудах Аристотеля (384–322 гг. до н. э.). Он описал более 500 видов животных и сделал первую попытку их классификации. Аристотель интересовался строением и образом жизни животных. Им были заложены основы зоологии. Аристотель оказал огромное влияние на дальнейшее развитие естествознания и философии. Работы Аристотеля в области изучения и систематизации знаний о растениях продолжил Теофраст (372–287 гг. до н. э.). Его называют «отцом ботаники». Расширением знаний о строении человеческого тела античная наука обязана римскому врачу Галену (139–200 гг. н. э.) производившему вскрытие обезьян и свиней. Труды его оказывали влияние на естествознание и медицину в течение ряда веков. Римский поэт и философ Тит Лукреций Кар , живший в I в. до н. э., в поэме «О природе вещей» выступил против религии и высказал мысль о естественном возникновении и развитии жизни.

3. Упадок науки в Средневековье

На смену рабовладельческому обществу в результате развития производительных сил и производственных отношений пришел феодализм, охватывающий период Средневековья. В эту мрачную эпоху утвердилось господство церкви с ее мистикой и реакционной идеологией. Наука переживала упадок, стала, по выражению К. Маркса , «служанкой богословия». Церковь канонизировала и объявила незыблемой истиной сочинения Аристотеля, Галена , во многом исказив их. Утверждалось, что в естествознании все проблемы уже решены учеными древности, поэтому в изучении живой природы нет необходимости. «Мудрость мира – есть безумие перед богом», – поучала церковь. Библия была объявлена книгой «божественного откровения». Все объяснения явлений природы не должны были противоречить ни Библии, ни сочинениям древних. Церковь жестоко карала всех прогрессивных мыслителей и исследователей, поэтому накопление знаний в эпоху Средневековья шло очень медленно.

4. Эпоха Возрождения и развитие науки

Важным рубежом в развитии науки являлась эпоха Возрождения (XIV–XVI вв.). С этим периодом связано зарождение нового общественного класса – буржуазии. Развивающиеся производственные силы требовали конкретных знаний. Это привело к обособлению ряда наук о природе. В XV–XVIII вв. выделились и интенсивно развивались ботаника, зоология, анатомия, физиология. Однако развивающемуся естествознанию нужно было еще отстаивать свои права на существование, вести жестокую борьбу с церковью. Еще продолжали пылать костры инквизиции. Мигель Сервет (1511–1553 гг.), открывший малый круг кровообращения, был объявлен еретиком и сожжен на костре.

5. Учение Ф. Энгельса

Характерной чертой естествознания того времени было изолированное изучение объектов природы. «Надо был исследовать предметы, прежде чем можно было приступить к исследованию процессов», – писал Ф. Энгельс . Изолированное изучение объектов природы порождало представления о ее неизменности, в том числе неизменности видов. «Видов столько, сколько их создал творец», – считал К. Линней . «Но что особенно характеризует рассматриваемый период, так это – выработка своеобразного общего мировоззрения, центром которого является представление об абсолютной неизменяемости природы», – писал Ф. Энгельс . Этот период в развитии естествознания он называл метафизическим.

Однако, как указывает Ф. Энгельс , уже тогда в метафизических представлениях начинают возникать первые бреши. В 1755 г. появилась «Всеобщая естественная история и теория неба» И. Канта (1724–1804 гг.), в которой он развил гипотезу о естественном происхождении Земли. Через 50 лет эта гипотеза получила математическое обоснование в работе П.С. Лапласа (1749–1827 гг.).

В борьбе с идеалистическими представлениями большую положительную роль сыграли французские материалисты XVIII в. – Ж. Ламетри (1709–1751 гг.), Д. Дидро (1713–1784 гг.) и др.

6. Необходимость нового подхода к изучению природы

В период быстрого развития промышленности и роста городов, потребовавшего резкого увеличения продуктов сельскохозяйственного производства, возникла необходимость в научном ведении земледелия. Потребовалось раскрытие закономерностей жизнедеятельности организмов, истории их развития. Для решения этих задач нужен был новых подход к изучению природы. В науку начинают проникать идеи о всеобщей связи явлений, изменяемости природы, эволюции органического мира.

Академик Российской академии наук К.Ф. Вольф (1733–1794 гг.), исследуя зародышевое развитие животных, выяснил, что индивидуальное развитие связано с новообразованием и преобразованием частей эмбриона. По словам Ф. Энгельса, Вольф произвел в 1759 г. первое нападение на теорию постоянства видов. В 1809 г. Ж.Б. Ламарк (1744–1829 гг.) выступил с первой теорией эволюции. Однако фактического материала для обоснования теории эволюции еще было недостаточно. Ламарку не удалось открыть основные закономерности развития органического мира, и его теория не была признана современниками.

7. Возникновение новых наук

В первой половине XIX в. возникли новые науки – палеонтология, сравнительная анатомия животных и растений, гистология и эмбриология. Знания, накопленные естествознанием в первой половине XIX в., явились прочной основой для эволюционной теории Ч. Дарвина. Его труд «Происхождение видов» (1859 г.) знаменовал собой переломный момент в развитии биологии: с него началась новая эпоха в истории естествознания. Вокруг учения Дарвина возникает ожесточенная идеологическая борьба, но идея эволюционного развития быстро завоевывает всеобщее признание. Вторая половина XIX в. характеризуется плодотворным проникновением идей дарвинизма во все области биологии.

8. Распад науки на отдельные отрасли

Для биологии ХХ в. характерны два процесса. Во-первых, вследствие накопления огромного фактического материала прежние единые науки начинают распадаться на отдельные отрасли. Так, из зоологии выделились энтомология, гельминтология, протозоология и многие другие отрасли, из физиологии – эндокринология, физиология высшей нервной деятельности и т. д. Во-вторых, намечается тенденция к сближению биологии с другими науками : возникли биохимия, биофизика, биогеохимия и др. Появление пограничных наук указывает на диалектическое единство многообразных форм существования и развития материи, способствует преодолению метафизического разобщения в изучении форм ее существования. В последние десятилетия в связи с бурным развитием техники и новейшими достижениями в ряде областей естествознания возникли молекулярная биология, бионика, радиобиология, космическая биология.

Молекулярная биология – область современного естествознания. Используя теоретические основы и экспериментальные методы химии и молекулярной физики, она дает возможность исследовать биологические системы на молекулярном уровне.

Бионика изучает функции и строение организмов с целью использования тех же принципов при создании новой техники. Если до настоящего времени биология была одной из теоретических основ медицины и сельского хозяйства, то ныне становится также одной из основ техники будущего.

Появление радиобиологии – учения о действии ионизирующих излучений на живые организмы – связано с открытием биологического действия рентгеновских и гамма-лучей, особенно после обнаружения природных источников радиоактивности и создания искусственных источников ионизирующих излучений.

До недавнего прошлого биология оставалась чисто земной наукой, изучающей формы жизни только на нашей планете. Однако успехи современной техники, позволившие создать летательные аппараты, способные преодолевать земное притяжение и выходить в космическое пространство, поставили перед биологией ряд новых задач, являющихся предметом космической биологии . В решении вопросов сегодняшнего дня вместе с биологами принимают участие математики, кибернетики, физики, химики и специалисты в других областях естествознания.

Вопрос 4. Роль биологии в системе медицинского образования

1. Связь биологии с медициной

Важность изучения биологии для медика определяется тем, что биология – это теоретическая основа медицины. «Медицина, взятая в плане теории, – это прежде всего общая биология», – писал один из крупнейших теоретиков медицины И.В. Давыдовский. Успехи медицины связаны с биологическими исследованиями, поэтому врач постоянно должен быть осведомлен о новейших достижениях биологии. Достаточно привести несколько примеров из истории науки, чтобы убедиться в тесной связи успехов медицины с открытиями, сделанными, казалось бы, в чисто теоретических областях биологии.

2. Учение Л. Пастера

Исследования Л. Пастера (1822–1895 гг.), доказавшие невозможность самопроизвольного зарождения жизни в современных условиях, открытие того, что гниение и брожение вызываются микроорганизмами, произвели переворот в медицине и обеспечили развитие хирургии. В практику были введены сначала антисептика (предупреждение заражения раны посредством химических веществ), а затем асептика (предупреждение загрязнения путем стерилизации предметов, соприкасающихся с раной). Это же открытие послужило стимулом к поискам возбудителей заразных болезней, а с обнаружением их связаны разработка профилактики и рационального лечения инфекционных болезней. Открытие клетки и изучение микроскопического строения организмов позволили глубже понять причины возникновения болезненного процесса, способствовали разработке методов диагностики и лечения. То же самое следует сказать об изучении физиологических и биохимических закономерностей. Изучение И.И. Мечниковым процессов пищеварения у низших многоклеточных организмов способствовало объяснению явлений иммунитета. Его исследования по межвидовой борьбе у микроорганизмов привели к открытию антибиотиков, используемых для лечения многих болезней.

3. Филогенетический принцип

Следует помнить, что человек выделился из животного мира. Структура и функции человеческого организма, в том числе защитные механизмы, – результат длительных эволюционных преобразований предшествующих форм. В основе патологических процессов также лежат общебиологические закономерности. Необходимой предпосылкой для понимания сущности патологического процесса является знание биологии.

Филогенетический принцип , учитывающий эволюцию органического мира, может подсказать правильный подход к созданию живых моделей для изучения и незаразных болезней и для испытания новых лекарственных препаратов. Этот же метод помогает найти правильное решение при выборе тканей для заместительной трансплантации, понять происхождение аномалий и уродств, найти наиболее рациональные пути реконструкции органа и т. д.

4. Роль генетики в медицине

Большое число болезней имеет наследственную природу. Профилактика и лечение их требуют знания генетики. Ненаследственные болезни протекают неодинаково, а их лечение проводится в зависимости от генетической конституции человека, чего не может не учитывать врач. Многие врожденные аномалии возникают вследствие воздействия неблагоприятных условий среды. Предупредить их – задача врача, вооруженного знаниями биологии развития организмов. Здоровье людей в большой мере зависит от среды, в частности от той, которую создает человечество. Знание биологических закономерностей необходимо для научно обоснованного отношения к природе, охране и использованию ее ресурсов, в том числе с целью лечения и профилактики заболеваний. Как уже говорилось, причиной многих болезней человека являются живые организмы, поэтому для понимания патогенеза (механизма возникновения и развития болезни) и закономерностей эпидемического процесса (т. е. распространения заразных болезней) необходимо изучение болезнетворных организмов.

Вопрос 5. Обмен веществ и энергии

1. Совокупность закономерностей

К числу закономерностей, совокупность которых характеризует жизнь, относятся:

Самообновление, связанное с потоком вещества и энергии;

Самовоспроизведение, обеспечивающее преемственность между сменяющими друг друга генерациями биологических систем, связанное с потоком информации;

Саморегуляция, базирующаяся на потоке вещества, энергии и информации.

Перечисленные закономерности обусловливают основные атрибуты жизни: обмен веществ и энергии, раздражимость, гомеостаз, репродукцию, наследственность, изменчивость, индивидуальное и филогенетическое развитие.

2. Обмен веществ и энергии

Характеризуя явление жизни, Ф. Энгельс писал: «Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

Важно отметить, что обмен веществ может иметь место и между телами неживой природы . Однако обмен веществ как свойство живого качественно отличается от обменных процессов в неживых телах. Для того чтобы показать эти отличия, рассмотрим ряд примеров.

Горящий кусок угля находится в состоянии обмена с окружающей природой: происходит включение кислорода в химическую реакцию и выделение углекислого газа. Образование ржавчины на поверхности железного предмета является следствие обмена со средой. Но в результате этих процессов неживые тела перестают быть тем, чем они были. Наоборот, для тел живой природы обмен с окружающей средой является условием их существования. В живых организмах обмен веществ приводит к восстановлению разрушенных компонентов, замене их новыми, подобными им, т. е. к самообновлению и самовоспроизведению , построению тела живого организма за счет усвоения веществ из окружающей среды.

Из сказанного следует, что организмы существуют как открытые системы. Через каждый организм идут непрерывные потоки вещества и энергии. Осуществление этих процессов обусловлено свойствами белков, особенно их каталитической активностью.

3. Места обитания микроорганизмов

Благодаря тому, что организмы – открытые системы, они находятся в единстве со средой , а физические, химические и биологические свойства окружающей среды обусловливают осуществление всех процессов жизнедеятельности. Каждый вид организмов приспособлен к обитанию лишь в определенных условиях. Это те условия, в которых происходило развитие данного вида, к которым он приспособился. Одни виды обитают только в воде, другие – на суше, одни – лишь в полярных широтах, другие – в экваториальном поясе, различные организмы приспособлены к обитанию в степях, пустынях, лесах, глубинах океанов или на вершинах гор. Немало таких, для которых средой обитания служат другие организмы (их кишечник, мышцы, кровь и т. д.).

4. Изменение окружающей среды

Не только организмы зависят от среды, но и сама окружающая среда изменяется в результате жизнедеятельности организмов. Первобытный облик нашей планеты значительно изменился под воздействием организмов: она приобрела атмосферу со свободным кислородом и почвенный покров. Из свободного кислорода образовался озон, препятствующий проникновению ультрафиолетового излучения к поверхности Земли; так возник «озоновый экран», обеспечивающий существование жизни на поверхности суши. Из зеленых растений, накопивших в себе солнечную энергию в прошлые геологические эпохи, сформировались огромные запасы богатых энергией горных пород, таких как уголь и торф. Органическое происхождение имеют известняки, мел и многие другие минералы. Растительный покров влияет на климат, древесная растительность делает его более мягким, уменьшает колебания температуры и других метеорологических факторов. Влияние неживой природы на организмы и организмов на неживые тела указывает на единство всей природы.